
Sparse Kernel Clustering of Massive High-Dimensional
Data sets with Large Number of Clusters

Radha Chitta, Anil K. Jain, Rong Jin
Dept. of Computer Science and Engineering

Michigan State University
East Lansing, MI, 48824, USA

chittara@msu.edu, jain@cse.msu.edu, rongjin@cse.msu.edu

ABSTRACT

In clustering applications involving documents and images,
in addition to the large number of data points (N) and
their high dimensionality (d), the number of clusters (C)
into which the data need to be partitioned is also large.
Kernel-based clustering algorithms, which have been shown
to perform better than linear clustering algorithms, have
high running time complexity in terms of N , d and C. We
propose an efficient sparse kernel k-means clustering algo-
rithm, which incrementally samples the most informative
points from the data set using importance sampling, and
constructs a sparse kernel matrix using these sampled points.
Each row in this matrix corresponds to a data point’s simi-
larity with its p-nearest neighbors among the sampled points
(p ≪ N). This sparse kernel matrix is used to perform clus-
tering and obtain the cluster labels. This combination of
sampling and sparsity reduces both the running time and
memory complexity of kernel clustering. In order to further
enhance its efficiency, the proposed algorithm projects the
data on to the top C eigenvectors of the sparse kernel matrix
and clusters these eigenvectors using a modified k -means al-
gorithm. The running time of the proposed sparse kernel
k -means algorithm is linear in N and d, and logarithmic in
C. We show analytically that only a small number of points
need to be sampled from the data set, and the resulting
approximation error is well-bounded. We demonstrate, us-
ing several large high-dimensional text and image data sets,
that the proposed algorithm is significantly faster than clas-
sical kernel-based clustering algorithms, while maintaining
clustering quality.

Categories and Subject Descriptors

I.5.3 [Pattern Recognition]: Clustering—Algorithms

General Terms

Algorithms

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

PIKM’15, October 23, 2015, Melbourne, Australia.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3782-3/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2809890.2809896.

Keywords

Big data; Kernel clustering; Importance sampling; Sparsity

1. INTRODUCTION
An increasing amount of digital data is being generated

in the form of text, images, audio and video through so-
cial networks, blogs, online transactions, smartphone sen-
sors, etc [1]. Analysis of this massive amount of data can
lead to interesting findings about users and their behavior
patterns, which would be useful in making important busi-
ness decisions. Clustering is one of the principal tools to
analyze and organize data, with minimal supervision from
domain experts. Many algorithms have been published in
the literature to efficiently cluster large high-dimensional
data sets [2–4]. Most of these algorithms are “linear” in
nature, i.e. they assume that the data is linearly separable
in the input space, and use measures such as the Euclidean
distance to define the inter-point similarity. Kernel-based
clustering algorithms such as kernel k -means [5], spectral
clustering [6], support vector clustering [7], and maximum
margin clustering [8], on the other hand, project the data
into a high (possibly infinite) dimensional space, where the
data is likely to be separable. By using non-linear similarity
measures to define the inter-point similarity, they achieve
higher clustering quality than linear clustering algorithms
on real-world data sets. However, the running time com-
plexity of the kernel-based clustering algorithms is at least
O(N2d + N2C), where N is the number of points in the
data set, d represents its dimensionality and C represents
the number of clusters (See Table 1).

Document and image data sets, containing millions of un-
labeled high-dimensional points, usually belong to a large
number of clusters. Finding clusters in such data sets is com-
putationally expensive using kernel-based clustering tech-
niques. Our aim is to speed up kernel-based clustering for
data sets with large N , d and C. We focus on the kernel
k -means algorithm due to its comparable performance with
other kernel-based clustering algorithms [9, 10] and its sim-
plicity. We present an online kernel clustering algorithm,
called the sparse kernel k-means algorithm, which can effi-
ciently cluster data sets with millions of points and hundreds
of features into thousands of clusters, with significantly lower
processing and memory requirements, and high clustering
accuracy.

Approximate kernel clustering algorithms such as [2, 3]
reduce the running time of kernel clustering by uniformly
sampling an m-sized subset of the data and constructing a
low-rank approximate kernel matrix using the sampled data.

These approaches reduce the running time complexity of ker-
nel clustering to O(Nmd+NmC). The number of samples
m required to obtain a good approximation is dependent
on the rank of the kernel matrix, which in turn depends
on the number of clusters [11]. Clustering data sets with
large number of clusters using these algorithms still requires
sampling O(N) number of points to sufficiently represent all
the clusters. This renders the approximate kernel clustering
algorithms infeasible for large N .
The proposed sparse kernel k -means algorithm reduces the

running time and memory complexity of kernel clustering us-
ing two key ideas: (i) kernel approximation using incremen-
tal importance sampling, and (ii) kernel sparsity. Impor-
tance sampling involves selecting data points based on their
novelty, measured in terms of statistical leverage scores [12].
However, finding the statistical leverage scores for the entire
data involves computing the eigenvectors of the full N ×N
kernel matrix, which is computationally prohibitive for large
N [13]. We design an efficient online method to sample the
data based on their importance, thereby reducing the time
required for sampling.
We also reduce the complexity of kernel computation and

clustering by using sparsification. We compute the p-nearest
neighbor graph (where p is a user-defined parameter) for the
sampled points and use this sparse kernel matrix to obtain
the cluster centers. Clustering is performed efficiently by
first projecting the sampled data into a subspace spanned by
the top eigenvectors of the sparse kernel matrix, and then
clustering the projected points using a modified k -means
algorithm, which uses randomized kd -trees (also denoted as
k-d trees) [14] to find the nearest cluster center for each
data point.
The runtime complexity of the proposed algorithm is lin-

ear in N and d, and logarithmic in C. We show that only
a small subset (m = Ω(C logC)) of the data needs to be
sampled, thereby reducing the memory requirements. We
demonstrate empirically using several benchmark data sets
that the proposed clustering algorithm is scalable to data
sets containing millions of high-dimensional data points and
thousands of clusters.
The rest of the article is organized as follows. In Section 2,

we describe the kernel k -means algorithm, and some of the
related work on enhancing the scalability of kernel-based
clustering. We then discuss the two primary components of
the proposed sparse kernel k -means algorithm: importance
sampling and kernel sparsity. In Section 3, we outline our
algorithm and analyze its complexity. Finally, in Sections 4
and 5, we present the results of our empirical analysis, and
conclude the study with future work.

