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Abstract

Recent studies have shown that multiple kernel learningery effective for object recognition,

leading to the popularity of kernel learning in computeliasisproblems. In this work, we develop
an efficient algorithm for multi-label multiple kernel leding (ML-MKL). We assume that all the

classes under consideration share the same combinatiogrélifunctions, and the objective is
to find the optimal kernel combination that benefits all thesskes. Although several algorithms
have been developed for ML-MKL, their computational costingar in the number of classes,
making them unscalable when the number of classes is largegalienge frequently encountered
in visual object recognition. We address this computatichallenge by developing a framework
for ML-MKL that combines the worst-case analysis with stastic approximation. Our analysis
shows that the complexity of our algorithmm'/?+/Inm), wherem is the number of classes.
Empirical studies with object recognition show that whitdigving similar classification accuracy,
the proposed method is significantly more efficient than thieesof-the-art algorithms for ML-MKL.

1 Introduction

Recent studies have shown promising performance of keratiads for object classification, recognition and local-
ization [1]. Since the choice of kernel functions can siguaifitly affect the performance of kernel methods, kernel
learning, or more specifically Multiple Kernel Learning (MK[2, 3, 4, 5, 6, 7], has attracted considerable amount
of interest in computer vision community. In this work, wefiss on kernel learning for object recognition because
the visual content of an image can be represented in many, wapsnding on the methods used for keypoint detec-
tion, descriptor/feature extraction, and keypoint quaation. Since each representation leads to a differentasityi
measure between images (i.e., kernel function), the kfaton problem can be cast into a MKL problem.

A number of algorithms have been developed for MKL. In [2], Mk formulated as a quadratically constraint
guadratic program (QCQP). [8] suggests an algorithm basesbquential minimization optimization (SMO) to im-
prove the efficiency of [2]. [9] shows that MKL can be form@dtas a semi-infinite linear program (SILP) and can
be solved efficiently by using off-the-shelf SVM implemetidas. In order to improve the scalability of MKL, several
first order optimization methods have been proposed, imuduitie subgradient method [10], the level method [11], the
method based on equivalence between group lasso and MKI1§12,4]. Besides L1-norm [15] and L2-norm [16],
Lp-norm [17] has also been proposed to regularize the weifgintkernel combination. Other then the framework
based on maximum margin classification, MKL can also be féated by using kernel alignment [18] and Fisher
discriminative analysis frameworks [19].



Although most efforts in MKL focus on binary classificatioroplems, several recent studies have attempted to extend
MKL to multi-class and multi-label learning [3, 20, 21, 23]2Most of these studies assume that either the same or
similar kernel functions are used by different but relatdsification tasks. Even though studies show that MKL for
multi-class and multi-label learning can result in sigrafitimprovement in classification accuracy, the computatio
cost is often linear in the number of classes, making it caatmnally expensive when dealing with a large number of
classes. Since most object recognition problems involveyrohject classes, whose number might go up to hundreds
or sometimes even to thousands, it is important to develogffasient learning algorithm for multi-class and multi-
label MKL that is sublinear in the number of classes.

In this work, we develop an efficient algorithm for Multi-LabMKL (ML-MKL) that assumes all the classifiers
share the same combination of kernels. We note that alththiglassumption significantly constrains the choice of
kernel functions for different classes, our empirical stgdvith object recognition show that it does not affect the
classification performance. A similar phenomenon was atseived in [21]. A naive implementation of ML-MKL
with shared kernel combination will lead to a computatioc@dt linear in the number of classes. We alleviate this
computational challenge by exploring the idea of combinimgst case analysis with stochastic approximation. Our
analysis reveals that the convergence rate of the propdgedtiam is O(m'/3+/Inm), which is significantly better
than a linear dependence on wherem is the number of classes. Our empirical studies show thairty@osed MKL
algorithm yields similar performance as the state-ofdhtealgorithms for ML-MKL, but with a significantly shorter
running time, making it suitable for multi-label learningtiva large number of classes.

