Artificial Intelligence (AI) Challenges and Opportunities

Anil K. Jain

University Distinguished Professor Michigan State University January 13, 2020

What is Artificial Intelligence (AI)?

"The science of making machines do things that would require intelligence if done by men."

Marvin Minsky (1927-2016), referred to as the father of AI

Examples of AI systems

Robots

Robotic Surgery

Al for Surveillance

LG WASHING MACHINES WITH AI

• LG's AI technology leverages big data on 20,000 pieces of information (e.g. washer usage) and adjusts settings, based on the load, to provide the most optimized washing cycle."

http://www.lgnewśroom.com/2019/09/lg-washing-machines-with-artificialintelligence-and-direct-drive-motor-roll-out-region-wide/

10 Most-influential Technologies of the Decade

Facebook's News Feed		Facebook's Instagram		Te: Mo	Tesla's Rir Model S Doo		ıg's Ama rbell Ale		izon App exa Face		ple eID
	20	07	20	11	20	12	20	13	20	15	
2006		20	10	20	12	20	13	20	14	20	17
				R				antinue			
	Net Strea	flix ming	Ub	er	Ap iP	ple Pad	Apj Tou d	ole c hID	App Wat	ole :ch	

https://www.washingtonpost.com/technology/2019/12/26/we-picked-most-influential-technologies-decade-it-isnt-all-bad/

Ethical Principles for AI Systems

https://www.microsoft.com/e n-us/ai/our-approach-to-ai

Benefits and Perils of AI-based Technology

- How do the companies *safeguard user data? Do they "sell" it?*
- Apps (mobile applications) decide what we read and watch.
- Ola & Uber decide what jobs a driver gets and where he goes?
- Fake news, photos and videos on social media can create hatred and influence outcomes of elections.
- Widespread use of surveillance can track your activities.
- Al systems are not always *fair* (unbiased)?

Data Privacy Law in India

Passenger providing face image at Hyderabad airport

- A new legislation in the Parliament, will restrict how companies can collect and use information from the country's 1.3 billion people.
- But, no restrictions on the government use.

"India Charts Own Path on Data Privacy", NY Times, Dec 11, 2019

Artificial Intelligence for Good

"Applied AI uses technology to empower solutions to humanitarian issues and create a more sustainable and accessible world."

"Through research, engineering, and initiatives to build the AI ecosystem, we're working to use AI to address societal challenges."

facebook

"Artificial intelligence brings the promise of improved access to health care, accelerated economic development, reduced inequalities, and other gains."

Infant-Prints: Fingerprint Recognition of Infants

Who is this Infant?

Authentication: Is this the infant his parents claim him to be? Search: Have we seen this infant before?

Why Infant Identity?

Vaccination Clinic

U.N. Sustainable Development Goal (16.9):

"By 2030, provide legal identity for all, including birth registration"

Biometric Recognition

- ID Bands: damaged or switched; 1 mistake in 1,000 baby transfers
- Biometrics: Automated recognition of infants from their biological traits

Which Biometric Trait?

Requirements: Permanence, uniqueness, ergonomic, low cost, lifelong usability, throughput

Why Fingerprints?

Permanence (Stable over time)

Uniqueness F (Distinct for each person)

Portability, acceptability, cost (Accessible to all)

Adult vs. Infant Fingerprints

Biometrics India's Answer to Safe Payments

Adult fingerprint Infant fingerprint 500 ppi

Dataset of 194 infants

6 days

1 Month, 12 days

2 Months, 13 days

3 Months, 13 days

1 Month, 14 days

2 Months, 15 days

3 Months, 15 days

2 Months, 27 days

4 Months, 5 days

5 Months, 5 days

6 Months, 5 days

8 days

2 Months, 27 days

4 Months, 5 days

5 Months, 5 days

6 Months, 5 days

In-situ Evaluation: Saran Ashram Hospital, Dayalbagh, Agra, India

Enrollment	0-3 Months	1-3 Months	2-3 Months	
Left Thumb	59.0% (65.4%)	62.3% (69.6%)	76.5% (82.4%)	
Right Thumb	55.8% (58.4%)	60.9% (63.8%)	68.4% (74.5%)	
Thumbs Fused	66.7% (78.2%)	75.4% (85.1%)	90.2% (94.1%)	

- TAR @ FAR = 0.1% (1.0%)
- Authenticate after 3 months
- Fusion of 3 matchers

Engelsma, et al., "Infant-Prints: Fingerprints for Reducing Infant Mortality", in CVPR Workshop, 2019.

Primate Trafficking

22,818 27 Great Apes Trafficked Arrests 2005 - 2011

* Statistics from UNESCO

Tracking Primate Individuals

PrimID

Non-Invasive

Reliable

Automatic

PrimID: Primate Identification in the Wild

D. Deb, S. Wiper, S. Gong, Y. Shi, C. Tymoszek, A. Fletcher and A. K. Jain, "Face Recognition: Primates in the Wild", in IEEE BTAS, 2018

Finding Missing Children: Aging Deep Face Features

D. Deb, D. Aggarwal and A. K. Jain, "Finding Missing Children: Aging Deep Face Features", arXiv:1911.07538, 2019

28% of human trafficking victims are children.

Each year, 8 million children are reported missing.

Expected to survive only 7 years.

* Statistics from UNICEF

Which Biometric trait to use?

Parents or relatives are more likely to have the missing child's face images opposed to iris or fingerprints.

Problem

Challenges

- Large time lapse between times child goes missing and found
- Available FR systems do not perform well on this use case

7 years old

11 years old

17 years old

25 years old

28 years old

High Profile Cases

5 years

30 years

29 years

Saroo Brierley lost at the age of 5 (left) and later reunited with his family at the age of 30 (right).