2. BACKGROUND
We first outline the kernel k -means algorithm, which forms

the basis of the proposed sparse kernel k -means algorithm.
We then describe importance sampling and kernel sparsity,
the two tools employed by the proposed algorithm to reduce
the running time complexity of kernel clustering.
Kernel k-means. The key principle behind kernel k -means
is to project the data to a high-dimensional space using a
non-linear function φ(·) and execute k -means on the pro-
jected data. Given an input data set D = {x1,x2, . . . ,xN},
xi ∈ ℜd, to be clustered into C clusters, a user-defined
non-linear symmetric positive semi-definite (SPSD) similar-
ity function κ(·, ·), where κ(xi,xj) = 〈φ(xi), φ(xj)〉 is used

Table 1: Complexity of popular partitional clustering algorithms.
N and d represent the size and dimensionality of the data, respec-
tively, and C represents the number of clusters. Parameter m > C
represents the size of the sampled subset for the sampling-based ap-
proximate clustering algorithms. nsv ≥ C represents the number of
support vectors. DBSCAN is dependent on user-defined intra-cluster
and inter-cluster distance thresholds, so its complexity is not directly
dependent on C.
Clustering algorithms Complexity
k-means [15] O(NCd)
DBSCAN [16] O(N log (N) d)

Kernel k-means [5] O(N2d + N2C)

Spectral clustering [6] O(N2d + N3 + NC2)

Support vector clustering [7] O(N2dnsv)
Approximate spectral clustering [3] O(Nmd + NmC)
Approximate kernel k-means [2] O(Nmd + NmC)

to define the similarity between data points. The C clusters
are obtained by minimizing the sum-of-squared-errors in the
high-dimensional kernel space:

min
U∈{0,1}C×N

max
{ck(·)∈Hκ}C

k=1

C∑

k=1

N∑

i=1

Uki ||ck(·)− κ(xi, ·)||2Hκ
, (1)

which can be relaxed to the following trace maximization
problem [10]:

max
U∈{0,1}C×N

tr(ŨKŨ⊤). (2)

In equations (1) and (2), Hκ represents the Reproducing
Kernel Hilbert Space (RKHS) induced by κ(·, ·), ||·||Hκ

is
the functional norm for Hκ, K represents the N × N pair-
wise similarity matrix, defined by Kij = κ(xi,xj), ck(·) rep-
resents the kth cluster center in the RKHS, U represents
the C × N cluster membership matrix where Ukt = 1 if

xt belongs to the kth cluster and 0 otherwise, and Ũ =

diag (U1)−1/2 U .
The complexity of the kernel k -means algorithm isO(N2d+

N2C), which makes it infeasible for data sets with millions of
points. Other kernel-based clustering algorithms also have
similar running time complexity.

A large body of literature has focused on reducing the run-
ning time and memory requirements of kernel-based cluster-
ing. Dimensionality reduction techniques such as low-rank
embedding and random projection have been employed to
cluster high-dimensional data sets [17]. In [18], the data
was explicitly projected to the space spanned by a random
subset of the data, using a special non-linear transforma-
tion and clustered in parallel over the Map-Reduce frame-
work [19]. Approximate kernel-based clustering algorithms,
such as Nystrom spectral clustering [3] and approximate ker-
nel k -means [2], uniformly samplem points from the data set
(m ≪ N), construct a low-rank matrix using the sampled
points, and obtain the cluster labels using this approximate
kernel matrix. Both algorithms have running time complex-
ities O(Nmd+NmC), and require the sample size m to be
greater than µC logC [11], where µ represents the coherence
of the top C-dimensional eigenspace ofK. When the number

of clusters is large (say O
(√

N
)

), the number of samples

required is O(N), rendering these algorithms infeasible for
large data sets. Our clustering algorithm reduces the min-
imum sample size by using importance sampling instead of
uniform sampling.

Importance Sampling aims to select a subset of the
data that is most informative. Let the kernel matrix K be
decomposed asK ≃ VCΣCV

⊤
C , where ΣC = diag(λ1, . . . , λC)

contains the highest C eigenvalues ofK and VC = (v1, . . . ,vC)
contains the corresponding eigenvectors. A data point xi is

(a) (b) (c) (d)

Figure 1: Illustration of importance sampling and kernel sparsity on a two-dimensional synthetic data set containing 1, 000 points along 10
concentric circles (100 data points from each cluster). Figures (a)-(c) show all the data points represented by “o” and the sampled points
represented by “*”. Figure (a) shows 50 points sampled using importance sampling, and Figures (b) and (c) show 50 and 100 points selected using
uniform random sampling, respectively. All the 10 clusters are represented by just 50 points sampled using importance sampling, whereas the 50
points sampled uniformly are not sufficiently representative (Cluster 4 in red has no representatives). 100 points need to be uniformly sampled
to represent all the clusters. The RBF kernel matrix corresponding to this data is shown in (d). Neighboring points have the same cluster label
when the kernel is defined correctly for the data set.

sampled with probability pi, defined as

pi =
1

C

∣∣∣
∣∣∣V (i)

C

∣∣∣
∣∣∣
2

2
, (3)

where V
(i)
C is the ith row of VC . The term

∣∣∣
∣∣∣V (i)

