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Abstract

Recent studies have shown that multiple kernel learning is very effective for object recognition,
leading to the popularity of kernel learning in computer vision problems. In this work, we develop
an efficient algorithm for multi-label multiple kernel learning (ML-MKL). We assume that all the
classes under consideration share the same combination of kernel functions, and the objective is
to find the optimal kernel combination that benefits all the classes. Although several algorithms
have been developed for ML-MKL, their computational cost islinear in the number of classes,
making them unscalable when the number of classes is large, achallenge frequently encountered
in visual object recognition. We address this computational challenge by developing a framework
for ML-MKL that combines the worst-case analysis with stochastic approximation. Our analysis
shows that the complexity of our algorithm isO(m1/3

√
lnm), wherem is the number of classes.

Empirical studies with object recognition show that while achieving similar classification accuracy,
the proposed method is significantly more efficient than the state-of-the-art algorithms for ML-MKL.

1 Introduction

Recent studies have shown promising performance of kernel methods for object classification, recognition and local-
ization [1]. Since the choice of kernel functions can significantly affect the performance of kernel methods, kernel
learning, or more specifically Multiple Kernel Learning (MKL) [2, 3, 4, 5, 6, 7], has attracted considerable amount
of interest in computer vision community. In this work, we focuss on kernel learning for object recognition because
the visual content of an image can be represented in many ways, depending on the methods used for keypoint detec-
tion, descriptor/feature extraction, and keypoint quantization. Since each representation leads to a different similarity
measure between images (i.e., kernel function), the related fusion problem can be cast into a MKL problem.

A number of algorithms have been developed for MKL. In [2], MKL is formulated as a quadratically constraint
quadratic program (QCQP). [8] suggests an algorithm based on sequential minimization optimization (SMO) to im-
prove the efficiency of [2]. [9] shows that MKL can be formulated as a semi-infinite linear program (SILP) and can
be solved efficiently by using off-the-shelf SVM implementations. In order to improve the scalability of MKL, several
first order optimization methods have been proposed, including the subgradient method [10], the level method [11], the
method based on equivalence between group lasso and MKL [12,13, 14]. Besides L1-norm [15] and L2-norm [16],
Lp-norm [17] has also been proposed to regularize the weights for kernel combination. Other then the framework
based on maximum margin classification, MKL can also be formulated by using kernel alignment [18] and Fisher
discriminative analysis frameworks [19].
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Although most efforts in MKL focus on binary classification problems, several recent studies have attempted to extend
MKL to multi-class and multi-label learning [3, 20, 21, 22, 23]. Most of these studies assume that either the same or
similar kernel functions are used by different but related classification tasks. Even though studies show that MKL for
multi-class and multi-label learning can result in significant improvement in classification accuracy, the computational
cost is often linear in the number of classes, making it computationally expensive when dealing with a large number of
classes. Since most object recognition problems involve many object classes, whose number might go up to hundreds
or sometimes even to thousands, it is important to develop anefficient learning algorithm for multi-class and multi-
label MKL that is sublinear in the number of classes.

In this work, we develop an efficient algorithm for Multi-Label MKL (ML-MKL) that assumes all the classifiers
share the same combination of kernels. We note that althoughthis assumption significantly constrains the choice of
kernel functions for different classes, our empirical studies with object recognition show that it does not affect the
classification performance. A similar phenomenon was also observed in [21]. A naive implementation of ML-MKL
with shared kernel combination will lead to a computationalcost linear in the number of classes. We alleviate this
computational challenge by exploring the idea of combiningworst case analysis with stochastic approximation. Our
analysis reveals that the convergence rate of the proposed algorithm isO(m1/3

√
lnm), which is significantly better

than a linear dependence onm, wherem is the number of classes. Our empirical studies show that theproposed MKL
algorithm yields similar performance as the state-of-the-art algorithms for ML-MKL, but with a significantly shorter
running time, making it suitable for multi-label learning with a large number of classes.

The rest of this paper is organized as follows. Section 2 presents the proposed algorithm for Multi-Label MKL,
along with its convergence analysis. Section 3 summarizes the experimental results for object recognition. Section 4
concludes this work.

