Latent Matching: Wisdom of Crowd

Anil Jain, Kai Cao, Sunpreet Arora, Tarang Chugh

Biometrics Research Group Michigan State University <u>http://biometrics.cse.msu.edu</u> May 13, 2016

Who Left This Print?

AFIS Performance

Rolled

Plain

Latent

- Lights-out rank-1 hit rate
 - Plain: 99.3%

- Latent: 67.2% (70.2% with image + markup)

 C. Watson, G. Fiumara, E. Tabassi, S. L. Cheng, P. Flanagan, W. Salamon. Fingerprint Vendor Technology Evaluation, NISTIR, 8034, 2012.
M. Indovina, V. Dvornychenko, R. Hicklin, and G. Kiebuzinski. ELFT-EFS Evaluation of Latent Fingerprint Technologies: Extended Feature Sets [Evaluation#2], NISTIR, 7859, 2012.

Latent Matching: ACE-V Protocol

Automatic Latent Processing

Crowdsourcing

 "Leveraging the combined intelligence, knowledge, or experience of a group of people to answer a question, solve a problem, or manage a process"

Eric Paul Dennis, Richard Wallace, and Brian Reed. "Crowdsourcing Transportation Systems Data." Technical report, Center for Automotive Research and Parsons Brinkerhoff, 2015.

Image Tagging

Luis Von Ahn & Laura Dabbish. "Labeling images with a computer game." Proc. SIGCHI conference on Human factors in computing systems, 2004

Human Age Estimation

- Amazon Mechanical Turk
- 10 estimates (from 10 workers)/image; \$0.02/image
- Discard highest/lowest estimates
- Average of response is the human age estimate
- Baseline for automatic age estimation

How many years old is the person in the image? Enter your answer using digits 0-9 only.

Crowdsourcing: FR Baseline

- 5,000 total video pairs
- 40 workers/video; 20 each from US & India
 - ~ 800 total workers
- 6 cents for completing 5 video pairs

		TAR @ 1% FAR	TAR @ 10% FAR
£	USA workers	80.6	96.7
	Indian workers	63.7	92.4
	FR COTS	54.4	81.4

L. Best-Rowden, S. Bisht, J. Klontz and A. K. Jain. Unconstrained Face Recognition: Establishing Baseline Human Performance via Crowdsourcing. In Proc. IJCB, 2014.

Crowdsourcing: Details

- Human Intelligence Task (HIT): What to ask?
- Non-expert v. Expert crowd
- How to incentivize workers?
- How many workers?
- How to consolidate information?
- How do we know a worker can be trusted?

Latent Value Determination: Learning From Crowd

Goals

- Learn a model for quantitative value assignment to a latent
- How do fingerprint examiners assign subjective value?
- Understand the relationship between subjective value assignment and latent image features

Value Determination

- Presumably based on two factors:
 - Image quality (e.g., clarity of friction ridges)
 - Information content (e.g., no. of minutiae)

VID (Value for Identification)

VEO (Value for Exclusion Only)

NV (No Value)

Quality v. Information

Image quality

Low

Low

Information content

Why Value Determination?

- Triage for Large Caseload
 - FBI's IAFIS conducted 14,311 latent feature searches and 2,370 latent image searches (Dec. 2015)
- Of Value [VID, VEO] latent classified as No Value (NV) latent is a missed opportunity to identify the suspect
- No Value latent determined as Of Value leads to ineffective use of examiner's effort in feature markup & verification

Need for automatic value assignment

FingerprintMash: A Crowdsourcing Tool

Fingerprint Mash

PRIP Lab, Michigan State University

http://fingerprintmash.org

Crowdsourcing Details

Expert Crowd

- 31 experts (latent examiners and researchers)
- Dataset
 - 258 latents from NIST SD27
 - 258 latents from the Michigan State Police (MSP)
- Protocol
 - 5 levels for numerical quality rating; 1: low, 5: high
 - 5 relative levels for information content; 1: left is better
 - 100 randomly selected pairs presented to each expert
 - 1 pair is repeated at every 5th comparison for validity

Automatic Latent Value Assignment

Intra-Expert Variance

Numerical Rating Mean = 0.35; Std. Dev. = 0.16

Low variance Values = [4,4,4,4]

High variance Values = [1,2,2,4]

Pairwise Comparison Mean = 0.24; Std. Dev. = 0.15

High variance in comparison Value ranged from 1 to 4

Inter-Expert Variance

Expert Crowd v. Value Determination

• NIST SD27: 210 VID, 41 VEO, and 7 NV from [5]

Value	VID	VEO	NV
Determination	163/210	13/41	0/7
Even ant Creaved	High value	Medium value	Low value
Expert Crowd	169/210	7/41	0/7

For a fair comparison, we identify, from crowdsourced value data, the top 210 valued latents as high value, next 41 as medium value and the remaining 7 as low value.