C

∣∣∣
∣∣∣
2

2
, called

the statistical leverage score for data point xi, is an indicator
of the importance of the point. A high score indicates that
the corresponding data point has a high influence in the
approximation of the kernel matrix.
Statistical leverage scores have been used successfully to

obtain low rank matrix approximations of large matrices,
for large scale data analysis operations [12, 20]. By select-
ing a subset of the rows with the largest statistical leverage
values, we can represent the distribution of the entire data
with just this subset. In [11][Lemma 2], it was shown that a
good low rank approximation of the true kernel matrix can
be obtained by sampling m = Ω(C logC) data points. By
adopting importance sampling in our algorithm, we obtain
a good approximation of the true kernel by sampling just a
fraction of the data set. Figures 1(a)-(c) illustrate the ad-
vantage of importance sampling over uniform sampling on
a two-dimensional data set containing 1, 000 points from 10
clusters (100 data points from each cluster). Each true clus-
ter is a concentric circle with varying radius, as shown in
Figure 1(a). Figure 1(a) also shows 50 points sampled using
importance sampling. We observe that all the 10 clusters
are adequately represented by the 50 sampled points. Fig-
ure 1(b) shows 50 points uniformly sampled from the data.
These points do not represent all the clusters, as the proba-
bility of uniformly sampling data points from all the clusters
is low. We require at least 100 uniformly sampled points to
represent all 10 clusters, as shown in Figure 1(c).
Kernel Sparsity. Our algorithm uses the p-nearest neigh-

bors (p > C) of each point to construct a sparse kernel ma-
trix. The intuition behind this is the fact that, each data
point is surrounded by points belonging to the same cluster
in the high dimensional feature space, provided the kernel
function is appropriately selected. Figure 1 illustrates this
concept on the two-dimensional concentric circles data set.
The RBF kernel matrix corresponding to this data is shown
in Figure 1(d). Nearby data points in terms of the kernel
similarity tend to have the same cluster label. This idea has
been previously applied in several local learning approaches.
The local learning based clustering algorithm [21] and the lo-
cal spectral clustering algorithm [6] use the nearest neighbor
graphs to obtain the cluster labels for the data. However,
these methods require the computation of the full N × N
similarity matrices, rendering them non-scalable.
Finding the nearest neighbors of a data point from amongst

r points would require the computation of O (r) similari-
ties. The randomized kd -trees [14] technique for approx-

imate nearest neighbor computation involves constructing
multiple kd -trees and searching them in parallel. While a
classical kd -tree is built by splitting the data along the di-
mensions with the highest variance [22], each randomized
kd -tree splits the data along a dimension chosen randomly
from the top Nd dimensions with the highest variance. A
priority queue with information about the distance of each
branch to the decision boundary is used to index into the
multiple trees. It takes O(r log r) time to build the trees, and
O(log r) time for each query. Therefore, the time taken for
nearest neighbor computation is significantly reduced, espe-
cially when a large number of queries need to be performed
on the same data set. We employ randomized kd -trees to
(i) find the nearest neighbors and build the sparse kernel
matrix, and (ii) to find the closest center for each data point
during clustering.

The proposed algorithm offers the following advantages
over the existing techniques to reduce the running time of
kernel-based clustering [2, 3, 21]:

(i) It employs importance sampling, so a significantly smaller
number of samples are required to approximate the
kernel matrix, when compared to the approximation
methods in [2, 3], which employ uniform random sam-
pling.

(ii) The number of kernel similarity computations performed
by the proposed algorithm is O(Np), where the num-
ber of neighbors p ≪ m ≪ N . Therefore, its running
time and memory is lesser than that of the existing
approximate kernel clustering algorithms [2, 3, 6, 21].

(iii) The clustering quality is better when compared to the
existing approximate kernel clustering methods, even
with a relatively small number of sampled points, be-
cause the most informative samples are used to perform
clustering.

(iv) Our algorithm is online in nature, i.e. the data is clus-
tered in batches of a user-defined size B, so it can clus-
ter very large data sets (including data streams).

3. SPARSE KERNEL K-MEANS

The proposed sparse kernel k -means clustering algorithm
is described in Algorithm 1. The algorithm starts with the
first m data points stored in a buffer S of a fixed maximum
size M (C < m < M). Let N (xi) represent the p-nearest
neighbors of data point xi in the RKHS1. We construct the

1The nearest neighbors are found efficiently using random-
ized kd -trees. We use the kernel function κ(·, ·) to define the
inter-point distance function.

Algorithm 1 Approximate Sparse Kernel k -means

1: Input:
• D = {x1,x2, . . .xN}: the data set to be clustered

• κ(·, ·) : ℜd × ℜd 7→ ℜ: kernel function
• C: the number of clusters
• m: minimum number of points to be sampled (m > C)
• p: Number of neighbors for calculating the sparse kernel

matrix (p < m)
• M : maximum number of points allowed in the sample set

(m < M)
• B: Size of each input data batch

2: Output: Cluster labels for the data points
3: Initialize S = {x1 . . .xm}.
4: Set the number of batches NB = (N − m) /B and divide

the remaining points in the data set (D − S) into batches

{D1, . . . ,DNB }, where Dt = {xt
1, . . . ,x

t
B}.

5: Compute the sparse kernel matrix K0 according to (4).

6: Decompose K0 as K0 = VCΣCV ⊤

C .

7: Cluster the data points in S by executing approximate k-means

(Algorithm 2) on VCΣC
1/2 to obtain their cluster labels.

8: for t = 1, 2, . . . , NB do
9: for i = 1, 2, . . . , B do
10: Calculate the probability pt

i using (3).

11: Set S = S ∪
{

xt
i

}

with probability pt
i.

12: If xt
i was added to S in Step 11, update the eigenval-

ues ΣC and eigenvectors VC using (11), and recluster the
points in S by executing the approximate k-means algorithm

(Algorithm 2) on VCΣC
1/2, otherwise assign xt

i to cluster

k∗, where k∗ = arg min
k∈[C]

||ck(·) − gt(·)||
2
Hκ

, ck(·) is given

by (8), and gt(·) is the projection of κ(xi
t, ·) into the sub-

space spanned by the eigenvectors VC .

13: If card(S) > M , find index q = argmin
l

∣

∣

∣

∣

∣

∣
V

(l)
C

∣

∣

∣

∣

∣

∣

2

2
and remove

data point xq from S.