2 Multi-label Multiple Kernel Learning (ML-MKL)

We denote byD = {x1, . . . ,xn} the collection ofn training instances, and bym the number of classes. We introduce
yk = (yk1 , . . . , y

k
n)

> ∈ {−1,+1}n, the assignment of thekth class to all the training instances:yki = +1 if xi is
assigned to thek-th class andyki = −1 otherwise. We introduceκa(x,x

′) : Rd ×R
d 7→ R, a = 1, . . . , s, thes kernel

functions to be combined. We denote by{Ka ∈ R
n×n, a = 1, . . . , s} the collection ofs kernel matrices for the data

points inD, i.e.,Ka
i,j = κa(xi,xj).

We introducep = (p1, . . . , ps), a probability distribution, for combining kernels. We denote byK(p) =
∑s

a=1 p
aKa

the combined kernel matrices. We introduce the domainP for the probability distributionp, i.e.,P = {p ∈ R
s
+ :

p>1 = 1}. Our goal is to learn from the training examples the optimal kernel combinationp for all them classes.

The simplest approach for multi-label multiple kernel learning with shared kernel combination is to find the optimal
kernel combinationp by minimizing the sum of regularized loss functions of allm classes, leading to the following
optimization problem:

min
p∈P

min
{fk∈H(p)}m

k=1

{
m∑

k=1

Hk =

m∑

k=1

{
1

2
|fk|2H(p) +

n∑

i=1

`
(
yki fk(xi)

)
}}

, (1)

where`(z) = max(0, 1 − z) andH(p) is a Reproducing Kernel Hilbert Space endowed with kernelκ(x,x′;p) =∑s
a=1 p

aκa(x,x
′). Hk is the regularized loss function for thekth class. It is straightforward to verify the following

dual problem of (1):

min
p∈P

max
α∈Q1

{
L(p,α) =

m∑

k=1

{
[αk]>1− 1

2
(αk ◦ yk)>K(p)(αk ◦ yk)

}}
, (2)

whereQ1 =
{
α = (α1, . . . ,αm) : αk ∈ [0, C]n, k = 1, . . . ,m

}
. To solve the optimization problem in Eq. (2), we

can view it as a minimization problem, i.e.,minp∈P A(p), whereA(p) = maxα∈Q1
L(p,α). We then follow the

subgradient descent approach in [10] and compute the gradient ofA(p) as

∂piA(p) = −1

2

m∑

k=1

(αk(p) ◦ yk)>Ki(αk(p) ◦ yk),

2



whereαk(p) = argmaxα∈[0,C]n [α
k]>1 − (αk ◦ yk)>K(p)(αk ◦ yk). We refer to this approach asMulti-label

Multiple Kernel Learning by Sum, or ML-MKL-Sum. Note that this approach is similar to the one proposed
in [21]. The main computational problem with ML-MKL-Sum is that by treating every class equally, in each iteration
of subgradient descent, it requires solvingm kernel SVMs, making it unscalable to a very large number of classes.
Below we present a formulation for multi-label MKL whose computational cost is sublinear in the number of classes.

2.1 A Minimax Framework for Multi-label MKL

In order to alleviate the computational difficulty arising from a large number of classes, we search for the combined
kernel matrixK(p) that minimizes the worst classification error amongm classes, i.e.,

min
p∈P

min
{fk∈H(p)}m

k=1

max
1≤k≤m

Hk (3)

Eq. (3) differs from Eq. (1) in that it replaces
∑m

k=1 Hk with max1≤k≤m Hk. The main computational advantage
of usingmaxk Hk instead of

∑
k Hk is that by using an appropriately designed method, we may be able to figure

out the most difficult class in a few iterations, and spend most of the computational cycles on learning the optimal
kernel combination for the most difficult class. In this way,we are able to achieve a running time that is sublinear
in the number of classes. Below, we present an optimization strategy for Eq. (3) based on the idea of stochastic
approximation.

A direct approach is to solve the optimization problem in Eq.(3) by its dual form. It is straightforward to derive the
dual problem of Eq. (3) as follows (more details can be found in the supplementary documents)

min
p∈P

max
β∈B



L(p,β) =

{
m∑

k=1

{
[βk]>1− 1

2
(βk ◦ yk)>K(p)(βk ◦ yk)

} 1

2

}2


 . (4)

where

B =

{
(β1, . . . ,βm) : βk ∈ R

n
+, k = 1, . . . ,m,βk ∈ [0, Cλk]

n s.t.
m∑

k=1

λk = 1

}
.