The rest of this paper is organized as follows. Section 2emtssthe proposed algorithm for Multi-Label MKL,
along with its convergence analysis. Section 3 summarieegxperimental results for object recognition. Section 4
concludes this work.

2 Multi-label Multiple Kernel Learning (ML-MKL)

We denote byD = T{x ..., X, } the collection of» training instances, and by the number of classes. We introduce
yE = (yF,...,yF)T € {~1,+1}", the assignment of thkth class to all the training instancegl = +1 if x; is
assigned to thé-th class an@f —1 otherwise. We introduce, (x,x’) : R? x R? +— R,a = 1,..., s, thes kernel
functions to be combined. We denote fi{* € R"*",a = 1,..., s} the collection ofs kernel matrices for the data
points inD, i.e.,K;fj = Ko(Xi, Xj).

We introducep = (p', ..., p*), a probability distribution, for combining kernels. We déabyK (p) = >~°_, p*K*
the combined kernel matrices. We introduce the dorfiaiior the probability distributiorp, i.e.,? = {p € R :
p'1=1}. Our goal is to learn from the training examples the optineshkel combinatiomp for all them classes.

The simplest approach for multi-label multiple kernel lkeag with shared kernel combination is to find the optimal
kernel combinatiorp by minimizing the sum of regularized loss functions ofsallclasses, leading to the following
optimization problem:

m 1 n
ngle}g{fkegl(lél {z K= 2{2fk|?{(p)+;£(yffk(xi)>}}a (1)

where/(z) = max(0,1 — z) andH(p) is a Reproducing Kernel Hilbert Space endowed with keriel x’; p) =
> Pka(x,x'). Hy is the regularized loss function for tti¢h class. It is straightforward to verify the following
dual problem of (1):

m 1
: _ kK1Tq _ = k kT k k
min max {E(p,a) —g_l{[a I'1-5(a?oy?) K(p)(a® oy )}} @)
whereQ; = {a = (a!,...,a™): a* € [0,C]",k =1,...,m}. To solve the optimization problem in Eq. (2), we

can view it as a minimization problem, i.enin,cp A(p), whereA(p) = maxqco, £(p, ). We then follow the
subgradient descent approach in [10] and compute the grtaafiel (p) as

—5 > (af(p) o y*) TK' (¥ (p) 0 y*),

k=1
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wherea® (p) = argmax,c(o on [@*]T1 — (o o y*) TK(p)(a* o y*). We refer to this approach agulti-label
Multiple Kernel Learning by Sum, or ML-MKL-Sum. Note that this approach is similar to the one proposed
in [21]. The main computational problem with ML-MKL-Sum isdt by treating every class equally, in each iteration
of subgradient descent, it requires solvimgkernel SVMs, making it unscalable to a very large number assts.
Below we present a formulation for multi-label MKL whose comational cost is sublinear in the number of classes.

2.1 A Minimax Framework for Multi-label MK L

In order to alleviate the computational difficulty arisimgih a large number of classes, we search for the combined
kernel matrixK (p) that minimizes the worst classification error amenglasses, i.e.,

min min max Hy, 3)
pGP{kaH(p)}"L 1<k<m

Eq. (3) differs from Eq. (1) in that it replaces ;. ; Hj with maxi<j<,, Hj. The main computational advantage
of usingmax;, H;, instead ofy_, H; is that by using an appropriately designed method, we maybleta figure
out the most difficult class in a few iterations, and spendtrmobshe computational cycles on learning the optimal
kernel combination for the most difficult class. In this waye are able to achieve a running time that is sublinear
in the number of classes. Below, we present an optimizatiiegy for Eq. (3) based on the idea of stochastic
approximation.