14: end for
15: end for

p-nearest neighbor graph K0 for the m data points in S,
defined by

K0 = [Kij]m×m , where (4)

Kij =

{
κ(xi,xj) if xi ∈ N (xj) and xj ∈ N (xi),
0 otherwise.

Assuming that the kernel function is appropriately defined,
nearby points in the RKHS belong to the same cluster2. The
remaining data is clustered in batches {D1,D2, . . .} of size
B, where Dt = {xt

1, . . . ,x
t
B}. Let Kt = VCΣCVC

⊤, where
ΣC = diag(λ1, . . . , λC) contains the top C eigenvalues of
Kt (the kernel matrix at time t), and VC = (v1, . . . ,vC)
contains the corresponding eigenvectors. The matrices VC

and ΣC are updated using each point xt
i from Dt, and the

kernel matrix is updated as

Kt =





[
Kt−1 ϕ⊤

ϕ κ(xt
i,x

t
i)

]
with probability pti,

Kt−1 with probability 1− pti,
(5)

where ϕ is a sparse vector defined by ϕ =
[
κ
(
xt
i,xr

)]⊤
, xr ∈

N
(
xt
i

)
∩ S, and pti is the importance sampling probability

defined in (3). Data point xt
i is added to S with probability

pti. The cluster labels for the points in S can be obtained by
solving the kernel k -means problem

max
U∈{0,1}C×s

tr(ŨKtŨ⊤), (6)

2Selection of the kernel function is a perennial problem
in machine learning. Several articles in the literature de-
scribe techniques to learn the kernel function from the data,
eg. [23].

where s = card(S). The cluster labels for the unsampled
points can be obtained by assigning them to the closest cen-
ter. The running time complexity of this step is O(s2). We
further reduce this complexity by constraining the cluster
centers to the subspace spanning the top eigenvectors of the
kernel matrix Kt, along the lines of spectral clustering3. We
pose the clustering problem as the following optimization
problem:

min
U∈{0,1}C×s

max
{ck(·)∈Ha}

C
k=1

C∑

k=1

s∑

i=1

Uki

s
||ck(·)− κ(xi, ·)||2Hκ

, (7)

where Ha = span (v1, . . . ,vC). The cluster centers can be
expressed as linear combinations of the eigenvectors of the
kernel matrix:

ck(·) =
s∑

i=1

C∑

j=1

Uki

Nk

√
λjvij =

uk

Nk
VCΣ

1/2
C , k ∈ [C], (8)

where Nk is the number of points in the kth cluster and
uk = (Uk1, Uk2, . . . , Uks)

⊤.
By substituting (8) in (7), we obtain the following trace

maximization problem:

max
U∈{0,1}C×s

tr(ŨVCΣCV
⊤
C Ũ⊤). (9)

The above problem can be solved by executing k -means on

the matrix VCΣ
1/2
C . The complexity of this step is O(sC2),

which can again be computationally expensive for large C.
We alleviate this issue by designing an approximate variant
of the k -means algorithm (Algorithm 2), similar to the filter-
ing algorithm in [24]. The most computationally expensive
step in the k -means algorithm is computing the closest cen-
ter for each data point, which requires O(sC) distance com-
putations. We reduce the number of distance computations
by using randomized kd -trees to find the closest centers.

The proposed algorithm is dependent on three parame-
ters: initial sample size m, maximum buffer size M , and the
number of neighbors p used to build the sparse kernel ma-
trix. The parameters m and M should be set such that the
initial and final sample sets contain representatives from all
the clusters. The parameter p should be set large enough
to ensure that the kernel matrix remains SPSD with rank
greater than C. Heuristics to set these parameters are dis-
cussed further in Section 4.

Algorithm 2 Approximate k -means

1: Input:
• D = {x1,x2, . . .xN}: the data points to be clustered
• C: the number of clusters

2: Output: Cluster labels for the data points
3: Randomly initialize the cluster labels {l1, l2, . . . lN}, li ∈ [C].
4: Compute the cluster centers ck =

∑

li=k

xi, k ∈ [C].

5: repeat
6: Build randomized kd-tree index I for the C centers [14].
7: for i = 1, 2, . . . , N do
8: Find the approximate nearest center ck∗ of data point xi

using the index I.
9: Set li = k∗.
10: end for
11: Recompute the centers {c1, c2, . . . , cC}.
12: until convergence

3Note that the eigenvalues and eigenvectors were computed
while computing the sampling probabilities (3), so the eigen-
vectors do not need to be re-computed for clustering.

3.1 Approximation Error
The proposed sparse kernel k -means algorithm essentially

approximates the eigenvectors of the true N ×N kernel ma-
trix with the singular vectors of a sparseN×T matrix, where
T is the total number of points sampled from the data set
using importance sampling. In the following two lemmas,
we first bound the kernel approximation error due to impor-
tance sampling and sparsification, and then bound the error
incurred due to the approximation (7) for clustering. The
proofs of the lemmas are omitted due to space constraints4.

Lemma 1. Let K be the N×N kernel matrix and let K̄ be
the N×T kernel matrix between the N points in the data set
and the T sampled points. Let ZC = (z1, . . . , zC) represent
the top C eigenvectors of K, and δ ∈ (0, 1) be the smallest
probability such that (λC − λC+1) > 3∆, where

∆ <
2λ1

T
ln

2

δ
+ γ|K|F

√
2 ln(2/δ)

TN
and γ2 = max

1≤i≤T

N∑

j=1

κ2(xi,xj).

Assuming γ = O(
√
T) and κ(·, ·) ≤ 1,

max
1≤i≤C

|vi − zi|2 ≤ 9∆

2(λC − λC+1)
, (10)

with probability 1− δ.
The proof of this lemma involves finding the upper bound of
the difference between the canonical angles of the subspaces
spanned by the eigenvectors ZC and VC . This lemma shows
that when the difference (λC−λC+1) is sufficiently large, the
error between the eigenvectors of the true kernel matrix and
the singular vectors of the sparse kernel matrix constructed
by our algorithm is small.
In the following lemma, we show that the error incurred

due to the approximation (7) is well-bounded, provided that
the tail of the eigenspectrum is fast decaying, which is true
for most real data sets:

Lemma 2. Let E and Ea represent the optimal clustering
errors in (6) and (9), respectively. We have

|E − Ea| ≤
s∑

i=C+1

λi.