The challenge in solving Eq. (4) is that the solutions{β1, . . . ,βm} in domainB are correlated with each other, making
it impossible to solve eachβk independently by an off-the-shelf SVM solver. Although a gradient descent approach
can be developed for optimizing Eq. (4), it is unable to explore the sparse structure inβk making it less efficient than
state-of-the-art SVM solvers. In order to effectively explore the power of off-the-shelf SVM solvers, we rewrite (3) as
follows

min
p∈P

max
γ∈Γ

{
L(p, γ) = max

α∈Q1

m∑

k=1

γk

{
αk>1− 1

2
(αk ◦ yk)>K(p)(αk ◦ yk)

}}
, (5)

whereΓ = {(γ1, . . . , γm) ∈ R
m
+ : γ>1 = 1}. In Eq. (5), we replacemax1≤k≤m with maxγ∈Γ. The advantage of

using Eq. (5) is that we can resort to a SVM solver to efficiently findαk for a given combination of kernelsK(p).

Given Eq. (5), we develop a subgradient descent approach forsolving the optimization problem. In particular, in each
iteration of subgradient descent, we compute the gradientL(p,γ) with respect top andγ as follows

∇paL(p, γ) = −1

2

m∑

k=1

γk(αk ◦ yk)>Ka(αk ◦ yk), ∇γkL(p, γ) = [αk]>1− 1

2
(αk ◦ yk)>K(p)(αk ◦ yk), (6)

whereαk = argmaxα∈[0,C]n α>1− (α ◦yk)>K(p)(α ◦yk)/2, i.e., a SVM solution to the combined kernelK(p).
Following the mirror prox descent method [24], we define potential functionsΦp =

ηp

ηγ

∑s
a=1 p

a ln pa for p and

Φγ =
∑m

i=1 γ
i ln γi for γ, and have the following equations for updatingpt andγt

pat+1 =
pat
Zp
t

exp(−ηp∇paL(pt, γt)), γ
k
t+1 =

γk
t

Zγ
t

exp(−ηγ∇γkL(pt, γt)), (7)
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whereZp
t andZγ

t are normalization factors that ensurep>
t 1 = γ>

t 1 = 1. ηp > 0 andηγ > 0 are the step sizes for
optimizingp andγ, respectively.

Unfortunately, the algorithm described above shares the same shortcoming as the other approaches for multiple la-
bel multiple kernel learning, i.e., it requires solvingm SVM problems in each iteration, and therefore its compu-
tational complexity is linear in the number of classes. To alleviate this problem, we modify the above algorithm
by introducing the stochastic approximation method. In particular, in each iterationt, instead of computing the full
gradients that requirs solvingm SVMs, we sample one classification task according to the multinomial distribution
Multi(γ1

t , . . . , γ
m
t ). Let jt be the index of the sampled classification task. Using the sampled taskjt, we estimate the

gradient ofL(p, γ) with respect topa andγk, denoted bŷgpa(pt, γt) andĝγk (pt, γt), as follows

ĝpa(pt, γt) = −1

2
(αjt ◦ yjt)>Ka(αjt ◦ yjt), (8)

ĝγk (pt, γt) =

{
0 k 6= jt

1
γk

(
α>

k 1− 1
2 (α

k ◦ yk)>K(p)(αk ◦ yk)
)

k = jt
. (9)

The computation of̂gpa(pt, γt) andĝγi (pt, γt) only requiresαjt and therefore only needs to solve one SVM problem,
instead ofm SVMs. The key property of the estimated gradients in Eqs. (8)and (9) is that their expectations equal to
the true gradients, as summarized by Proposition 1. This property is the key to the correctness of this algorithm.
Proposition 1. We have

Et[ĝ
p
a(pt, γt)] = ∇pa

L(pt, γt), Et[ĝ
γ
i (pt, γt)] = ∇γi

L(pt, γt),

whereEt[·] stands for the expectation over the randomly sampled taskjt.

Given the estimated gradients, we will follow Eq. (7) for updating p andγ in each iteration. Sincêgγi (pt, γt) is
proportional to1/γt, to ensure the norm of̂gγi (pt, γt) to be bounded, we need to smoothγt+1. In order to have the
smoothing effect, without modifyingγt+1, we will sample directly fromγ′

t+1,

∀γ ∈ Γ, ∃γ′ ∈ Γ′, s.t.γ′k
t+1 ← γk

t+1(1− δ) +
δ

m
, k = 1, . . . ,m,

whereδ > 0 is a small probability mass used for smoothing and

Γ′ =

{
γ′>1 = 1, γ′

k ≥
δ

m
, k = 1, . . . ,m

}
.

