Adapting Biometric Representations for Cryptosystems

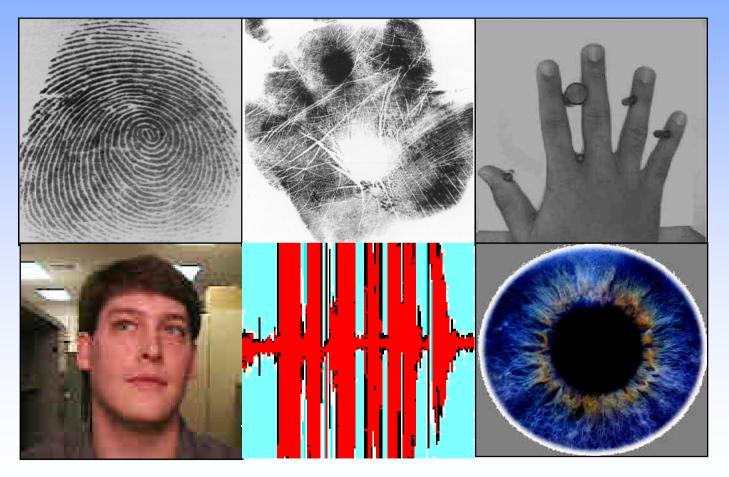
Anil K. Jain

With

Abhishek Nagar & Karthik Nandakumar Department of Computer Science and Engineering Michigan State University http://biometrics.cse.msu.edu

Outline

- Biometric systems
- Security of biometric systems
- Biometric cryptosystems
 - Fuzzy commitment & fuzzy vault
 - Alignment
 - Adapting representations
 - Hybrid cryptosystems
- Challenges

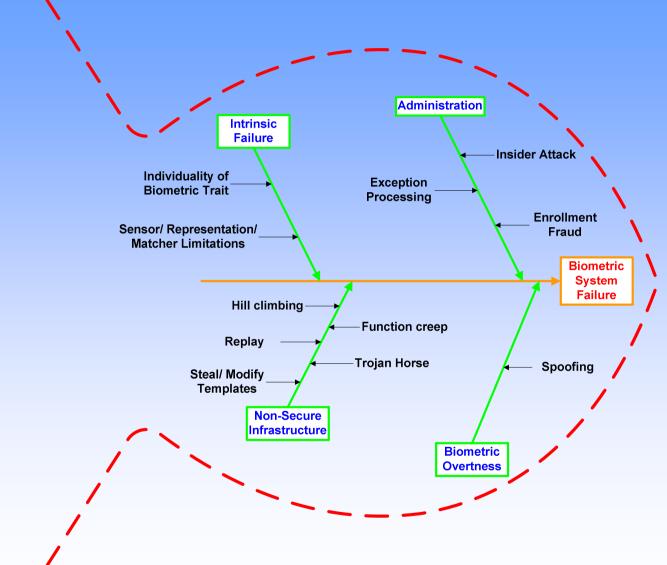

User Authentication

- Users can no longer be trusted based on credentials
 - Most popular password is "123456"
 - Skimming, phishing
 - "For terrorists, travel documents are as important as weapons"¹
 - Spanish police arrested 7 men, connected to al-Qaeda, tasked with stealing 40 passports/month²
- But, credentials can be revoked and reissued

[1] http://www.9-11commission.gov/report/911Report.pdf (pg. 384, 2nd paragraph)
 [2] http://homelandsecuritynewswire.com/spain-busts-terrorist-passport-stealing-ring

Biometric Recognition

Automatic method for person recognition based on one or more intrinsic physical or behavioral traits