3.2 Complexity
The most computationally intensive operations in the pro-

posed algorithm are: (i) computing the m×m kernel matrix
K0 (Step 5) and finding its eigenvectors to obtain the lever-
age scores (Step 6), and (ii) updating the eigenvectors in
each iteration and clustering them using the approximate
k -means algorithm (Step 12). In order to obtain the eigen-
values and eigenvectors of an s× s kernel matrix Kt (where
s is the number of data points in the buffer S), we need to
perform eigendecomposition of Kt. Naive implementations
of eigendecomposition take O(s3) time. We can reduce this
time by making two modifications to the algorithm:

(i) Use efficient algorithms such as Lanczos, and subspace
iteration methods to decompose the m×m kernel ma-
trix K0 [26]. This reduces the running time complexity
of this step to O(mp+m). In our implementation, we
used the svds function in MATLAB to obtain the top
C eigenvalues and eigenvectors of K0.

(ii) Update the eigenvectors VC incrementally in each it-
eration of the algorithm using fast update mechanisms.
For instance, using the rank-1 update mechanism in [27],

4Proofs are outlined in the technical report [25].

Table 2: Data sets used to evaluate the proposed algorithm. The
number of points (N), the data dimensionality (d) and the number of
clusters (C) are specified.

Data set N d C

CIFAR-100 [28] 60,000 384 100
Imagenet [29] 1,262,102 900 164

Youtube 10,143,254 6,647 10,000
Tiny [30] 79,302,017 384 10,000

we update the eigenvectors in O(sp+ p3) time. Given
Kt = VCΣCV

⊤
C , and vector ϕ ∈ ℜs, this method finds

the eigendecomposition of
(
Kt + ϕϕ⊤

)
as

Kt + ϕϕ⊤ =

[
V

w

||w||

]
Σ′

[
V

w

||w||

]⊤

(11)

where w =
(
I − V V ⊤

)
ϕ is the component ofKt that is

orthogonal to V , and Σ′ contains the dominant eigen-
values of the sparse matrix

[
Σ V ⊤ϕ

ϕ⊤V ||w||

]
.

This method also eliminates the need to store the kernel ma-
trix Kt in memory. After the matrix K0 and its eigenvectors
are obtained, only the vector ϕ in (5) is required to update
VC and ΣC .

The approximate k -means algorithm first builds multiple
randomized kd -trees containing the C cluster centers, and
an index into these trees, which takes O(C logC) time. It
then finds the approximate nearest neighbors for each data
point in S in O(s logC) time, with an ǫ approximation er-
ror. Therefore, the total time for clustering s points using
the approximate k -means algorithm is O(C logCl+s logCl),
where l is the number of iterations required for convergence.
Instead of clustering the buffered data each time a point is
added, we employ a lazy reclustering approach, by which we
perform the clustering after every L data point additions.
Each unsampled data point can be assigned a cluster label
by finding the closest center in O(logC) time.

In summary, the overall running time complexity of the
proposed sparse kernel k -means algorithm is O(Npd+mp+
m + TC logCl + TM logCl + N logC), where T is the to-
tal number of points sampled from the data set. Therefore,
the running time complexity can be simplified as O(Npd +
N logC), assuming max(mp, TCl, TMl) ≪ N . This is sig-
nificantly faster than the kernel k -means algorithm and the
approximate kernel clustering algorithms, which haveO(N2d+
N2C) and O(Nmd+NmC) running time complexities, re-
spectively. The amount of memory required is O(mp +
Md + MC), for storing the initial kernel matrix K0, the
data points in the buffer and the eigenvectors of the kernel
matrix.

4. EXPERIMENTAL RESULTS

4.1 Data sets
We demonstrate the effectiveness of the proposed sparse

kernel k -means algorithm on the following four data sets.
These data sets were chosen to demonstrated the efficiency
and effectiveness of our algorithm for large N , d and C (See
Table 2):

• Tiny and CIFAR-100 [28, 30]: The Tiny Image
data set contains 79, 302, 017 unique 32× 32 color im-
ages, downloaded using 75, 062 non-abstract English
nouns from the Wordnet database as search queries.
The CIFAR-100 image data set is a manually labeled
subset of the Tiny data set containing 60, 000 images

from 100 classes. The images in the Tiny data set
are represented by 384-dimensional GIST features; the
CIFAR-100 images are represented using SIFT descrip-
tors.

• Imagenet [29]: The Imagenet data set contains about
14 million images organized according to a conceptual
“synset” hierarchy. We downloaded 1, 262, 102 images
from 1, 000 synsets, and merged the leaf nodes in the
synset tree based on their similarity to form a 164-
class data set. The images are represented using SIFT
descriptors quantized into 900 bag-of-visual-words.

• Youtube: We used the Youtube Search API5 to down-
load the video title, description and the video thumb-
nail (which usually contains the key frame in the video)
of 10, 143, 254 videos using 26, 000 nouns from Word-
net as search queries. For each video, we eliminated
stop words from the title and description to obtain a
vocabulary containing 6, 135 terms, and extracted the
corresponding tf-idf (term frequency-inverse document
frequency) features. Each record was represented by a
6, 647-dimensional feature vector obtained by concate-
nating the tf-idf features with the GIST features of the
thumbnail image.