A direct approach is to solve the optimization problem in &).by its dual form. It is straightforward to derive the
dual problem of Eqg. (3) as follows (more details can be foumtthé supplementary documents)

1N 2
: _ - BT _ 1 k k\T k NE
min max | £(p, 8) = {;{[ﬁ "1 =5(8%oy") K(p)(B"oy") ~ 4)
where
B= {(61,...,ﬁm) . g" eERY k= 1,...,m,B% €[0,C\]" sit. Z/\k = 1}.
k=1
The challenge in solving Eq. (4) is that the solutigs , . . ., 3™} in domainB are correlated with each other, making

it impossible to solve eac” independently by an off-the-shelf SVM solver. Although adjent descent approach
can be developed for optimizing Eq. (4), it is unable to exple sparse structure B making it less efficient than
state-of-the-art SVM solvers. In order to effectively exgl the power of off-the-shelf SVM solvers, we rewrite (3) as
follows

1
i ﬁ P,Y) = 1-— k F ) 5
;nelgr‘?gl)} { max E vy { (a oy ) K(p)(a® oy )}} )
wherel' = {(7',...,9™) € R? : v"1 = 1}. In Eq. (5), we replacenax;<j<,, With max,cr. The advantage of

using Eq. (5) is that we can resort to a SVM solver to efficiefitid o for a given combination of kernels(p).

Given Eq. (5), we develop a subgradient descent approadofang the optimization problem. In particular, in each
iteration of subgradient descent, we compute the gradlépt~) with respect tg and-~ as follows

Ve £(p,7) = 27 ok oyh)TK (ko yh), ViLp,7) = [@h] 71~ (aF oy TK(p)( o yh),  (6)
k 1

wherea” = argmaxq e, @'1— (aoy”) TK(p)(aoy*)/2,i.e., a SVM solution to the combined keri€(p).
Following the mirror prox descent method [24], we define pb& functions®, = Z—: >, p*Inp® for p and
o, =" ~'Iny for v, and have the following equations for updatimgand-;

(J

k
Piy1 = Zp exp(—1pVpe L(Pt: 1))s Vop1 = Z” exp(—1, V. k L(Pt; V), (7



whereZ! andZ; are normalization factors that ensysé1 = v, 1 = 1. 5, > 0 andn, > 0 are the step sizes for
optimizingp and~, respectively.

Unfortunately, the algorithm described above shares thesshortcoming as the other approaches for multiple la-
bel multiple kernel learning, i.e., it requires solving SVM problems in each iteration, and therefore its compu-
tational complexity is linear in the number of classes. Tewdte this problem, we modify the above algorithm
by introducing the stochastic approximation method. Irtipalar, in each iteration, instead of computing the full
gradients that requirs solving SVMs, we sample one classification task according to theinauttial distribution
Multi(yt,...,v™). Letj, be the index of the sampled classification task. Using thepkathtaskj;, we estimate the
gradient of£(p, v) with respect tgp® and+*, denoted byj? (p;,v:) andg) (p:, ), as follows

1 . ) ) .
Gapem) = —5(a oy’) K (@l oyh), (8)
s 0 k # ji
Y —
AP = | L (af1- ot oy KNt oyh) ko ©

The computation of (p;,y:) andg; (p:, ;) only requiresa’s and therefore only needs to solve one SVM problem,
instead ofm SVMs. The key property of the estimated gradients in Eqsa@)) (9) is that their expectations equal to
the true gradients, as summarized by Proposition 1. Thisguty is the key to the correctness of this algorithm.

Proposition 1. We have

E[95 (Pt ve)] = Vi, L, ve), Eelg] (pesve)] = Vo, L(Pe, 7)),
whereF; -] stands for the expectation over the randomly sampledtask

Given the estimated gradients, we will follow Eq. (7) for agidg p and~ in each iteration. Sinc@; (p:,v:) is
proportional tol /~;, to ensure the norm gf/ (p:, ;) to be bounded, we need to smoath ;. In order to have the
smoothing effect, without modifying, .1, we will sample directly fromy;_ ,,

) )
Vyel,3y eI, S.t.'ygil <—’yf+1(1 —9) + E’k =1,...,m,

whereé > 0 is a small probability mass used for smoothing and

b
F’:{fy’T1:1,7,gz,k:l,...,m}.
m

We refer to this algorithm all ulti-label Multiple Kernel Learning by Stochastic Approximation, or ML-MKL-
SA for short. Algorithm 1 gives the detailed description.