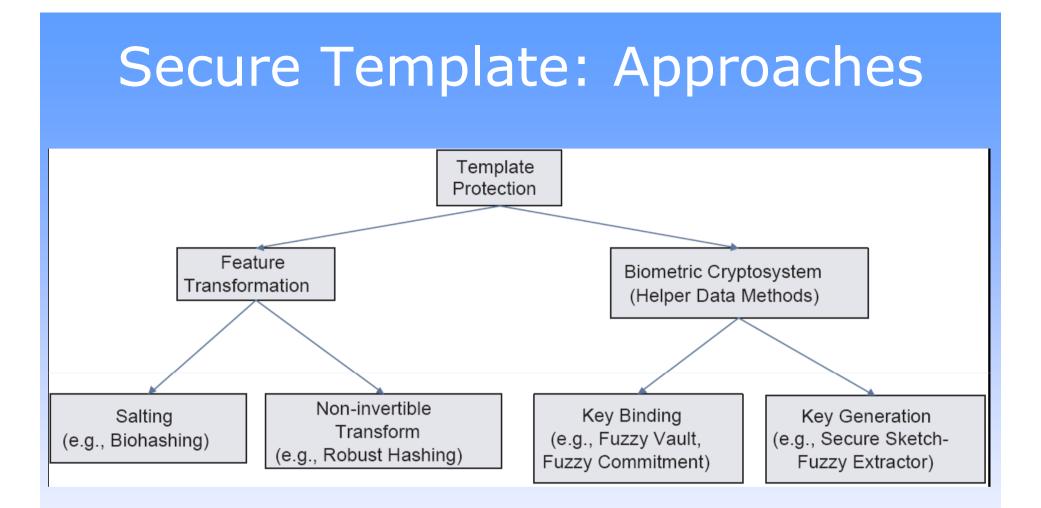
Fundamental Premise

- Biometric traits are unique & permanent!
 - Intra-class variability is extremely small
 - Inter-class variability is extremely large
- In practice, systems have non-zero FAR & FRR

System Vulnerabilities

Template security is one of the most critical issues

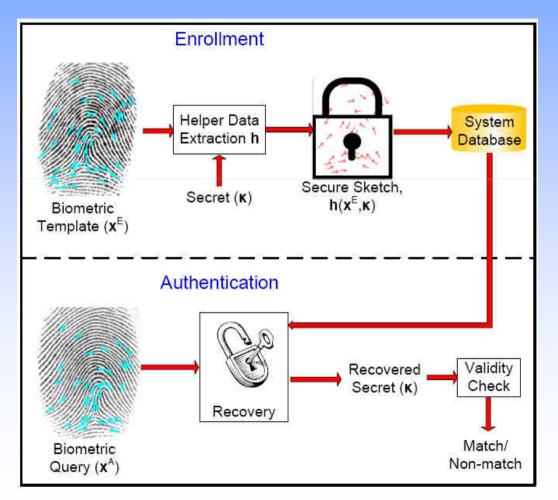
Template Security



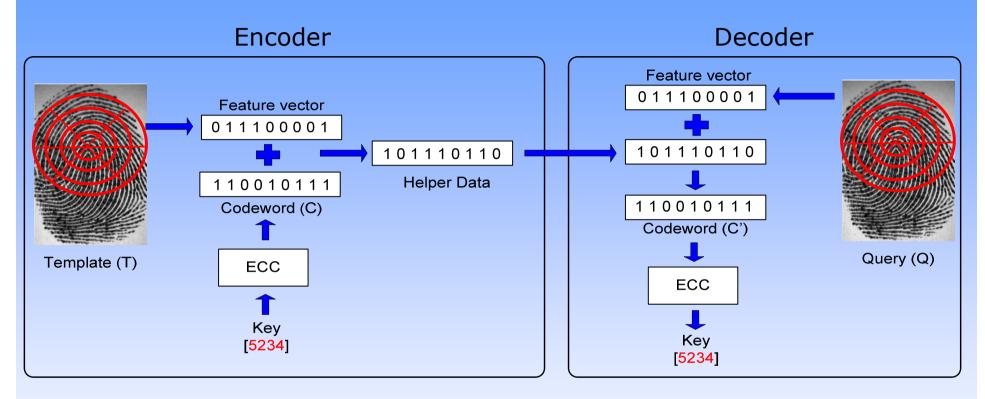
- Consequences of stolen templates
 - Intrusion: create physical spoof (security vulnerability)
 - Function creep: cross-matching (loss of privacy)