4.2 Baselines and Parameters
We compared the performance of the proposed algorithm

with the kernel k -means [5] algorithm on the CIFAR-100
data set. It is infeasible to execute the kernel k -means al-
gorithm on the remaining three data sets. We also eval-
uated its performance against the k -means algorithm. Fi-
nally, we compared our algorithm with the approximate ker-
nel k -means algorithm [2], where the data is sampled with
uniform probability, to study the effect of importance sam-
pling.
We used the universal RBF kernel for the proposed al-

gorithm and the kernel-based baseline algorithms (kernel k -
means and approximate kernel k -means) on the Tiny and
Imagenet data sets, as it can be computed efficiently. For
the CIFAR-100 data set, we employed the spatial pyramid
kernel to show that our algorithm is applicable to a variety
of kernels. For the Youtube data set, which contains both
text and image features, we used a combination of the cosine
similarity and the RBF kernel, defined as

κ(xa,xb) =
1

2

[
exp

(
−λ‖ga − gb‖2

)
+

f⊤
a fb

‖fa‖‖fb‖

]
,

where fa and ga denote the tf-idf and GIST features for
data point xa, respectively. We tuned the kernel width for
the RBF kernel using grid search in the range [0, 1] to ob-
tain the best performance for the proposed and the baseline
algorithms.
We varied the initial sample set size from m = 5, 000 to

m = 20, 000, and the number of neighbors from p = 1, 000
to m in multiples of 5, 000. The maximum sample set size
was set to M = 50, 000. The number of clusters C was set
equal to the true number of classes in the data set for the
CIFAR-100 and Imagenet data sets. The true number of
classes is unknown for the Youtube and Tiny data sets, so
we set the number of clusters equal to 10, 000. The batch
size B was set equal to the initial sample size m.
We implemented all the algorithms in MATLAB and exe-

cuted them 10 times each on a 2.8 GHz processor. Different
permutations of the data set were input to the clustering al-
gorithms in each run. We present the results (mean and vari-
ance) over the 10 runs. The memory used was constrained

5https://developers.google.com/youtube/v3/

Table 3: Running time of the proposed and baseline algorithms in
seconds. *It is not feasible to execute kernel k-means on the Imagenet,
Youtube and Tiny data sets due to their large size. The running time
of kernel k-means on these data sets is obtained by first finding the
cluster centers using a randomly chosen subset of 50, 000 data points,
and then assigning the remaining points to the closest cluster center.

Data set Sparse Kernel Approx. k-means Kernel
k-means kernel k-means

(proposed) k-means
CIFAR-100 49,887 11,394 1,507 117,513

(±93) (±600) (±332) (±211)
Imagenet 74,794 16,023 240,722 182,311*

(±870) (±3, 577) (±5, 351) (±14, 916)
Youtube 217,533 57,096 145,039 679,061*

(±1, 264) (±2, 196) (±1, 436) (±2, 284)
Tiny 343,560 371,004 359,291 704,656*

(±2, 528) (±1, 588) (±7, 045) (±8, 482)

1 2 3 4
0

5

10

15

N
M

I

(a) CIFAR-100

0

5

10

15

N
M

I

(b) Imagenet

Figure 2: NMI (%) of algorithms on the CIFAR-100 and the Imagenet
data sets. The NMI of kernel k-means on the Imagenet data set was
obtained by executing the algorithm on a randomly chosen subset
of 50, 000 data points to find the cluster centers, and assigning the
remaining points to the closest cluster center.

to 60GB. We used the randomized kd -trees implementation
in the FLANN library [14] to find the approximate nearest
neighbors in the proposed algorithm. The distance function
used by the library was defined as the inverse of the kernel
similarity function. The kd -tree parameters were set as: the
number of dimensions Nd to 5, the number of trees to 8 and
the approximation error to ǫ = 1e−16.

4.3 Experimental Results
Clustering efficiency and accuracy: Table 3 com-

pares the running time (mean and variance) of our algorithm
with the approximate kernel k -means, kernel k -means and
k -means algorithms, when the parameters m = 20, 000 and
p = 1, 000. On the CIFAR-100 data set, the proposed algo-
rithm took longer than the k -means algorithm, as expected,
because of the additional time required for kernel computa-
tion and eigensystem calculation. It also took longer than
the approximate kernel k -means algorithm, as it performs
importance sampling by calculating and updating the eigen-
vectors of the sparse kernel matrix. On the other hand, the
approximate kernel k -means algorithm selects the subset of
the data using uniform random sampling. The proposed al-
gorithm, the approximate kernel k -means, and the k -means
algorithms were significantly faster than the kernel k -means
algorithm. Our algorithm spent more time in updating the
eigenvectors and finding the leverage scores, than clustering
the eigenvectors to obtain the cluster labels. Similar perfor-
mance was observed on the Imagenet, Youtube and Tiny
data sets. The proposed algorithm was also faster than
k -means on the Imagenet data set, because k -means took
longer to converge. It is infeasible to compute the full kernel
matrix for the Imagenet, Youtube and Tiny data sets, so we
were unable to execute kernel k -means on them. For these
data sets, we first executed kernel k -means on a 50, 000-sized
randomly selected subset of the data, and then assigned the
remaining points to the closest cluster centers. The pro-
posed algorithm was also faster than this implementation of
kernel k -means. Our algorithm was also more accurate than

https://developers.google.com/youtube/v3/

Table 5: Effect of the size of the neighborhood p on the running time
and NMI of the sparse kernel k-means algorithm.

p Running time NMI
CIFAR-100 Imagenet CIFAR-100 Imagenet

1,000 49,887 74,794 12.23 16.15
(±93) (±870) (±2.3) (±0.004)

5,000 52,073 82,880 12.09 17.58
(±483) (±21, 360) (±0.02) (±0.10)

10,000 54,205 192,725 13.86 18.01
(±874) (±3, 874) (±0.07) (±0.07)

15,000 55,062 247,911 14.00 18.23
(±837) (±7, 789) (±0.01) (±0.004)

this kernel k -means implementation on the Imagenet data
set.
We analyze the accuracy of the proposed sparse kernel

k -means using the CIFAR-100 and Imagenet data sets. As
the true class labels for the Youtube and Tiny data sets
are not available, we were unable to quantify the clustering
quality on these data sets. Figure 2 shows the Normalized
Mutual Information (NMI) values with respect to the true
class labels, for each of the algorithms on the CIFAR-100
and Imagenet data sets. In Figure 2(a), it is observed that
the NMI achieved by our algorithm is close to that of the
kernel k -means algorithm. It outperformed both k -means
and approximate kernel k -means, due to the fact that it
samples the most informative points from the data sets.
Parameter Sensitivity: Our algorithm relies on three

parameters: the initial and maximum sample sizes m and
M , and the size of the neighborhood p. We evaluated the
effect of each of these parameters using the CIFAR-100 and
Imagenet data sets.

