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ABSTRACT
Digital data explosion mandates the development of scal-
able tools to organize the data in a meaningful and eas-
ily accessible form. Clustering is a commonly used tool for
data organization. However, many clustering algorithms de-
signed to handle large data sets assume linear separability
of data and hence do not perform well on real world data
sets. While kernel-based clustering algorithms can capture
the non-linear structure in data, they do not scale well in
terms of speed and memory requirements when the num-
ber of objects to be clustered exceeds tens of thousands.
We propose an approximation scheme for kernel k -means,
termed approximate kernel k-means, that reduces both
the computational complexity and the memory requirements
by employing a randomized approach. We show both analyt-
ically and empirically that the performance of approximate
kernel k -means is similar to that of the kernel k -means algo-
rithm, but with dramatically reduced run-time complexity
and memory requirements.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering;
I.5.3 [Pattern Recognition]: Clustering—Algorithms

General Terms
Performance

Keywords
Large-scale clustering, Kernel clustering, k -means

1. INTRODUCTION
Advances in data collection and storage technologies over

the past few years have resulted in data explosion in every
scientific domain. A study by IDC and EMC Corp [1] pre-
dicted the creation of 35 trillion gigabytes of digital data by
the year 2020. Much of this data (text, images and videos)
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is generated through online services like e-mail, social net-
works and blogs. Large-scale clustering is one of the princi-
pal tools to efficiently organize the massive amount of data
and to enable convenient access by users. Clustering has
found use in various applications such as web search, image
retrieval, gene expression analysis, recommendation systems
and market research based on transaction data [8, 24].

Most large-scale clustering techniques reported in the lit-
erature focus on grouping based on the Euclidean distance
with the inherent assumption that all the data points lie
in a Euclidean geometry. Kernel-based clustering methods
overcome this limitation by embedding the data points into
a high-dimensional non-linear manifold and defining their
similarity using a nonlinear kernel distance function [27].
A number of kernel-based clustering methods such as spec-
tral clustering [34, 41], non-negative matrix factorization
(NMF) [44], kernel Self-Organizing Maps (SOM) [23, 32] and
kernel neural gas [36] have been proposed. In this study, we
focus on kernel k -means [17, 39, 40] due to its simplicity and
efficiency. For instance, unlike spectral clustering, kernel k -
means does not require the computation of the top eigenvec-
tors of the kernel matrix, whose time complexity is cubic in
the number of data points. In addition, several studies [12,
13, 45] have established the equivalence of kernel k -means
and other kernel-based clustering methods, suggesting that
most kernel-based clustering methods yield similar results.

Kernel k -means is a nonlinear extension of the classical
k -means algorithm. It replaces the Euclidean distance func-
tion d2(xa, xb) = ‖xa − xb‖2 employed in the k -means al-
gorithm with a non-linear kernel distance function defined
as

d2
κ(xa, xb) = κ(xa, xa) + κ(xb, xb) − 2κ(xa, xb),

where xa ∈ ℜd and xb ∈ ℜd are two data points and κ(., .) :
ℜd × ℜd → ℜ is the kernel function. While the kernel dis-
tance function enables the clustering algorithm to capture
the nonlinear structure in data, it requires computation and
storage of an n × n kernel matrix in memory, rendering it
non-scalable to large data sets. In this paper, we address
the challenge posed by the large kernel matrix.

Note that the full kernel matrix is required in kernel k -
means because the cluster centers are represented as a linear
combination of all the data points, in accordance with the
representer theorem [38]. In other words, the cluster cen-
ters lie in the subspace spanned by all the data points to
be clustered. We can avoid computing the full kernel ma-
trix by restricting the cluster centers to a smaller subspace.
We randomly select a small number of data points, and ap-



proximate the cluster centers using vectors in the subspace
spanned by this subset. This approximation requires the
computation and storage of only a small portion of the full
kernel matrix, leading to a significant speedup of kernel k -
means. We demonstrate, both theoretically and empirically,
that the approximate kernel k -means yields similar cluster-
ing performance as the kernel k -means using the full kernel
matrix.

The rest of the paper is organized as follows. Section 2
outlines the related work on large scale clustering and the
kernel k -means algorithm. We present the approximate ker-
nel k -means algorithm in Section 3 and its analysis in Sec-
tion 4. Section 5 summarizes the results of our empirical
studies, and Section 6 concludes this study with future work.