Secure Template: Requirements

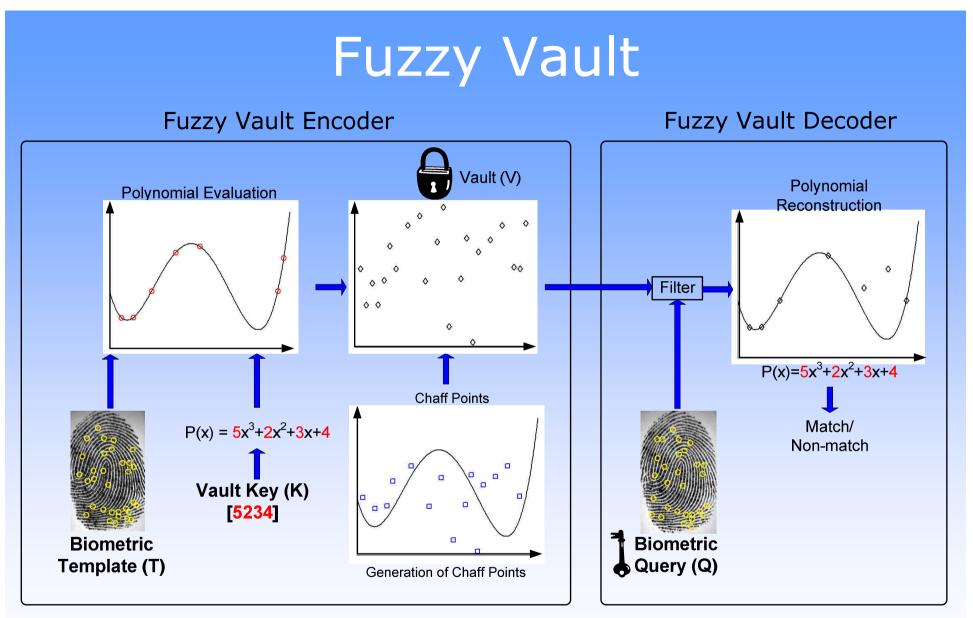
- Diversity: Secure template must not allow cross-matching, ensuring user's privacy
- Revocability: Revoke a compromised template and reissue a new one using the same biometric
- Security: Difficult to obtain the original template from the secure template
- Performance: Secure template should not degrade the matching performance


Challenge: How to satisfy all these requirements at the same time in the presence of intra-user variations?

• Hybrid schemes: make use of more than one basic approach e.g., salting followed by key binding


Key-binding Biometric Cryptosystem

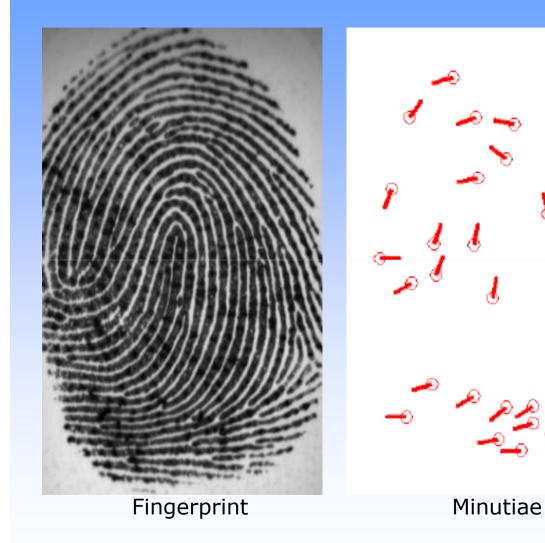
• Store a secure sketch (helper data) by biding the template wit a cryptographic key

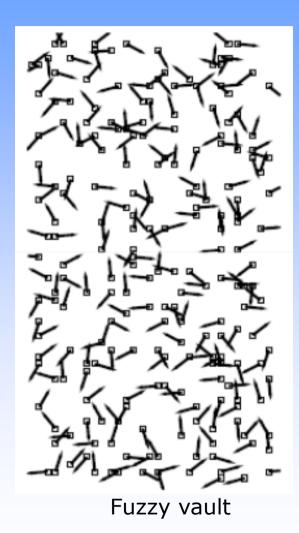

Fuzzy vault (point set features); fuzzy commitment (binary strings)

Fuzzy Commitment

- Variability in binary biometric features is translated to variability in codeword of an error correction scheme, which is indexed by a key
- Corrupted codeword can be corrected to recover the embedded key
- Lack of *perfect* code for desired code length

Juels and Wattenberg, "A fuzzy commitment scheme," in Proc. 6th ACM Conf. Computer and Communications Security, 1999




Decoder identifies genuine points in mixture of genuine & chaff points

• How to generate chaff points that are indistinguishable from genuine points?