We refer to this algorithm asMulti-label Multiple Kernel Learning by Stochastic Approximation, or ML-MKL-
SA for short. Algorithm 1 gives the detailed description.

2.2 Convergence Analysis

Since Eq. (5) is a convex-concave optimization problem, we introduce the following citation for measuring the quality
of a solution(p, γ)

∆(p, γ) = max
γ′∈Γ
L(p,γ′)− min

p′∈P
L(p′,γ). (11)

We denote by(p∗, γ∗) the optimal solution to Eq. (5).
Proposition 2. We have the following properties for∆(p,γ)

1. ∆(p,γ) ≥ 0 for any solutionp ∈ P andγ ∈ Γ
2. ∆(p∗,γ∗) = 0
3. ∆(p,γ) is jointly convex in bothp andγ

We have the following theorem for the convergence rate for Algorithm 1. The detailed proof can be found in the
supplementary document.
Theorem 1. After running Algorithm 1 overT iterations, we have the following inequality for the solution p̂ and γ̂
obtained by Algorithm 1

E [∆ (p̂, γ̂)] ≤ 1

ηγT
(lnm+ ln s) + ηγ

(
d
m2

2δ2
λ2
0n

2C4 + n2C2

)
,

whered is a constant term,E[·] stands for the expectation over the sampled task indices of all iterations, andλ0 =
max
1≤a≤s

λmax(K
a), whereλmax(Z) stands for the maximum eigenvalue of matrixZ.
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Algorithm 1 Multi-label Multiple Kernel Learning: ML-MKL-SA
1: Input

• ηp, ηγ : step sizes
• K1, . . . ,Ks: s kernel matrices
• y1, . . . ,ym: the assignments ofm different classes ton training instances
• T : number of iterations
• δ: smoothing parameter

2: Initialization
• γ1 = 1/m andp1 = 1/s

3: for t = 1, . . . , T do
4: Sample a classification taskjt according to the distributionMulti(γ1

t , . . . , γ
m
t ).

5: Computeαjt = argmaxα∈[0,C]n α>1− (α ◦ yjt)>K(p)(α ◦ yjt)/2 using an off shelf SVM solver.
6: Compute the estimated gradientsĝpa(pt, γt) andĝγi (pt, γt) using Eq. (8) and (9).
7: Updatept+1, γt+1 andγ′

t+1 as follows

pat+1 =
pat
Zp
t

exp(−ηγ ĝpa(pt, γt)), a = 1, . . . , s.

[γt+1]
k

=
γk
t

Zγ
t

exp(ηγ ĝ
γ
k (pt, γt)), k = 1, . . . ,m; γ′

t+1 = (1− δ)γt+1 +
δ

m
1.

8: end for
9: Compute the final solution̂p andα̂ as

γ̂ =
1

T

T∑

t=1

γt, p̂ =
1

T

T∑

t=1

pt. (10)

Corollary 1. With δ = m
2

3 andηγ = 1
nm

− 1

3

√
(lnm)/T , after running Algorithm 1 (on the original paper) overT

iterations, we haveE[∆(p̂, γ̂)] ≤ O(nm1/3
√
(lnm)/T ) in terms ofm,n andT .

Since we only need to solve one kernel SVM at each iteration, we have the computational complexity for the proposed
algorithm on the order ofO(m1/3

√
(lnm)/T ), sublinear in the number of classesm.

3 Experiments

In this section, we empirically evaluate the proposed multiple kernel learning algorithm2 by demonstrating its effi-
ciency and effectiveness on the visual object recognition task.

3.1 Data sets

We use three benchmark data sets for visual object recognition: Caltech-101, Pascal VOC 2006 and Pascal VOC 2007.
Caltech-101 contains101 different object classes in addition to a “background” class. We use the same settings as [25]
in which 30 instances of each class are used for training and 15 instances for testing. Pascal VOC 2006 data set [26]
consists of5, 303 images distributed over10 classes, of which2, 618 are used for training. Pascal VOC 2007 [27]
consists of5, 011 training images and4, 932 test images that are distributed over20 classes. For both data sets, we
used the default train-test partition provided by VOC Challenge. Unlike Caltech-101 data set, where each image is
assigned to one class, images in VOC data sets can be assignedto multiple classes simultaneously, making it more
suitable for multi-label learning.

