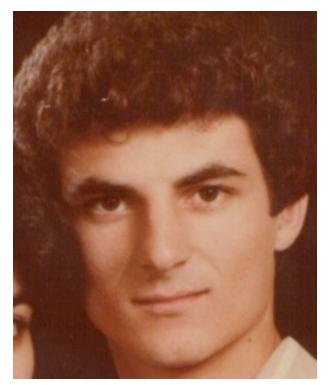


Age Estimation from Face Images: Human vs. Machine Performance

Hu Han, Charles Otto, and Anil K. Jain Pattern Recognition & Image Processing Laboratory Michigan State University

• How old are these people?

True Age: 21



True Age: 23

Potential applications

- Age-specific access control
 - Vending machines that prevent minors from buying alcohol or cigarettes

BIOMETRICS RESEARC

Japanese cigarette vending machine

Kraft's vending machine Japanese cigarette vending machine-http://www.dailymail.co.uk/sciencetech/article-2079048/Kraft-unveils-adults-vending-machine-scans-faces-ensurechildren-free-pudding.html

http://www.dvice.com/archives/2007/11/japanese-cigarette-machine-rea.php

Potential applications

Targeted advertising

UOMETRICS RESEARC

Explore the shopping habit of different groups of people

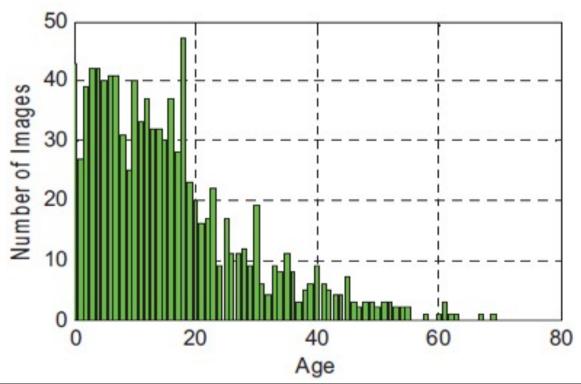
http://www.the blog is mine.com/2010/11/22/vending-machine-recommends-drinks-based-on-facial-recognition/drinks-based-o

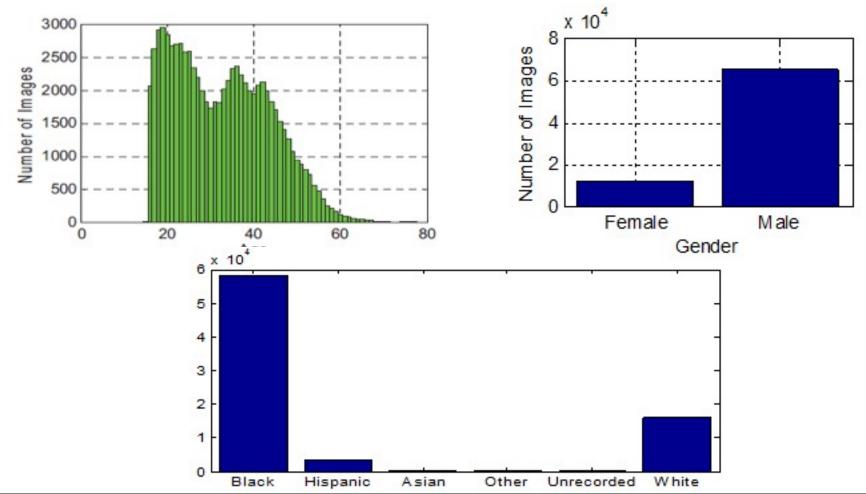
Datasets

- FG-NET
 - Public dataset, personal photographs of subjects
 - Ages: 0–69,
 - 1,002 images
- MORPH Album 2
 - Public dataset, collection of mugshot images
 - Ages 15–77
 - 78,207 images total
- Pinellas County Sherriff's Office (PCSO) data set
 - Database of mugshots
 - Ages: ~18–70
 - 1.5M images total, using a 10,036 image subset

FG-NET Demographics

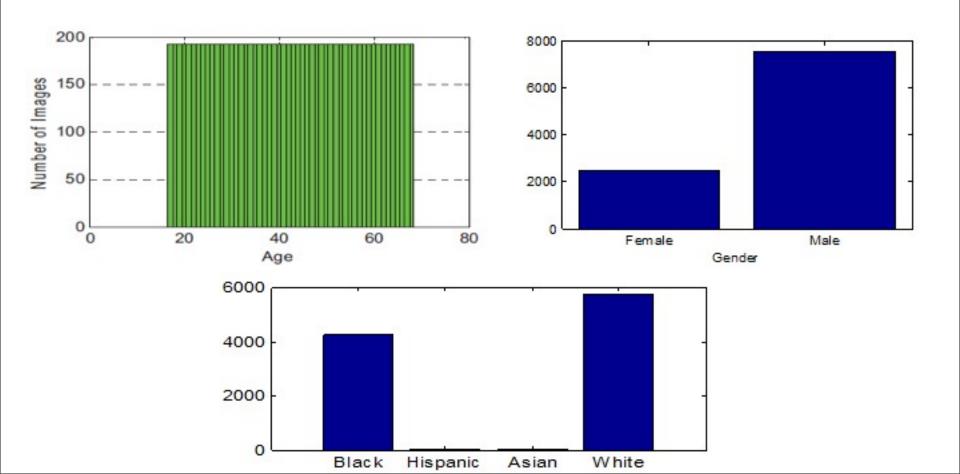
- 1002 images for 82 subjects
- Gender, ethnicity ground truth not provided



