Biometric Authentication: How Do I Know Who You Are?

Anil K. Jain
Dept. of Computer Science and Engineering
Michigan State University

http://biometrics.cse.msu.edu
“Galp Energia SGPS SA of Lisbon won the technology innovation award for developing a payment system in which gasoline-station customers can settle their bills simply by pressing a thumb against a glass pad. Scanning technology identifies the thumbprint and sends the customer's identification information into Galp's back-office system for payment authorization.”

THE WALL STREET JOURNAL, November 15, 2004
Using Iris Scans to Unlock Hotel Rooms

The Nine Zero hotel in Boston just installed a new system which uses digital photos of the irises of employees, vendors and VIP guests to admit them to certain areas, the same system used in high-security areas at airports such as New York's JFK.
“Foreigners entering the United State in three cities, including Port Huron, were fingerprinted, photographed and subjected to background checks on Monday in a test of a program that will eventually be extended to every land border crossing nationwide.”

Lansing State Journal, Nov. 16, 2004
U.S. and Spanish authorities told reporters Mayfield's fingerprints matched those found on a bag discovered near the bombing site in Spain. Mayfield was later released after Spanish law enforcement officials said they had matched fingerprints on the plastic bag to an Algerian man.
Outline

• Identity Problems
• Biometric Recognition
 – Applications
 – Modalities
 – Challenges
• Fingerprint Recognition
 – Representation
 – Matching
 – Individuality
• Multimodal Biometrics
• Biometric System Vulnerabilities
Identity Problems

Security Threats:
We now live in a global society of increasingly desperate and dangerous people whom we can no longer trust based on identification documents which may have been compromised.

Senator? Terrorist? A Watch List Stops Kennedy at Airport: Senator Edward M. Kennedy, Democrat of Mass., discussed the problems faced by ordinary citizens mistakenly placed on terrorist watch lists. Between March 1 and April 6, airline agents tried to block Mr. Kennedy from boarding airplanes on five occasions because his name resembled an alias used by a suspected terrorist who had been barred from flying on airlines in the United States. RACHEL L. SWARNS, NY Times, Aug 20, 2004
Identity Problems

Identity Theft: Identity thieves steal PIN (e.g., date of birth) to open credit card accounts, withdraw money from accounts and take out loans

3.3 million identity thefts in U.S. in 2002; 6.7 million victims of credit card fraud

Surrogate representations of identity such as passwords and ID cards no longer suffice
Too Many Passwords to Remember!

- Heavy web users have an **average of 21 passwords**; 81% of users select a common password (e.g., PASSWORD) and 30% write their passwords down or store them in a file. (2002 NTA Monitor Password Survey)
Biometrics

- Automatic recognition of people based on their **distinctive anatomical** (e.g., face, fingerprint, iris, retina, hand geometry) and **behavioral** (e.g., signature, gait) characteristics

- Recognition of a person by their body, then linking that body to an externally established “identity”, forms a very powerful tool

John Smith
Biometric Functionalities

- **Positive Identification**
 Is this person truly known to the system?
 Provide log-in access to a valid user

- **Large Scale Identification**
 Is this person in the database?
 Prevent issuing multiple driver licenses to the same person

- **Screening**
 Is this a wanted person?
 Airport watch-list

Only biometrics can provide negative identification (i.e., I am not he) capability
Biometrics is Not New!

- Bertillon system (1882) took a subject's photograph, and recorded height, the length of one foot, an arm and index finger
- Galton/Henry system of fingerprint classification adopted by Scotland Yard in 1900
- FBI set up a fingerprint identification division in 1924
- AFIS installed in 1965 with a database of 810,000 fingerprints
- First face recognition paper published in 1971 (Goldstein et al.)
- FBI installed IAFIS in ~2000 with a database of 47 million prints; average of 50,000 searches per day; ~15% of searches are in lights out mode; 2 hour response time for criminal search

Emphasis now is to automatically perform reliable person identification in unattended mode, often remotely (or at a distance)
Biometric Applications

<table>
<thead>
<tr>
<th>Forensic</th>
<th>Government</th>
<th>Commercial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corpse Identification</td>
<td>National ID Card</td>
<td>ATM</td>
</tr>
<tr>
<td></td>
<td>Biometric passport</td>
<td>Internet Banking</td>
</tr>
<tr>
<td>Criminal Investigation</td>
<td>Driver’s License</td>
<td>Access Control</td>
</tr>
<tr>
<td></td>
<td>Voter Registration</td>
<td>Computer Login</td>
</tr>
<tr>
<td>Parenthood Determination</td>
<td>Welfare Disbursement</td>
<td>Cellular Phone</td>
</tr>
<tr>
<td>Missing Children</td>
<td>Border Crossing*</td>
<td>E-commerce</td>
</tr>
<tr>
<td></td>
<td>US-VISIT program</td>
<td>Smart Card</td>
</tr>
</tbody>
</table>

* There are ~500 million border crossings/year in the U.S.
Biometric Applications

- Haj pilgrims in Saudi Arabia
- Point of sale
- Disney World
- Sharbat Gula in 1985, 1992
- Iris-based ATM
- URL at your fingertip
- Mobile phone
- Secure multimedia
A scanner Delves Beneath Fingerprints

The patterns in your blood vessels are yours alone! Spectral signature by Lumidigm is obtained by illuminating the skin by polarized light in five different wavelengths.
Which Biometric is the Best?