Automatic Feature Extraction

- #Minutiae
- Minutiae reliability
- Friction ridge area
- Ridge quality
- #singular points
- S.d. of ridge flow

Ridge Quality Map

Minutiae, core, delta

K. Cao, T. Chugh, J. Zhou, E. Tabassi, and A. K. Jain, "Automatic latent value determination," in ICB, 2016, pp. 1–6.

Multi-Dimensional Scaling

Inter-latent similarity explained by two dimensions (bases)

Interpretation of the Two Bases

• Each basis is a weighted sum of the latent features

Weight Vector* for Dimension #	#Minutiae	Minutiae reliability	Friction ridge area	Ridge quality	#Singular points	S.d. of ridge flow
1	0.62	0.35	0.02	0.24	0.59	0.29
2	0.15	0.11	0.95	0	0.24	0.07

*weight vectors are normalized to make them unit length

Value Prediction

- Learned a predictor for value assignment
- Average MSE for predicted value = 0.24

Correct prediction

Incorrect prediction

Crowd : 4.67 Predicted : 4.68

Crowd : 2.08 Predicted : 2.04

Crowd : 2.99 Predicted : 4.02

Crowd : 2.96 Predicted : 2.02

Crowdsourcing Markup

Latent Mark up

• Different examiners provide different mark ups

Markup 1: Hit at rank-1

Markup 2: Hit at rank-129

Approach

- Use collective wisdom of multiple examiners
- Use a team of latent examiners (expert crowd) for mark up as needed

Expert Crowdsourcing Framework

When to Crowdsource?

Histogram of top-K scores between latent and reference prints

How Many Experts are Enough?

Experiments

Latent Databases

Database	#Latents	Resolution	Latent type	#Examiner Markups
NIST SD27	258	500	operational	6
ELFT EFS	255	1000	operational	2
RS&A	200	1000	collected in lab	1

- Reference Database
 - 250K rolled prints (true mates, MSP, NIST)
- Latent AFIS

Top performer in NIST ELFT-EFS 2

Sample Markups: NIST SD27

Markups by 6 examiners for a latent in NIST SD27

Sample Markups: ELFT EFS & RS&A

Markups by two examiners for a latent in ELFT EFS

Only a single markup available for latents in RS&A

Crowdsourcing Performance: NIST SD27

Rank-1 hit rate improves by ~7.75%

Crowdsourcing Performance: SD27 Ugly Latents

Crowdsourcing Performance: ELFT-EFS

Crowdsourcing Performance: RS&A

How Big a Crowd?

Combination	Rank-1	Rank-50	Rank-100
One examiner	63.11	77.13	78.23
Two examiners	68.04	80.88	81.96
Three examiners	69.42	82.15	83.29
Four examiners	70.00	82.71	83.98
Five examiners	70.80	83.14	84.56
All six examiners	70.93	82.95	84.88

Hit rates using different subsets of latent examiners

Improved Hit Rate by Crowdsourcing

Markup 1 (Rank 80)

Markup 4 (Rank 7)

Markup 2 (Failed to match)

Markup 5 (Rank 57)

Markup 3 (Rank 45)

Markup 6 (Rank 12,971)

Mated Exemplar

Lights-out: Failed to match

Fusion rank: 2

NIST SD27 (Latent 236)

Improved Hit Rate by Crowdsourcing

• NIST SD27 (Latent 83)

Image only

Image + Markup-E1

Mated Exemplar

	Image only	Image + Markup-E1	Fusion (All 6)
Rank	Failed to match	Failed to match	2 (score: 226)

Performance Decrease Example

• NIST SD27 (Latent 206)

Image only

Mated Exemplar

	Image only	Fusion (All 6)
Rank	82 (score: 97)	116 (score: 411

Summary

- Significant progress in latent AFIS accuracy; lights out capability is not yet ready
- Examiner-AFIS interaction is crucial for improved performance
- Wisdom of crowd leads to better decision making over a single examiner, especially for difficult latents