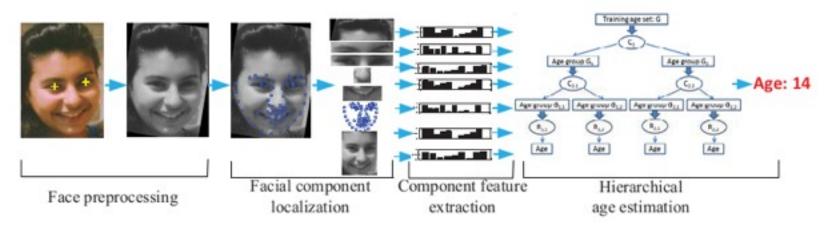


PCSO Demographics

• 10,036 images of 1,802 subjects



Automatic Age Estimation



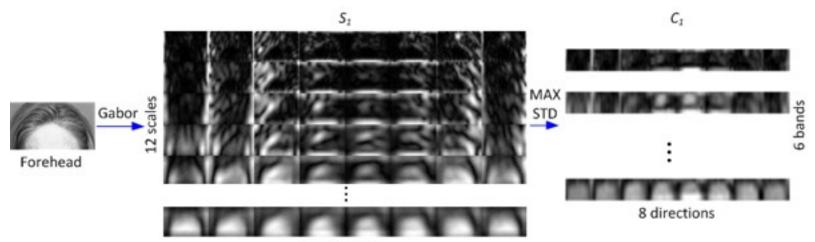
- Localize 5 facial components, extract local texture features
- Extract global shape, and global texture features
- Combine global and local features

IOMETRICS RESEAR

 Explicit component localization allows percomponent performance analysis

Feature Extraction

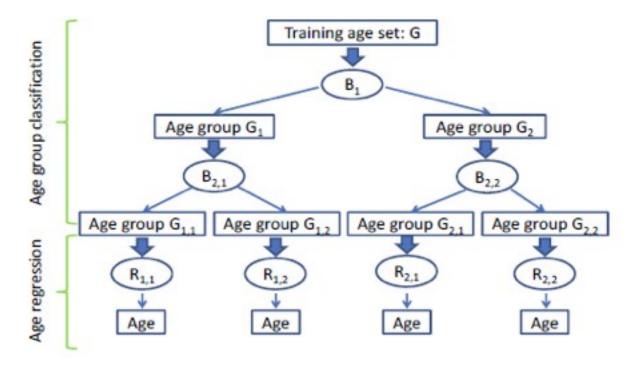
- Two-layer biologically inspired features (BIF), proposed for age estimation in [Guo'09]
- S₁ layer:
 - real component of the Gabor filter, parameters chosen to model visual component cells
 - 12 scales, 8 orientations for each scale
- C₁ layer:
 - Max between same orientation S_1 in adjacent pairs of scales, followed by standard deviation over local patches



8 directions

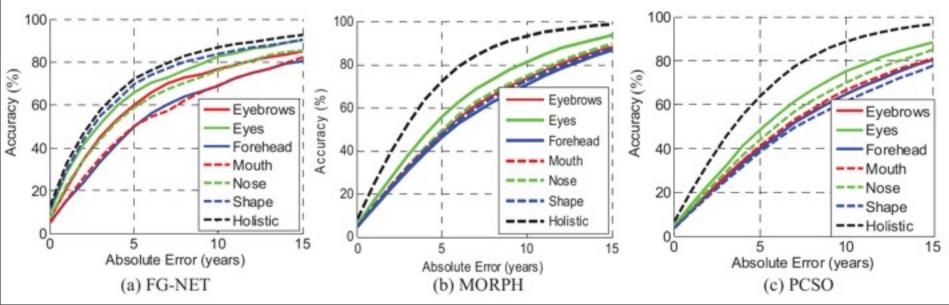
Hierarchical Age Estimation

- Age group classification (SVM) into explicit age ranges
 FG-NET: [0-7, 8-17, 18-25, 26-70]
 MORPH/RCSO: [16, 27, 28, 42, 42, 55, 56, 70]
 - MORPH/PCSO: [16-27, 28-42, 43-55, 56-70]
- Within group regression (SVR) trained using overlapping age ranges (±5 years added to age group ranges)



Per-Component Performance

- Shape based features effective for FG-NET data
 - FG-NET results use manual landmarks
 - Shape based features most discriminative for young children
- For MORPH and PCSO datasets, holistic features significantly outperform per-component features
 - Eyes give best individual component accuracy