• Initial sample size m: The initial sample used to
construct the kernel K0 and obtain the initial cluster
labels plays a crucial role in the performance of our
algorithm, as shown in Table 4. As expected, the run-
ning time of both the proposed and the approximate
kernel k -means algorithms increased as the initial sam-
ple size increased from m = 5, 000 to m = 20, 000. As
m increased, the size of the initial kernel K0, and the
time to compute and decompose it into its eigenvalues
and eigenvectors increased proportionately. The initial
sample also determines the number of points sampled
from the data as each input batch is processed. More
data points were sampled and added to the buffer S,
if the initial sample did not contain sufficient number
of representative points. For instance, on the CIFAR-
100 data set, the number of points added to S de-
creased from 453 to 69 as m increased from 5, 000 to
20, 000. The time to cluster increased as more points
were added to the buffer. The NMI values achieved by
our algorithm increased considerably as the sample size
m increased. Even with just 5, 000 data points in the
initial sample, our algorithm was able to achieve about
9.5% NMI. On the other hand, the approximate ker-
nel k -means algorithm was unable to achieve the same
with even 20, 000 samples. The best performance was
obtained when m > C logC.

• Maximum sample size M : The parameter M con-
trols the buffer size. In our experiments, we set M =
50, 000. We found that this parameter is not as critical
as m, provided that it is set large enough to accom-
modate for a sufficiently representative sample set. If
M is small, more time is spent in removing the points
from the buffer, to accommodate the new points.

• Size of the neighborhood p: Table 5 shows how the
running time and the NMI values on the CIFAR-100
and Imagenet data sets are affected, as the number of
neighbors p used to construct the sparse kernel similar-
ity increased from 1, 000 to 15, 000, while m was fixed

2 4 6

x 10
4

0

2000

4000

6000

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Size of the
data set (N)

(a) CIFAR-100

2 4 6 8 10 12

x 10
5

1

2
x 10

5

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Size of the
data set (N)

(b) Imagenet

Figure 3: Scalability of the proposed algorithm with respect to the
size of data, N .

50 100

5000

5500

6000

Ru
nn

in
g

tim
e

in
 s

ec
on

ds

Number of clusters (C)

(a) CIFAR-100

50 100 150

1

1.2

1.4

x 10
5

Ru
nn

in
g

tim
e

in
 s

ec
on

ds

Number of clusters (C)

(b) Imagenet

Figure 4: Scalability of the proposed algorithm with respect to the
number of clusters, C.

at 20, 000. The running time increased significantly
from p = 1, 000 to p = 15, 000 on both the data sets,
as a larger number of similarity computations needed
to be performed as the value of p increased. Although
increasing p slightly increases the NMI values, the in-
crease in the running time does not compensate for the
marginal increase in NMI.

Scalability: To examine the scalability with respect to the
size of the data set N , we varied the number of data points
input to the algorithm from the CIFAR-100 and Imagenet
data sets from 10, 000 to the true size of the data sets (60, 000
and 1, 262, 102 for CIFAR-100 and Imagenet, respectively).
Similarly, to test the scalability with respect to the number
of clusters C, we varied C from 10 to the true number of
classes in the data sets (100 and 164 for the CIFAR-100 and
Imagenet, respectively). The parameters m and p were set
to 5, 000 and 1, 000 respectively. Figures 3 and 4 show that
the proposed algorithm is linearly scalable with respect to
the size of the data set, and nearly logarithmically scalable
with respect to the number of clusters, in accordance with
the complexity analysis in Section 3.2.

5. CONCLUSIONS
We have proposed a clustering algorithm called the sparse

kernel k -means algorithm to efficiently and effectively clus-
ter data sets with large number of points (N), dimensional-
ity (d), and number of clusters (C). By sampling the data
points based on their novelty, defined in terms of the statisti-
cal leverage scores, we only store a very small number of the
most informative points in the data. We need to compute
the kernel similarity of the data points only with respect
to these sampled points. This sampling strategy effectively
reduces the run time complexity and memory requirements.
We further reduce the running time complexity by introduc-
ing sparsity into the kernel, based on the assumption that
nearby points in the kernel space have similar cluster labels.
We demonstrated that the proposed algorithm is scalable
and accurate using several large benchmark data sets con-
taining millions of points, hundreds of features and up to
10, 000 clusters. By utilizing a parallel scheme for updat-
ing the eigensystem of the sparse kernel matrix and finding
the statistical leverage scores, the proposed algorithm can
be easily parallelized.

6. REFERENCES
[1] Big Data in 2020., Dec 2014. IDC and EMC Corp.

Report.

http://www.emc.com/collateral/analyst-reports/idc-digital-universe-2014.pdf

Table 4: Comparison of the running time (in seconds) and NMI (%) of the proposed sparse kernel k-means algorithm and the approximate kernel
k-means algorithm on the CIFAR-100 and the Imagenet data sets. m represents the initial sample set size for the proposed algorithm and the
subset size for the approximate kernel k-means algorithm. Approximate kernel k-means is infeasible for the Imagenet data set when m > 10, 000
due to its large size.

m Running time NMI
CIFAR-100 Imagenet CIFAR-100 Imagenet

Sparse kernel Approx. kernel Sparse kernel Approx. kernel Sparse kernel Approx. kernel Sparse kernel Approx. kernel
k-means k-means k-means k-means k-means k-means k-means k-means

5,000 6,192 1,693 24,029 15,691 9.54 1.86 16.31 13.01
(±424) (±339) (±4, 469) (±3, 786) (±0.01) (±0.001) (±0.07) (±0.001)

10,000 18,256 4,134 36,669 16,023 9.76 1.87 15.96 13.04
(±21) (±549) (±603) (±3, 577) (±0.05) (±0.002) (±0.10) (±0.008)

15,000 34,192 7,856 53,142 - 10.40 1.87 15.62 -
(±2, 652) (±929) (±3, 058) (±0.77) (±0.02) (±0.31)

20,000 49,887 11,394 74,794 - 12.23 1.84 16.15 -
(±93) (±600) (±870) (±2.30) (±0.02) (±0.004)

[2] R. Chitta, R. Jin, T. C. Havens, and A. K. Jain.
Approximate kernel k-means: Solution to large scale
kernel clustering. In Proc. of the International Conf.
on Knowledge Discovery and Data Mining, pages
895–903, 2011.