- **Universality** (all users possess this biometric)
- **Uniqueness** (varies across users)
- **Permanence** (does not change over time)
- **Collectability** (can be measured quantitatively)
- **Performance** (low error rates and processing time)
- **Acceptability** (is it acceptable to the users?)
- **Circumvention** (can it be easily spoofed?)

No biometric modality is optimal
Biometrics: A Pattern Recognition System

- False accept rate (FAR): Proportion of imposters accepted
- False reject rate (FRR): Proportion of genuine users rejected
- Failure to enroll rate
- Failure to acquire rate

Authentication

Matcher (Threshold) → Feature Extractor → Template Database

Preprocessor

Yes/No

Enrollment
Why is Biometrics so Difficult?

- Intra-class variability and inter-class similarity
- Segmentation
- Noisy input & population coverage
- Individuality of biometric characteristics
- Scalability
- Template aging and update
Intra-class and Inter-class Variations

Variability observed in the face due to change in pose, expression, lighting and eye glasses

Father and son

Temporal Variations

Template aging
Non-Universality

• ~3% of the population has poor quality fingerprint images

• Failure to enroll for iris is ~7%

Drooping eyelids Large pupil

Faded fingerprints cost former welder a job

ASSOCIATED PRESS

DECATUR — The years Chuck Strickler spent as a welder provided him with the experience he needed as a welding inspector at power plants across the nation.

But the welding also has left Strickler, 60, of Decatur, lacking a full set of intact fingerprints required under new, stepped-up security regulations at nuclear plants. Since the U.S. Department of Homeland Security issued the new rules in the wake of Sept. 11, the reams of documents Strickler has attesting to his identity no longer are sufficient.

“I first ran into a problem with it three or four years ago,” Strickler said. “They said my fingerprints weren’t valid. But at the time they accepted a picture ID as proof of identity.”

Earlier this year, when he tried to get a job inspecting the D.C. Cook Nuclear Power Station near Bridgman, where he had worked before, his application was turned down because of the worn-down

ridges on his fingertips.

“I passed everything except for the fingerprints,” Strickler said adding that the application process included a comprehensive psychological examination and criminal background check. “The plant sent the fingerprints to the FBI, and they said it’s outside the realm of the Homeland Security’s guidelines (for what is needed). It was a little frustrating.”

A person has about 100 identification marks on his or her fingerprints, and most adults have about 80 that can be used to identify them.

But because of his welding work, Strickler has only about 30 of the identification points.

Strickler is free to work at non-nuclear plants. But he says he prefers to have the option of working for the nuclear facilities.

“This cuts my income in half,” he said.
Locating Faces in a Crowd

Games Magazine, September 2001
At NY airports, an average of ~200,000 passengers pass through daily. There would be 4000 falsely rejected (and inconvenienced) passengers per day for fingerprints, 20,000 for face and 30,000 for voice. Similar numbers can be computed for false accepts.

<table>
<thead>
<tr>
<th>Test Parameter</th>
<th>False Reject Rate</th>
<th>False Accept Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fingerprint</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FVC [2004]</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>FpVTE [2003]</td>
<td>0.1%</td>
<td>1%</td>
</tr>
<tr>
<td>Face</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRVT [2002]</td>
<td>10%</td>
<td>1%</td>
</tr>
<tr>
<td>Voice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIST [2000]</td>
<td>10-20%</td>
<td>2-5%</td>
</tr>
</tbody>
</table>

“State-of-the-art” Error Rates
FACES CAN LIE.

FINGERPRINTS, NEVER.
Fingerprints

- Graphical flow like ridges present in human fingers; formation depends on the initial conditions of the embryonic development
- Different fingers have different ridge characteristics;
- Minute details are permanent
- Fingerprint evidence is acceptable in a court of law

Fingerprint on Palestinian lamp (400 A.D.)