Nandakumar, Jain and Pankanti, "Fingerprint-based Fuzzy Vault: Implementation and Performance", IEEE TIFS, 2007

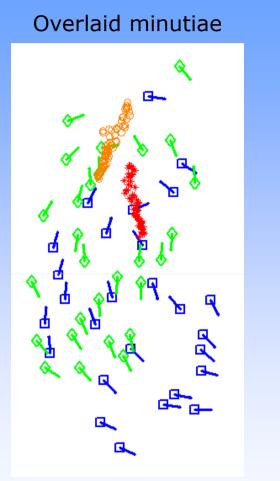
Fingerprint Vault

Fuzzy Schemes: Challenges

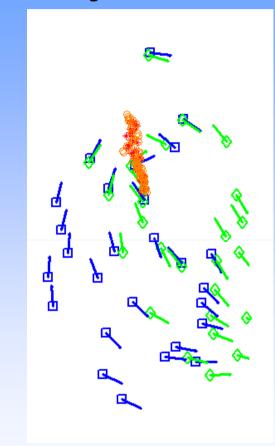
- How to align query with template without template leakage?
- How to construct vault/commitment for arbitrary biometric traits/representations?
- How to enable revocability?
- How to estimate security given that biometric features distributions are non-uniform?

Alignment




Three different impressions of the same finger

Template image or feature vector not available for alignment; additional data stored for alignment should


- not lead to template reconstruction
- carry sufficient information for alignment

Alignment based on High Curvature Points

Aligned minutiae

- High curvature points do not reveal the minutiae template
- Requires extra storage & computation

Nandakumar, Jain & Pankanti, TIFS, 2007

Focal-Point Based Alignment

- Focal point is the average centre of curvature of high curvature ridges; analogous to a core point
- Requires storage of a single (x,y,θ) point
- Can be extracted even for arch-type & partial prints

Nandakumar, "A fingerprint cryptosystem based on minutiae phase spectrum", WIFS, 2010

Other Secure Alignment Approaches

- Reliable minutiae neighborhood¹
 - Requires training
- Singular points
 - Not always available
- Use of features relative to each minutiae²
 - Invariant to rotation and translation
 - Different matching approaches are needed
 - Difficult to analyze its security

[1] S. Yang and I. Verbauwhede, "Automatic Secure Fingerprint Verification System Based on Fuzzy Vault Scheme," ICASSP, March 2005
[2] T. E. Boult, W. J. Scheirer, and R. Woodworth, "Fingerprint Revocable Biotokens: Accuracy and Security Analysis," CVPR, June 2007

Adapting Biometric Representations

Motivation

- Obtain a representation in a form suitable for fuzzy commitment and fuzzy vault
- Facilitate fusion of modalities
- Requirements
 - Maintain discriminability
 - Uniformly random features for security analysis

Biometric Representations

Trait	Features		Representation Type
	Minutiae T	exture-based	Minutiae: Unordered set of points, variable size, distribution is not uniform Texture-based (fingercode): Real-valued fixed-length vector, values are not i.i.d
	Subspace Local Texture projections (e.g., LBP) Image: I		PCA/LDA/LBP Histogram: Real-valued fixed-length vector, values are not i.i.d
	Iriscode		Fixed-length binary string; bits are not random and independent

Is it possible to have a common *efficient* representation?