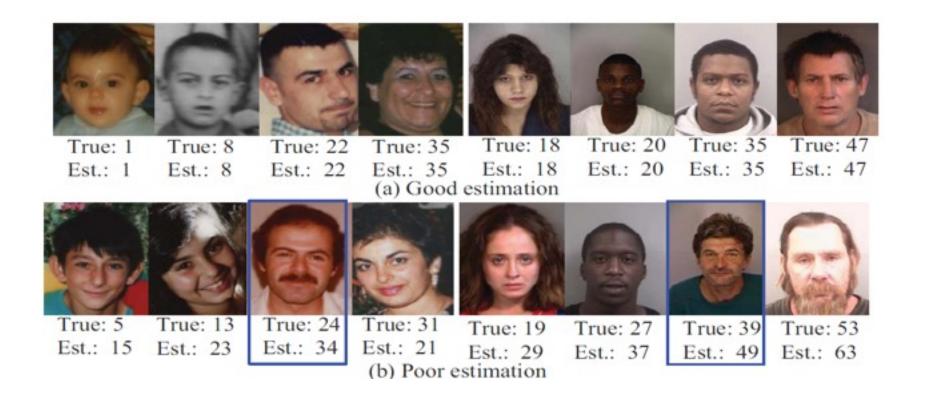


UOMETRICS RESEAR

Age Estimation Method	FG-NET Accuracy	MORPH Accuracy	PCSO Accuracy	Per Image Estimation Time
Proposed Method	4.6/72%	4.21/72.4%	5.0/63.7%	~.3 seconds
CAM [Luu'11]	4.1/~73%			
OHRank [Chang'11]	4.5/74.7%	6.1/56.5%		
C-lsRCA+C-lsLPP [Chao'13]	4.4/~75%			
KCCA [Guo'13]		3.98		~1.62 seconds
rCCA [Guo'13]		4.42		~1.3 * 10 ⁻⁶ seconds

Accuracy: MAE/CS@5 years Estimation time not including preprocessing/feature extraction

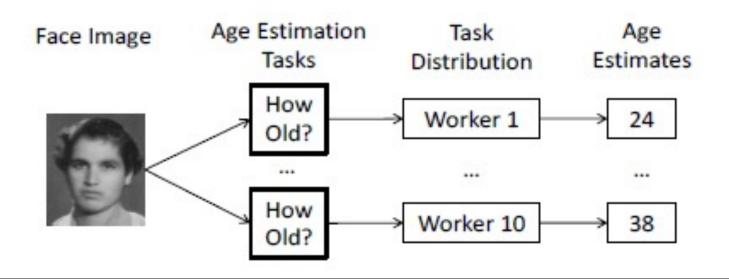
Age Estimation Examples



Human Age Estimation

- How well can humans estimate age from the face?
- Collected 10 age estimates per image using Amazon Mechanical Turk

- Estimates for complete FG-NET dataset, 2,200 image subset of PCSO
- Discarded high/low estimates of each image



 True: 19
 True: 40
 True: 35
 True: 24
 True: 28

 Avg. Error: 21.6
 Avg. Error: 21.4
 Avg. Error: 23.6
 Avg. Error: 20.1
 Avg. Error: 20.7

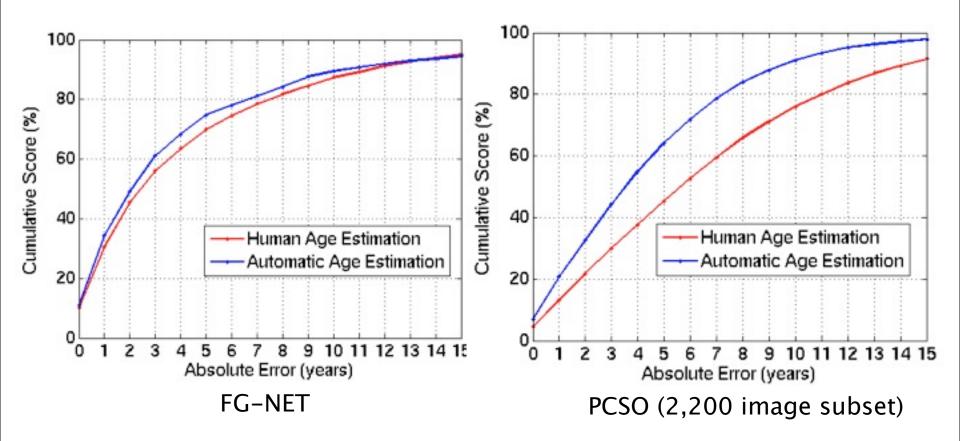
True: 4 Avg. Error: .7 Avg

4 True: 6 .7 Avg. Error: .7

True: 1True: 2Avg. Error: .5Avg. Error: .7

True: 2 Avg. Error: .6

Human vs. Automatic Age Estimation



Summary

- Large scale evaluation on multiple datasets
- Automatic age estimation results comparable to or better than human results on FG-NET, PCSO
- Accuracy comparable to competing methods, without explicitly modeling demographic factors
- The approach makes gross errors in some cases, often due to keypoint detection errors
 - In cooperative scenarios, a reject option can improve system usability
- Prototype real time implementation

Thank You!