Identical Twins
Fingerprint Classification

- Classify fingerprints for binning/indexing
- Goal: 99% classification accuracy with 20% reject rate
- Even experts cannot always do correct classification

- Natural frequencies of W, L, R and A (A + T) are 27.9%, 33.8%, 31.7% and 6.6%
Fingerprint Matching

Find the *similarity* between two fingerprints

Fingerprints from the same finger

Fingerprints from two different fingers
Challenges in Fingerprint Matching

- Fingerprint matching is difficult due to
 - **large intra-class variations** caused by sensor noise, partial overlap, and non-linear distortion
 - small inter-class variations (similarities in the global structure and ridge orientations)
- Despite extensive research, the best matcher in FVC 2004 had an **EER of 2.07%**
- Challenge is to handle poor quality fingerprints and fingerprints having little overlap
Non-rigid Deformation

Nonlinear Rotation

Nonlinear lateral movement

Fingerprint Matching Techniques

- **Minutiae-based**
 - Uses location, orientation, and minutia type
 - Point pattern matching problem
 - Hard decision is made on the correspondence

- **Correlation-based**
 - Spatial correlation of template and query
 - Sensitive to rigid and non-linear transformation
 - Computationally expensive

- **Ridge Feature-based**
 - Orientation and frequency of ridges, ridge shape, texture information, etc. are used
 - Suffers from low discriminative ability
Stages in Fingerprint Matching

• **Alignment**
 – Estimate rotation, translation, and distortion
 – Input fingerprint is aligned with the template

• **Matching**
 – Compute the similarity between the pre-aligned input and the template using the following metrics
 • Number of matching minutiae
 • Euclidean distance between ridge feature maps
 • Local correlation around minutiae
 • Orientation field match
Minutiae-based Representation

- Local ridge characteristics (minutiae): ridge ending and ridge bifurcation
- Singular points (core and delta): discontinuity in ridge orientation
Minutiae-based Matchers

- Point matching problem
- Given m minutiae in template and n minutiae in input query, find the number of corresponding minutiae
2-D Dynamic Programming based Minutiae Matching

Find an alignment that maximizes the number of minutiae correspondences

\[S_1 \rightarrow \text{Ridge similarity measure}, \quad S_2 \rightarrow \text{Orientation similarity measure}, \]
\[R(t) \rightarrow 1\text{-D representation of ridge points of minutia } t, \quad O(T) \rightarrow \text{Orientation field} \]

Matching time \(\approx 0.1 \text{ sec.} \)

\[T = \{t_1, \ldots, t_m\} \]
Matching Score Distributions

- Performance depends on the database. FVC2002 Database 1 (100 users, 8 impressions/user)
- For FAR = 0.1% (1 in 1000), GAR = 97.1%
- EER = 1.65%; at 0% False Accept, FRR = 4%
Analysis of Errors

- **Minutiae Extraction**
 - Extraction stage does not extract all minutiae and their ridges
 - There may be no corresponding minutiae having ridge points for finding the correct alignment

- **Alignment**
 - Corresponding minutiae with ridge points exist
 - Alignment step fails due to small number of correspondences

- **Matching**
 - Estimated alignment is correct
 - But, the matching score is low because the number of correspondences is low compared to the number of minutiae
 - Reasons: deformation, spurious and missing minutiae
Minutiae Extraction Failure

True Minutiae Matches: A1→B3, A18→B9, A19→B7

A1, B9 and B7 were detected, but the associated ridges were not detected because they are close to the boundary.
True Minutiae Matches: A7→B9, A8→B8, A4→B1
A7→B9 and A8→B8 pairs have ridge points; however, there exists a false alignment that results in more than three matches
No. of matching minutiae identified by the matcher = 10
No. of minutiae in A = 38; No. of minutiae in B = 34
Spurious minutiae and large deformation leads to small score
Template Mosaicking
Alignment using Thin Plate Spline

Alignment using minutiae correspondence

Alignment using ridge correspondence
Fingerprint as Oriented Texture

- Ridges in local region
- Fourier spectrum
Ridge Feature Maps

- An input fingerprint image is filtered using 8 Gabor filters all having the same frequency but different orientations (0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135°, 157.5°)
Local Correlation-based Matching

- **Template Image**
- **Template Minutia**

Estimation of Rotation and Translation using Ridge Correspondences

- **Query Image**
- **Query Minutia**

Regions in Template around Template Minutia

Regions in Rotated Query Image around Transformed Template Minutia

Correlation

Matching Score
Performance of Hybrid Matcher (Minutiae, Texture & Local Correlation)
Noisy Images

Quality Index = 0.96
False Minutiae = 0

Quality Index = 0.53
False Minutiae = 7

Quality Index = 0.04
False Minutiae = 27
The Myth of Fingerprints

"They left a mark - on criminology and culture. But what if they're not what they seem?" - Simon Cole, 2001

"Only Once during the Existence of Our Solar System Will two Human Beings Be Born with Similar Finger Markings". - Harper's headline, 1910