Example of Adaptation

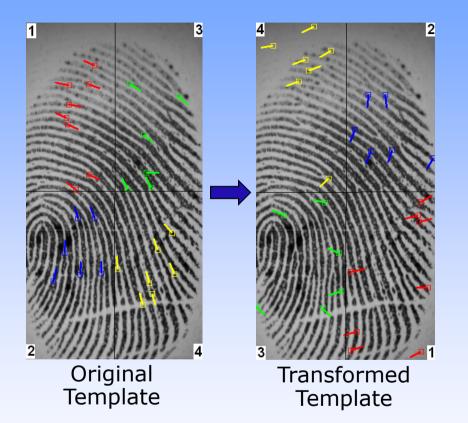
- Objective: Transform minutiae set into binary string $f(u,v) = \sum_{i=1}^{n} \delta(x - x_i, y - y_i) \exp(j\theta_i)$
- Phase of Fourier spectrum is sampled on log-polar grid and quantized

$$\psi(F(u,v)) = \arctan \frac{\sum_{i=1}^{n} \sin(2\pi(ux_i + vy_i) + \theta_i)}{\sum_{i=1}^{n} \cos(2\pi(ux_i + vy_i) + \theta_i)}$$

Fingerprint minutia set

Binarized Phase Spectrum (BiPS) representation adapted for fuzzy commitment

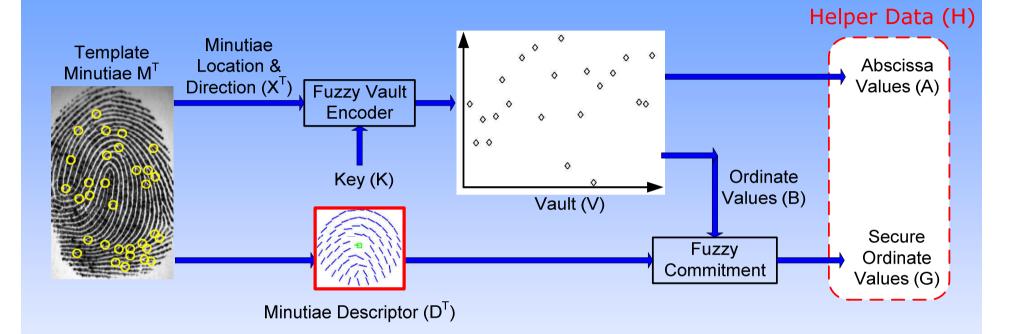
K. Nandakumar, "A Fingerprint Cryptosystem Based on Minutiae Phase Spectrum", IEEE WIFS, Dec 2010.


Biometric Feature Adaptations

Medality Feature	Ammronich	Representation	
Modality - Feature	Approach	Original	Final
Fingerprint - minutiae (Nagar et al., Xu et al., Farooq et al., Cappelli et al.)	Local aggregates, spectral minutiae, triplet histogram, cylinder-code	Point set	Binary string
Fingerprint - minutiae (Sutcu et al.)	Geometric transformation	Point set	Quantized vector
Fingerprint - orientation field & Gabor features (Bringer et al.)	Reliable component selection	Real vector	Binary string
3D Face – local curvature (Kelkboom et al.)	& quantization based on statistical analysis of features		
Face - Gabor features (Kevenaar et al.)			
Face – PCA/LDA (Feng and Yuen)	Division into stable integer & unstable real parts	Real vector	Quantized vector
Iris – Iriscode (Nandakumar and Jain)	Salting/fuzzy commitment of different bit segments	Binary string	Point set

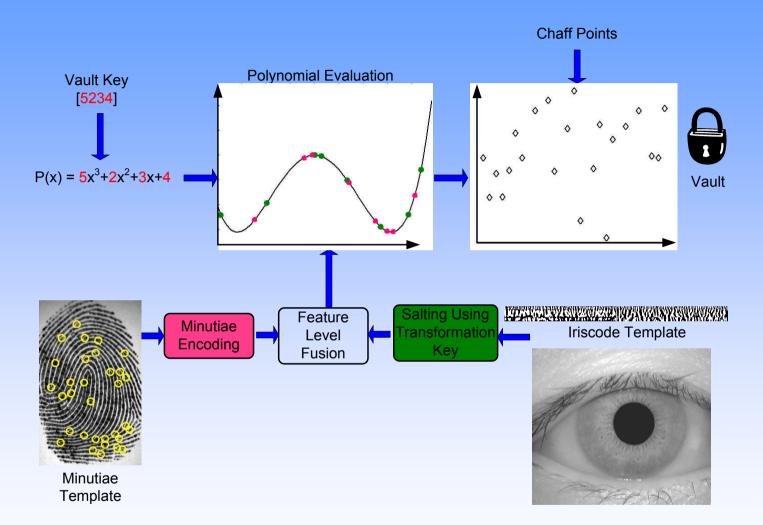
Which scheme gives the most compact & discriminable representation?