2.2 Convergence Analysis

Since Eq. (5) is a convex-concave optimization problem,mmduce the following citation for measuring the quality
of a solution(p, )

A = "y — mi L. 11
(p.7) g}g}gﬁ(p,v) ;15161171)/3([)77) (11)

We denote by(p.,v.) the optimal solution to Eq. (5).
Proposition 2. We have the following properties féx(p, v)

1. A(p,~) > 0for any solutionp € P andy € T

2. A(ps,7,) =0 ,
3. A(p,~y) is jointly convex in bottp and~y

We have the following theorem for the convergence rate fgoAthm 1. The detailed proof can be found in the
supplementary document.
Theorem 1. After running Algorithm 1 ovef” iterations, we have the following inequality for the sabutip and~
obtained by Algorithm 1
PN 1 m?2
E[A (P,9)] < T (Inm +1Ins) +n, (d%Q/\%n?C4 + n202) 7
whered is a constant termE[-] stands for the expectation over the sampled task indice8 émtions, and\y =

max Amax (K%), wherel . (Z) stands for the maximum eigenvalue of mak#ix



Algorithm 1 Multi-label Multiple Kernel Learning: ML-MKL-SA
1: Input

® 1,,7,. Step sizes
e K' ... K°: skernel matrices
e y' ..., y™: the assignments of. different classes ta training instances
e T': number of iterations
0: smoothing parameter
Initialization
e vy =1/mandp; =1/s

N

3:fort=1,...,Tdo
4:  Sample a classification tagkaccording to the distributiod/ ulti(+/, ... ,7{”).
5:  Computea’t = arg maxaejo,cpn @' 1 — (a0 y’t) "K(p)(ax 0 y?*)/2 using an off shelf SVM solver.
6: Compute the estimated gradiedfp:,v:) andg; (p:,:) using Eq. (8) and (9).
7:  Updatep; 1, v:+1 andvy;, as follows
a 23 pe
Piy1 = th eXp(_ntzZz)(pta'Yt))v a=1,...,s.
t
ko 'Yf -~y _ oA _ J
[ryt-ﬁ-l] - ? eXP(%Qk (pta’}/t))a k= 17 cee, MYy 'Yt-i-l - (1 - 6)’Yt+1 + El

t
8: end for
9: Compute the final solutiop anda as

T 1 X
Y= T; T;pt' (10)

Corallary 1. With§ = m3 andn7 = % %\/ (Inm T after running Algorithm 1 (on the original paper) ovér
iterations, we hav&[A(p,7) nm!/3,/(Inm)/T) in terms ofm,n andT.

Since we only need to solve one kernel SVM at each iteratierhave the computational complexity for the proposed
algorithm on the order ab(m!/3,/(Inm)/T), sublinear in the number of classes

3 Experiments

In this section, we empirically evaluate the proposed rpldtkernel learning algorithfby demonstrating its effi-
ciency and effectiveness on the visual object recognitisi.t

3.1 Datasets

We use three benchmark data sets for visual object recognifialtech-101, Pascal VOC 2006 and Pascal VOC 2007.
Caltech-101 containk)1 different object classes in addition to a “background” slad/e use the same settings as [25]
in which 30 instances of each class are used for training and 15 ingdocesting. Pascal VOC 2006 data set [26]
consists of5, 303 images distributed ovelr0 classes, of whicl2, 618 are used for training. Pascal VOC 2007 [27]
consists ofs, 011 training images and, 932 test images that are distributed orclasses. For both data sets, we
used the default train-test partition provided by VOC Géradle. Unlike Caltech-101 data set, where each image is
assigned to one class, images in VOC data sets can be assigmedtiple classes simultaneously, making it more
suitable for multi-label learning.