2Codes can be downloaded from http://www.cse.msu.edu/˜bucakser/ML-MKL-SA.rar
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Table 1: Classification accuracy (AUC) and running times (second) of all ML-MKL algorithms on three data sets.
Abbreviations SA, GMKL, Sum, Simple, VSKL, AVG stand for ML-MKL-SA, Generalized MKL, ML-MKL-Sum,
SimpleMKL, variable sparsity kernel learning and average kernel, respectively

Accuracy (AUC) Training Time (sec)
dataset SA GMKL Sum Simple VSKL AVG SA GMKL Sum Simple VSKL AVG
CALTECH-101 0.80 0.79 0.80 0.78 0.77 0.77 191.17 18292.00 1814.50 9869.40 21266.05 N/A
VOC2006 0.75 0.75 0.74 0.74 0.74 0.72 245.10 2586.90 890.65 11549.00 7368.27 N/A
VOC2007 0.50 0.49 0.47 0.42 0.46 0.45 1329.40 30333.14 1372.60 18536.37 11370.48 N/A
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Figure 1: The evolution of kernel weights over time for CALTECH-101 data set. For GMKL and VSKL, the curves
display the kernel weights that are averaged over all the classes since a different kernel combination is learnt for each
class.

3.2 Kernels

We extracted 9 kernels for Caltech-101 data set by using the software provided in [28]. Three different feature
extraction methods are used for kernel construction: (i) GB: geometric blur descriptors are applied to the detected
keypoints [29]; RBF kernel is used in which the distance between two images is computed by averaging the distance
of the nearest descriptor pairs for the image pair. (ii) PHOWgray/color: keypoints based on dense sampling; SIFT
descriptors are quantized to300 words and spatial histograms with 2x2 and 4x4 subdivisions are built to generate
chi-squared kernels [30]. (iii) SSIM: self-similarity features taken from [31] are used and spatial histograms based on
300 visual words are used to form the chi-squared kernel.

For VOC data sets, a different procedure, based on the reports of VOC challenges [1], is used to construct multiple
visual dictionaries, and each dictionary results in a different kernel. To obtain multiple visual dictionaries, we deploy
(i) three keypoint detectors, i.e., dense sampling, HARHES[32] and HESLAP [33], (ii) two keypoint descriptors,
i.e., SIFT [33] and SPIN [34]), (iii) two different numbers of visual words, i.e.,500 and1, 000 visual words, (iv)
two different kernel functions, i.e., linear kernel and chi-squared kernel. The bandwidth of the chi-squared kernels
is calculated using the procedure in [25]. Using the above variants in visual dictionary construction, we constructed
22 kernels for both VOC2007 and VOC2006 data sets. In addition to the K-means implementation in [28], we also
applied a hierarchical clustering algorithm [35] to descriptor quantization for VOC 2007 data set, leading to four more
kernels for VOC2007 data set.

3.3 Baseline Methods

We first compare the proposed algorithm ML-MKL-SA to the following MKL algorithms that learn a different kernel
combination for each class: (i) Generalized multiple kernel learning method (GMKL) [25], which reports promising
results for object recognition, (ii) SimpleMKL [10], whichlearns the kernel combination by a subgradient approach
and (iii) Variable Sparsity Kernel Learning (VSKL), a miror-prox descent based algorithm for MKL [36]. We also
compare ML-MKL-SA to ML-MKL-Sum, which learns a kernel combination shared by all classes as described in
Section 2 using the optimization method in [21]. In all implementations of ML multiple kernel learning algorithms,we
use LIBSVM implementation of one-versus-all SVM where needed.

3.4 Experimental Results

To evaluate the effectiveness of different algorithms for multi-label multiple kernel learning, we first compute the area
under precision-recall curve (AUC) for each class, and report the value of AUC averaged over all the classes. We
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Figure 2: The evolution of classification accuracy over timefor ML-MKL-SA and ML-MKL-Sum on three data sets
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Figure 3: Classification accuracy (AUC) of the proposed
algorithm Ml-MKL-SA on CALTECH-101 using differ-
ent values ofδ (for ηp = ηγ = 0.01).
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Figure 4: Classification accuracy (AUC) of the proposed
algorithm Ml-MKL-SA on CALTECH-101 using differ-
ent values ofηp = ηγ = η for (δ = 0).

evaluate the efficiency of algorithms by their running timesfor training. All methods are coded in MATLAB and
are implemented on machines with 2 dual-core AMD Opterons running at 2.2GHz, 8GB RAM and linux operating
system.