Hardened Fuzzy Vault


- Salting + fuzzy vault to introduce revocability
- Transform each fingerprint quadrant using password
- Increase uniformity of minutiae distribution

As secure as original vault even if password is compromised

Nandakumar, Nagar and Jain, Hardening Fingerprint-based Fuzzy Vault Using Password, ICB 2007


Vault with Minutiae Descriptors

Local minutiae descriptors are bound to the ordinate values of the vault using fuzzy commitment; improves matching performance and security

Nagar, Nandakumar and Jain "Securing Fingerprint Template: Fuzzy Vault with Minutiae Descriptors", Proc. ICPR, 2008

Multibiometric Fuzzy Vault

Iriscode is transformed into point set using fuzzy commitment & combined with minutiae to improve both the matching performance and vault security

Nandakumar and Jain, "Multibiometric Template Security Using Fuzzy Vault", BTAS 2008

Template Security Evaluation

- How difficulty it is to recover the original template from the stored template (brute-force attack)?
- Typically expressed in bits & measured based on
 - Avg. no. of trials needed to recover the template
 - Entropy of original template given the secure sketch
- Estimate of security requires a model of the biometric feature distributions
- Zero-effort attacks (FAR) is reported separately

Security of Cryptosystems

• Fuzzy vault¹

Security =
$$\log_2\left(\frac{C(r, n+1)}{C(t, n+1)}\right)$$

r: total no. of points in the vaultt: no. of genuine pointsn: degree of polynomial used

Assumption: Both genuine and chaff points are uniformly distributed

• Fuzzy commitment²

Security $\approx \log_2\left(\frac{2^I}{C(I,\rho I)}\right)$

I: Entropy of binary template ρ: Fraction of errors corrected

Assumption: Reliable estimate of entropy (no. of i.i.d bits) is available

How to modify features to satisfy these assumptions?

[1] Nandakumar, Jain and Pankanti, "Fingerprint-based Fuzzy Vault: Implementation and Performance", *IEEE Transactions on Info Forensics & Security*, 2007

[2] Hao, Anderson, and Daugman, "Combining Crypto with Biometrics Effectively," IEEE Trans. Computers, 2006

Comparison of Fingerprint Cryptosystems

Approach	FNMR at Zero-FMR*	Security	
Fingerprint fuzzy vault*	14%	$\frac{C(224,11)}{C(24,11)}$ = 39 bits	
Fuzzy commitment based on BiPS*	6%	$\frac{2^{327}}{C(327,98)}$ = 43 bits	
Hardened fuzzy vault with password*	<10%	$\frac{C(224,8)}{C(24,8)}$ +18(<i>password</i>) =45 bits	
Fuzzy vault with minutiae descriptor*	7%	$\frac{C(224,9)}{C(24,9)}$ +18(descriptor) =49 bits	
Best matcher in FVC2002	0.3%	N.A.	
Fuzzy vault with two fingers#	12.5%	$\frac{C(672,12)}{C(72,12)} = 40 \text{ bits}$	
Fuzzy vault with multiple biometrics (fingerprint + iris) [#]	1.8%	$\frac{C(884,14)}{C(84,14)}$ = 49 bits	

* FVC2002-DB2; 100 genuine matches and 9,900 (4,950 independent) impostor matches
Fingerprint – MSU-DBI database (160 users); Iris – CASIA v1.0 (108 users)

Security (guessing entropy) of 8 character password is ~ 18 bits¹

[1] Burr et al., Electronic Authentication Guideline, NIST Special Publication 800-63, 2006