[3] C. Fowlkes, S. Belongie, F. Chung, and J. Malik.
Spectral grouping using the Nystrom method. IEEE
Trans. on Pattern Analysis and Machine Intelligence,
pages 214–225, 2004.

[4] T. Liu, C. Rosenberg, and H. A. Rowley. Clustering
billions of images with large scale nearest neighbor
search. In Proc. of the IEEE Workshop on
Applications of Computer Vision, pages 28–33, 2007.

[5] M. Girolami. Mercer kernel-based clustering in feature
space. IEEE Trans. on Neural Networks,
13(3):780–784, 2002.

[6] U. Von Luxburg. A tutorial on spectral clustering.
Statistics and Computing, 17(4):395–416, 2007.

[7] A. Ben-Hur, D. Horn, H. T. Siegelmann, and
V. Vapnik. Support vector clustering. Journal of
Machine Learning Research, 2:125–137, 2002.

[8] L. Xu, J. Neufeld, B. Larson, and D. Schuurmans.
Maximum margin clustering. In Proc. of the Conf. on
Neural Information Processing Systems, pages
1537–1544, 2004.

[9] I. S. Dhillon, Y. Guan, and B. Kulis. Kernel k-means:
Spectral clustering and normalized cuts. In Proc. of
the International Conf. on Knowledge Discovery and
Data Mining, pages 551–556, 2004.

[10] H. Zha, X. He, C. Ding, M. Gu, and H. D. Simon.
Spectral relaxation for k-means clustering. In Proc. of
the Conf. on Neural Information Processing Systems,
pages 1057–1064, 2001.

[11] A. Gittens and M. W. Mahoney. Revisiting the
nystrom method for improved large-scale machine
learning. arXiv preprint arXiv:1303.1849, 2013.

[12] S. Chatterjee and A. S. Hadi. Influential observations,
high leverage points, and outliers in linear regression.
Statistical Science, 1(3):379–393, 1986.

[13] P. Drineas, M. Magdon-Ismail, M. W. Mahoney, and
D. P. Woodruff. Fast approximation of matrix
coherence and statistical leverage. Journal of Machine
Learning Research, 13(1):3475–3506, 2012.

[14] M. Muja and D. G. Lowe. Scalable nearest neighbor
algorithms for high dimensional data. IEEE Trans. on
Pattern Analysis and Machine Intelligence,
36(11):2227–2240, 2014.

[15] A. K. Jain. Data clustering: 50 years beyond k-means.
Pattern Recognition Letters, 31(8):651–666, 2010.

[16] M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters in
large spatial databases with noise. In Proc. of the
International Conf. on Knowledge Discovery and Data
Mining, pages 226–231, 1996.

[17] P. A. Traganitis, K. Slavakis, and G. B. Giannakis.
Sketch and validate for big data clustering. arXiv
preprint arXiv:1501.05590, 2015.

[18] A. Elgohary, A. K. Farahat, M. S. Kamel, and
F. Karray. Embed and conquer: Scalable embeddings
for kernel k-means on mapreduce. CoRR
abs/1311.2334, 2013.

[19] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[20] C. Boutsidis, A. Zouzias, M. W. Mahoney, and
P. Drineas. Randomized dimensionality reduction for
k-means clustering. IEEE Trans. on Information
Theory, 61(2):1045, 2015.

[21] M. Wu and B. Schölkopf. A local learning approach for
clustering. In Proc. of the Conf. on Neural Information
Processing Systems, pages 1529–1536, 2006.

[22] A. W. Moore. An introductory tutorial on kd-trees.
Technical report, Department of Computer Science,
Carnegie Mellon University, 1991.

[23] B. Liu, S. Xia, and Y. Zhou. Unsupervised
non-parametric kernel learning algorithm.
Knowledge-Based Systems, 44:1–9, 2013.

[24] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D.
Piatko, R. Silverman, and A. Y. Wu. An efficient
k-means clustering algorithm: Analysis and
implementation. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 24(7):881–892, 2002.

[25] R. Chitta, A. K. Jain, and R. Jin. Sparse kernel
clustering of massive high dimensional data sets with
large number of clusters. Technical Report
MSU-CSE-15-10, Computer Science and Engineering,
Michigan State University, 2015.

[26] M. W. Berry. Large-scale sparse singular value
computations. International Journal of Supercomputer
Applications, 6(1):13–49, 1992.

[27] M. Brand. Fast low-rank modifications of the thin
singular value decomposition. Linear Algebra and its
Applications, 415(1):20–30, 2006.

[28] A. Krizhevsky and G. Hinton. Learning multiple
layers of features from tiny images. Technical report,
Department of Computer Science, University of
Toronto, 2009.

[29] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and
L. Fei-Fei. Imagenet: A large-scale hierarchical image
database. In Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition, pages 248–255, 2009.

[30] A. Torralba, R. Fergus, and W. T. Freeman. 80
million tiny images: A large data set for
nonparametric object and scene recognition. IEEE
Trans. on Pattern Analysis and Machine Intelligence,
30(11):1958 –1970, 2008.

	Introduction
	Background
	Sparse Kernel k-means
	Approximation Error
	Complexity

	Experimental Results
	Data sets
	Baselines and Parameters
	Experimental Results

	Conclusions
	References