2Codes can be downloaded from http://www.cse.msuledcsikser/ML-MKL-SA.rar
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Table 1: Classification accuracy (AUC) and running timegdgse) of all ML-MKL algorithms on three data sets.
Abbreviations SA, GMKL, Sum, Simple, VSKL, AVG stand for MKL-SA, Generalized MKL, ML-MKL-Sum,
SimpleMKL, variable sparsity kernel learning and averagmkl, respectively

Accuracy (AUC) Training Time (sec)
dataset SA GMKL Sum Simple VSKL AVG]| SA GMKL Sum Simple VSKL AVG
CALTECH-101 | 0.80 0.79 0.80 0.78 0.77 0.7 191.17 18292.00 1814.50 9869.40 21266.05 N/A
VOC2006 0.75 0.75 0.74 0.74 0.74 0.72) 245.10 2586.90 890.65 11549.00 7368.27 N/A
VOC2007 0.50 0.49 0.47 0.42 0.46 0.45 1329.40 30333.14 1372.60 18536.37 11370.48 N/A
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Figure 1: The evolution of kernel weights over time for CALTH-101 data set. For GMKL and VSKL, the curves
display the kernel weights that are averaged over all thesekasince a different kernel combination is learnt for each
class.

3.2 Kernds

We extracted 9 kernels for Caltech-101 data set by using ditevare provided in [28]. Three different feature
extraction methods are used for kernel construction: (i} G&metric blur descriptors are applied to the detected
keypoints [29]; RBF kernel is used in which the distance leetwtwo images is computed by averaging the distance
of the nearest descriptor pairs for the image pair. (i) PH@WY/color: keypoints based on dense sampling; SIFT
descriptors are quantized 890 words and spatial histograms with 2x2 and 4x4 subdivisionsbailt to generate
chi-squared kernels [30]. (i) SSIM: self-similarity feeies taken from [31] are used and spatial histograms based o
300 visual words are used to form the chi-squared kernel.

For VOC data sets, a different procedure, based on the eepbMOC challenges [1], is used to construct multiple
visual dictionaries, and each dictionary results in a déffiie kernel. To obtain multiple visual dictionaries, we lbgp

(i) three keypoint detectors, i.e., dense sampling, HARHBS] and HESLAP [33], (ii) two keypoint descriptors,
i.e., SIFT [33] and SPIN [34]), (iii) two different numberg$ wisual words, i.e.500 and1, 000 visual words, (iv)

two different kernel functions, i.e., linear kernel and-shjuared kernel. The bandwidth of the chi-squared kernels
is calculated using the procedure in [25]. Using the aboviawts in visual dictionary construction, we constructed
22 kernels for both VOC2007 and VOC2006 data sets. In additathe K-means implementation in [28], we also
applied a hierarchical clustering algorithm [35] to destot quantization for VOC 2007 data set, leading to four more
kernels for VOC2007 data set.

3.3 Basdine Methods

We first compare the proposed algorithm ML-MKL-SA to the éoling MKL algorithms that learn a different kernel
combination for each class: (i) Generalized multiple kele@ning method (GMKL) [25], which reports promising
results for object recognition, (i) SimpleMKL [10], whidearns the kernel combination by a subgradient approach
and (i) Variable Sparsity Kernel Learning (VSKL), a mirprox descent based algorithm for MKL [36]. We also
compare ML-MKL-SA to ML-MKL-Sum, which learns a kernel coimltion shared by all classes as described in
Section 2 using the optimization method in [21]. In all implentations of ML multiple kernel learning algorithms,we
use LIBSVM implementation of one-versus-all SVM where reskd

3.4 Experimental Results

To evaluate the effectiveness of different algorithms faittidabel multiple kernel learning, we first compute thear
under precision-recall curve (AUC) for each class, and nethe value of AUC averaged over all the classes. We
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Figure 3: Classification accuracy (AUC) of the proposedFigure 4: Classification accuracy (AUC) of the proposed
algorithm MI-MKL-SA on CALTECH-101 using differ-  algorithm MI-MKL-SA on CALTECH-101 using differ-
ent values ob (for , = n, = 0.01). ent values ofy, = 7, = n for (6 = 0).

evaluate the efficiency of algorithms by their running tinfiestraining. All methods are coded in MATLAB and
are implemented on machines with 2 dual-core AMD Opteronsing at 2.2GHz, 8GB RAM and linux operating
system.