Summary

- Biometrics is essential for trusted identification, but we need tamper proof systems with low error rates
- Template security is an important issue because compromised templates cannot be revoked/reissued
- A template protection scheme with provable security
 & acceptable performance has remained evasive
- Challenge is to design cryptosystems that
 - generate non-linkable templates
 - provide good trade-off between accuracy & security
 - utilize feature adaptation schemes that preserve accuracy and allow easy fusion of modalities

Additional References

[1] Albert Bodo, "Method for producing a digital signature with aid of a biometric feature," German patent DE 42 43 908 A1, (1994)
 [2] C. Soutar, D. Roberge, A. Stoianov, R. Gilroy and B.V.K. Vijaya Kumar, "Biometric encryption using image processing," Proc. of SPIE, vol. 3314, 178-188, 1998

[3] Ari Juels and Madhu Sudan, \A fuzzy vault scheme", Proceedings of the IEEE International Symposium on Information Theory, A. Lapidoth and E. Teletar, Eds., page 408, Lausanne, Switzerland, 30 June - 5 July, 2002.

[4] A. Juels and M. Wattenberg, "A fuzzy commitment scheme," in Proc. 6th ACM Conf. Computer and communications Security,G. Tsudik, Ed., pp. 28–3, 1999

[5] Sharat Chikkerur, Alexander N. Cartwright, Venu Govindaraju: K-plet and Coupled BFS: A Graph Based Fingerprint Representation and Matching Algorithm. ICB 2006:

[6] Jeffers, J., Arakala, A.: Minutiae-based Structures for a Fuzzy Vault. In: Proc. of. 2006 Biometrics Symposium, MD, USA, September 19-21, 2006 (2006)

[7] T. E. Boult, W. J. Scheirer, and R. Woodworth, "Revocable Fingerprint Biotokens: Accuracy and SecurityAnalysis," in IEEE Conference on Computer Vision and Pattern Recognition, June 2007, pp. 1–8.

[8] J. Feng. Combining minutiae descriptors for fingerprintmatching. Pattern Recognition, 41(1):342–352, 2008.

[9] Raffaele Cappelli, Matteo Ferrara, and Davide Maltoni. Minutia cylinder-code: a new representation and matching technique for fingerprint recognition. IEEE Transactions on Pattern Analysis And Machine Intelligence, 2010.

[10] A. K. Jain, A. Ross, and S. Prabhakar, "Fingerprint Matching Using Minutiae and Texture Features", Proc. I nternational Conference on Image Processing (ICIP), pp. 282-285, Greece, October 7-10, 2001.

[11] A. K. Jain, S. Prabhakar, L. Hong and S. Pankanti, "FingerCode: A Filterbank for Fingerprint Representation and Matching", Proc. IEEE Conference on CVPR, Colorado, Vol. 2, pp. 187-193, June 23-25, 1999.

[12] Aglika Gyaourova, Arun Ross: A Novel Coding Scheme for Indexing Fingerprint Patterns. SSPR/SPR 2008: 755-764

[13] J. Bringer and V. Despiegel, Binary Feature Vector Fingerprint Representation From Minutiae Vicinities, BTAS, 2010

[14] Xu, H. and Veldhuis, R.N.J. (2010) Binary Representations of Fingerprint Spectral Minutiae Features. In: 20th International Conference on Pattern Recognition (ICPR 2010), 23-26 August 2010, Istanbul, Turkey. 1212-1216

[15] Nagar, A.; Rane, S.D.; Vetro, A., "Alignment and Bit Extraction for Secure Fingerprint Biometrics", SPIE Conference on Electronic Imaging, Vol. 7541, 75410N, January 2010

[16] Yagiz Sutcu, Qiming Li, Nasir D. Memon: Secure Biometric Templates from Fingerprint-Face Features. CVPR 2007

[17] F. Farooq, R. M. Bolle, T.-Y. Jea, and N. Ratha, "Anonymousand Revocable Fingerprint Recognition," in Proc. ComputerVision and Pattern Recognition, Minneapolis, June 2007.