"Two Like Fingerprints Would be Found Only Once Every 10^{48} Years" – Scientific American, 1911

Fingerprint identification is based on two premises

(i) Persistence: fingerprint characteristics are invariant

(ii) Uniqueness: fingerprint characteristics are unique

The uniqueness of fingerprints has been accepted over time because of lack of contradiction and relentless repetition. As a result, fingerprint based identification has been regarded as a perfect system of identification.
Challenge to Fingerprint Individuality

• Factors determining admissibility of expert scientific testimony: (i) Hypothesis testing, (ii) Known or potential error rate, (iii) Peer reviewed and published, (iv) General acceptance (Daubert vs. Merrell Dow Pharmaceuticals, 1993)

• Fingerprint identification was challenged under Daubert: error rate is not known and the fundamental premise that “Fingerprints are distinctive or unique” has not been put to test (USA v. Byron Mitchell, 1999)
Probability of False Correspondence

- Given a fingerprint with \(n \) minutiae, what is the probability that it will share \(q \) minutiae with another fingerprint containing \(m \) minutiae. The corresponding minutiae should “match” in location and orientation.

\[\text{Area of Tolerance (C)} \quad \text{Image Area} \]

\[\text{Minutiae} \quad \text{Area of Overlap (A)} \]

(a) \(M=52 \)
\[m=n=q=26 \]
\[P = 2.40 \times 10^{-30} \]

(b) \(M=52 \)
\[m=n=26, \ q=10 \]
\[P = 5.49 \times 10^{-4} \]

\[M = \frac{A}{C} \]

Multibiometrics

Multiple Sensor System
Optical

Multiple Matcher System
Minutiae-based
Filter-based

Multi-biometric Systems

Multiple Biometric System
Face
Iris

Multiple Fingers

Multiple Impression System

http://www.dhs.gov/us-visit
Multibiometric systems

Improves matching performance, increases population coverage and deters spoofing
Obtain the genuine and impostor generalized likelihoods (GL_{GEN} and GL_{IMP}) for each of the K modalities. Given scores s_1, s_2, \ldots, s_K, the fusion rule is based on the likelihood ratio:

$$C(s_1, s_2, \ldots, s_K) = \prod \{\text{GL}_{GEN}(s_i)/\text{GL}_{IMP}(s_i)\}$$

Fusion of face, fingerprint and hand modalities for 100 users.

At FAR = 0.1%, GAR = 99.26%
Fusion of Fingerprint and Face

• Three commercial fingerprint matchers and one face matcher with EER values of 3.96%, 3.72%, 2.16% and 3.76%, respectively, were combined

• 972 individuals in the database

• The best EER values in individual columns (rows) are indicated with bold typeface (star (*))

<table>
<thead>
<tr>
<th>Normalization Technique</th>
<th>Fusion Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sum</td>
</tr>
<tr>
<td>Min-Max</td>
<td>0.99</td>
</tr>
<tr>
<td>Z-Score</td>
<td>*1.71</td>
</tr>
<tr>
<td>Tanh</td>
<td>1.73</td>
</tr>
<tr>
<td>QLQ</td>
<td>0.94</td>
</tr>
</tbody>
</table>

MW – Matcher Weighting; UW – User Specific Weights
Like any security system, biometric systems are not foolproof

Security of Biometric System

1. Fake Biometric
2. Replay Old Data
3. Override Feature Extractor
4. Synthesized Feature Vector
5. Override Matcher
6. Modify Template
7. Intercept the Channel
8. Override Final Decision

Sensor → Feature Extractor → Matcher → Application Device (e.g., cash dispenser) → Yes/No

Stored Templates
Template Protection

- Encrypting or watermarking templates in the database
- Storing only a transformed and unrecoverable version of a user’s template to protect the original template
- Cancelable biometric

Jain, Uludag, Hsu, "Hiding a Face in a Fingerprint Image", Proc. of ICPR, Aug., 2002
Privacy Concerns

- Biometric can help in protecting individual privacy; because biometrics provides stronger identification than password, it can be used to guard personal & sensitive information (Health Information Privacy Protection Act)
- Will biometric data be used to track people (secretly) violating their right to privacy?
- Functionality creep: Will biometric data be used only for their intended purpose? Will various biometric databases be “linked”?
Summary

• Reliable and automatic person identification is becoming a necessity; emerging applications include national ID card, border crossing, access control, Internet shopping, and computer data security

• **There is no substitute** to biometrics for effective person identification; it can enhance security, eliminate fraud and offer convenience to the users

• Biometrics is becoming a **necessary** component of ID management systems; need to make a business case

• Biometric sensors are cheap—fingerprint, face and voice sensors are embedded in laptops & mobile phones; system performance is not meeting the expectations

• Deployed systems should not infringe on civil liberties, so the citizens will not be concerned