For the proposed method, itarations stop WQéT%ﬁt;l is smaller than 0.01. Unless stated, the smoothing paramete

d is set to be 0.2. For simplicity we take= 7, = 17; in all the following experiments. Step sizds chosen as 0.0001
for CALTECH-101 data set and 0.001 for VOC data sets in ord@chieve the best computational efficiency.

Table 1 summarizes the classification accuracies (AUC) hadunning times of all the algorithms over the three
data sets. We first note that the proposed MKL method for Amiteeled data, i.e., ML-MKL-SA, yields the best
performance among the methods in comparison, which justifie assumption of using the same kernel combination
for all the classes. Note that a simple approach that useavirage of all kernels yields reasonable performance,
although its classification accuracy is significantly wotisan the proposed approach ML-MKL-SA. Second, we
observe that except for the average kernel method that daesdquire learning the kernel combination weights, ML-
MKL-SA and ML-MKL-Sum are significantly more efficient thahe other baseline approaches. This is not surprising
as ML-MKL-SA and ML-MKL-Sum compute a single kernel combiiiwa for all classes. Third, compared to ML-
MKL-Sum, we observe that ML-MKL-SA is overall more efficierand significantly more efficient for CALTECH-
101 data set. This is because the number of classes in CALTHEIHS significantly larger than that of the two VOC
challenge data sets. This result further confirms that tbpgeed algorithm is scalable to the data sets with a large
number of classes.

Fig. 1 shows the change in the kernel weights over time foptbposed method and the three baseline methods (i.e.,
ML-MKL-Sum, GMKL, and VSKL) on CALTECH-101 data set. We obrge that, overall, ML-MKL-SA shares a
similar pattern as GMKL and VSKL in the evolution curves ofikel weights, but is ten times faster than the two
baseline methods. Although ML-MKL-Sum is significantly raafficient than GMKL and VSKL, the kernel weights
learned by ML-MKL-Sum vary significantly, particularly ate beginning of the learning process, making it a less
stable algorithm than the proposed algorithm ML-MKL-SA. flother compare ML-MKL-SA with ML-MKL-Sum,

in Fig. 2, we show how the classification accuracy is changest ime for both methods for all three data sets.
We again observe the unstable behavior of ML-MKL-Sum: tlessification accuracy of ML-MKL-Sum could vary
significantly over a relatively short period of time, makiihéess desirable method for MKL.



To evaluate the sensitivity of the proposed method to patensé& andn, we conducted experiments with varied
values for the two parameters. Fig. 3 shows how the clasificaccuracy (AUC) of the proposed algorithm changes
over iterations on CALTECH-101 using four different valuds). We observe that the final classification accuracy
is comparable for different values 6f demonstrating the robustness of the proposed method thtiiee ofs. We
also note that the two extreme cases,d.es 0 andé = 1, give the worst performance, indicating the importance of
choosing an optimal value far. Fig. 4 shows the classification accuracy for three diffevatues ofy on CALTECH-
101 data set. We observe that the proposed algorithm ashééwdlar classification accuracy whens set to be a
relatively small value (i.ep = 0.001 andn = 0.0001). This result demonstrates that the proposed algorithm is i
general insensitive to the choice of step sizpe (

4 Conclusion and Future Work

In this paper, we present an efficient optimization framdwfor multi-label multiple kernel learning that combines
worst-case analysis with stochastic approximation. Coetpto the other algorithms for ML-MKL, the key advantage
of the proposed algorithm is that its computational cosuldiaear in the number of classes, making it suitable for
handling a large number of classes. We verify the effectigerof the proposed algorithm by experiments in object
recognition on several benchmark data sets. There are teotidins that we plan to explore in the future. First, we
aim to further improve the efficiency of ML-MKL by reducingsitiependence on the number of training examples and
speeding up the convergence rate. Second, we plan to imfireedfectiveness and efficiency of multi-label learning
by exploring the correlation and structure among the ctasse
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