For the proposed method, itarations stop whenp̂t−p̂t−1

p̂t
is smaller than 0.01. Unless stated, the smoothing parameter

δ is set to be 0.2. For simplicity we takeη = ηp = ηγ in all the following experiments. Step sizeη is chosen as 0.0001
for CALTECH-101 data set and 0.001 for VOC data sets in order to achieve the best computational efficiency.

Table 1 summarizes the classification accuracies (AUC) and the running times of all the algorithms over the three
data sets. We first note that the proposed MKL method for multi-labeled data, i.e., ML-MKL-SA, yields the best
performance among the methods in comparison, which justifies the assumption of using the same kernel combination
for all the classes. Note that a simple approach that uses theaverage of all kernels yields reasonable performance,
although its classification accuracy is significantly worsethan the proposed approach ML-MKL-SA. Second, we
observe that except for the average kernel method that does not require learning the kernel combination weights, ML-
MKL-SA and ML-MKL-Sum are significantly more efficient than the other baseline approaches. This is not surprising
as ML-MKL-SA and ML-MKL-Sum compute a single kernel combination for all classes. Third, compared to ML-
MKL-Sum, we observe that ML-MKL-SA is overall more efficient, and significantly more efficient for CALTECH-
101 data set. This is because the number of classes in CALTECH-101 is significantly larger than that of the two VOC
challenge data sets. This result further confirms that the proposed algorithm is scalable to the data sets with a large
number of classes.

Fig. 1 shows the change in the kernel weights over time for theproposed method and the three baseline methods (i.e.,
ML-MKL-Sum, GMKL, and VSKL) on CALTECH-101 data set. We observe that, overall, ML-MKL-SA shares a
similar pattern as GMKL and VSKL in the evolution curves of kernel weights, but is ten times faster than the two
baseline methods. Although ML-MKL-Sum is significantly more efficient than GMKL and VSKL, the kernel weights
learned by ML-MKL-Sum vary significantly, particularly at the beginning of the learning process, making it a less
stable algorithm than the proposed algorithm ML-MKL-SA. Tofurther compare ML-MKL-SA with ML-MKL-Sum,
in Fig. 2, we show how the classification accuracy is changed over time for both methods for all three data sets.
We again observe the unstable behavior of ML-MKL-Sum: the classification accuracy of ML-MKL-Sum could vary
significantly over a relatively short period of time, makingit less desirable method for MKL.
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To evaluate the sensitivity of the proposed method to parameters δ and η, we conducted experiments with varied
values for the two parameters. Fig. 3 shows how the classification accuracy (AUC) of the proposed algorithm changes
over iterations on CALTECH-101 using four different valuesof δ. We observe that the final classification accuracy
is comparable for different values ofδ, demonstrating the robustness of the proposed method to thechoice ofδ. We
also note that the two extreme cases, i.e,δ = 0 andδ = 1, give the worst performance, indicating the importance of
choosing an optimal value forδ. Fig. 4 shows the classification accuracy for three different values ofη on CALTECH-
101 data set. We observe that the proposed algorithm achieves similar classification accuracy whenη is set to be a
relatively small value (i.e.,η = 0.001 andη = 0.0001). This result demonstrates that the proposed algorithm is in
general insensitive to the choice of step size (η).

4 Conclusion and Future Work

In this paper, we present an efficient optimization framework for multi-label multiple kernel learning that combines
worst-case analysis with stochastic approximation. Compared to the other algorithms for ML-MKL, the key advantage
of the proposed algorithm is that its computational cost is sublinear in the number of classes, making it suitable for
handling a large number of classes. We verify the effectiveness of the proposed algorithm by experiments in object
recognition on several benchmark data sets. There are two directions that we plan to explore in the future. First, we
aim to further improve the efficiency of ML-MKL by reducing its dependence on the number of training examples and
speeding up the convergence rate. Second, we plan to improvethe effectiveness and efficiency of multi-label learning
by exploring the correlation and structure among the classes.
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