Jaycee Dugard abducted at the age of 11 (left) and later retrieved at the age of 29 (right).

Enrollment Age: 4

ENROLLMENT

Target Age: 5

GROUND TRUTH

Similarity: 0.87

Deep Learning vs. Traditional Methods

Traditional Method

Deep Learning vs. Traditional Methods

- Deep Learning: Learning the representations as part of the model
- Models are trained and tested end-to-end
- Deep Neural Network: "*mimicking human brains*" by stacking nonlinear transformations

Deep Neural Network

Different Types of DNNs

Images: Convolutional Neural Networks

Sequences: Recurrent Neural Networks

Many Others...

Graphs: Graph Neural Networks

Why Are Deep Networks Popular?

- Larger databases (e.g. ImageNet with >10M images):
 - DNNs are prone to overfitting but can be powerful with more data
- Better Computing Resources:
 - Development of GPUs allows faster parallel computing.
- Higher Performance
 - On many tasks (e.g. image classification), DNNs can provide near-human performance by utilizing large amounts of data

Advantages and Limitations

- Advantages:
 - End-to-end model, no need to design features
 - Large Capacity
 - High Performance
- Limitations:
 - Memory/Space demanding
 - Computation intensive
 - Lack of interpretability

Many Facets of Artificial Intelligence

How Should We Train Students in AI?

Al Hype

What will be taught and by who?

Questions?

Feature Age Progression Module

- Age progress the features for higher recognition rates over large time lapses
- The module is a **wrapper** and can be used around **any commodity face matcher**

Alignment

Similarity Transform using 3 manually annotated landmarks (Left Eye, Right Eye, Chin) to align the primate face images

PrimNet Architecture

Advantage and Drawbacks

- Advantage:
 - End-to-end model, no need to design features.
 - Large Capacity
 - High Performance
- Disadvantage:
 - Memory/Space costly
 - Computation intensive
 - Less interpretability

Improved Identification Rates over Time

FaceNet with Feature Aging

Richard Landers : A Case Study

- Richard Landers abducted at age 5 in July 1994 in Indiana
- Investigators identified him at age 24 through a social security database search
- In a gallery of 12,873 children, proposed method can retrieve Richard at Rank-1

Richard's image at age 24 (Probe)

Incorrect rank-1 retrieval by a state-of-the-art face matcher

True mate (Richard at age 5) retrieved at Rank-1 by CosFace with proposed feature aging module

Experimental Results

	Lemurs			Golden Monkeys			Chimpanzees		
Method	Verification	Closed-set	Open-set	Verification	Closed-set	Open-set	Verification	Closed-set	Open-set
	1% FAR	Rank-1	Rank-1	1% FAR	Rank-1	Rank-1	1% FAR	Rank-1	Rank-1
Baseline [34]	81.90 ± 3.69	90.82 ± 1.80	N/A	74.88 ± 6.75	89.33 ± 7.68	N/A	44.62 ± 4.38	70.16 ± 3.36	N/A
SphereFace-20 [37]	79.40 ± 5.82	92.45 ±1.67	80.83 ± 4.48	65.18 ± 12.28	87.32 ± 4.57	61.15 ± 12.80	48.62 ± 6.23	75.49 ± 3.80	30.75 ± 12.41
SphereFace-4 [37]	73.6 ± 5.81	90.18 ± 1.37	72.29 ± 9.49	72.53 ± 6.57	87.49 ± 3.77	69.43 ± 9.27	53.92 ± 2.57	74.19 ± 3.74	35.85 ± 8.22
FaceNet [36]	55.52 ± 7.88	87.06 ± 9.63	56.12 ± 1.93	50.12 ± 15.31	73.47 ± 8.81	49.69 ± 9.54	17.89 ± 7.93	59.75 ± 8.64	4.86 ± 3.38
PrimNet	83.11 ± 5.31	93.76 ± 0.90	$\textbf{81.73} \pm \textbf{2.36}$	$\boxed{78.72 \pm 5.80}$	$\textbf{90.36} \pm \textbf{0.92}$	66.11 ± 7.99	59.87 ± 3.34	75.82 ± 1.25	$\textbf{37.08} \pm \textbf{11.22}$

Method	Inference Speed (ms / img)	Model Size (MB)
SphereFace-20 [37]	17.26	87
SphereFace-4 [37]	13.05	48
FaceNet [36]	40.42	90
PrimNet	23.58	3.9

Datasets

Lemurs

Eulemur coronatus Crowned lemur

Propithecus coquereli Lemur catta Ring-tailed lemur Coquerel's sifaka

Varecia variegata B/W ruffed lemur

Varecia rubra Red-ruffed lemur Eulemur flavifrons

Eulemur rubriventer Red-bellied lemur

Blue-eyed black lemur

3,000 Images

129 Subjects

Golden Monkeys

Chimpanzees

1,450 Images 49 Subjects

5,559 Images 90 Subjects

MSU Infant-Prints Reader

Engelsma, Cao and Jain, "RaspiReader: An Open Source Fingerprint Reader", in IEEE Trans. PAMI, 2018

MSU Infant-Prints In Action

Summary

- Fingerprints ensure reliable authentication of infants
- Presented a low-cost, ergonomic, high-resolution solution for life-long identification
 - MSU Infant-Print Reader: 1900 ppi, compact (25 mm x 50 mm x 75 mm), low-cost (US \$85), open-source system for recognizing persons of *ALL* ages, including infants
- Technology to empower solutions to humanitarian issues: provide healthcare and nutrition to infants

Challenges in Infant Fingerprint Recognition

- Motion blur and image distortion
 - Small finger size
 - Dry/wet/dirty fingers
- Small inter-ridge spacing (4-5 pixels) vs. (9-10 pixels) for adults