2. RELATED WORK
We first review the related work on large scale clustering

and kernel based clustering, and then describe the kernel
k -means algorithm.

2.1 Large scale clustering
A number of methods have been developed to efficiently

cluster large data sets. Incremental clustering [5, 6] and
divide-and-conquer based clustering algorithms [3, 18] were
designed to operate in a single pass over the data points,
thereby reducing the time required for clustering. Sampling
based methods, such as CLARA [26] and CURE [19], reduce
the computation time by finding the cluster centers based
on a small number of randomly selected data points. The
coreset algorithms [21] apply a similar idea except that the
cluster centers are found based on a small set of represen-
tative, instead of randomly selected data points. Clustering
algorithms, such as BIRCH [47], CLARANS [35], improve
the clustering efficiency by summarizing the data set into
data structures like trees and graphs for efficient data ac-
cess.

With the evolution of cloud computing, parallel process-
ing techniques for clustering [7, 9, 10, 15, 25, 33] are gaining
popularity. These techniques speedup the clustering pro-
cess by first dividing the task into a number of independent
sub-tasks that can be performed simultaneously, and then
efficiently merging these solutions into the final solution.

2.2 Kernel based clustering
Most of the existing methods for large scale clustering are

based on the Euclidean distance, and are therefore, unable to
deal with the data sets that are not linearly separable. Ker-
nel based clustering techniques address this limitation by in-
troducing a kernel distance function to capture the nonlinear
structure in data [27]. Various kernel based clustering algo-
rithms have been developed, including kernel k -means [39,
40], spectral clustering [34, 41], NMF [44], kernel SOM [23,
32] and kernel neural gas [36]. A key challenge faced by
all the kernel-based algorithms is scalability as they require
computing the full kernel matrix whose size is quadratic in
the number of data points. Sampling methods, such as the
Nystrom method [20, 43], have been employed to address
this challenge [16, 31]. The key idea is to obtain a low rank
approximation of the kernel matrix by sampling a number
of columns of the kernel matrix and performing clustering
using the approximate kernel matrix. A variety of sampling
techniques are proposed in [4, 14, 28] and it has been shown
that uniform sampling yields the best performance when

compared to the other sampling techniques [28]. Finally,
in [37], random projection is used along with the sampling
method to further improve the clustering efficiency.

2.3 Kernel k-means
Let X = {x1, x2, ..., xn} be the input data set consisting

of n data points, where xi ∈ ℜd, C be the number of clusters
and K ∈ ℜn×n be the kernel matrix with Kij = κ(xi, xj),
where κ(·, ·) is the kernel function. Let Hκ be the Repro-
ducing Kernel Hilbert Space (RKHS) endowed by the kernel
function κ(·, ·), and | · |Hκ

be the functional norm for Hκ.
The objective of kernel k -means is to minimize the cluster-
ing error, defined as the sum of squared distances between
the data points and the center of the cluster to which the
point is assigned. Hence, the kernel k -means problem can
be cast as the following optimization problem:

min
U∈P

max
{ck(·)∈Hκ}C

k=1

C
X

k=1

n
X

i=1

Uki|ck(·) − κ(xi, ·)|2Hκ
, (1)

where U = (u1, . . . ,uC)⊤ is the cluster membership matrix,
ck(·) ∈ Hκ, k ∈ [C] are the cluster centers, and domain
P = {U ∈ {0, 1}C×n : U⊤1 = 1}, where 1 is a vector of
all ones. For convenience of presentation, we introduce two
normalized versions of U . Let nk = u⊤

k 1 be the number of
data points assigned to the kth cluster. We denote by

bU = (bu1, . . . , buC)⊤ = [diag(n1, . . . , nC)]−1U,

eU = (eu1, . . . , euC)⊤ = [diag(
√

n1, . . . ,
√

nC)]−1U,

the ℓ1 and ℓ2 normalized membership matrices, respectively.
It is easy to verify that given the cluster membership ma-

trix U , the optimal solution for cluster centers is

ck(·) =

n
X

i=1

bUkiκ(xi, ·), k ∈ [C]. (2)

As a result, we can formulate (1) as an optimization problem
over U :

min
U

tr(K) − tr( eUK eU⊤). (3)

As indicated in (3), a naive implementation of kernel k -
means requires computation and storage of the full n × n
kernel matrix K, rendering it unsuitable for data sets with
n greater than a few ten thousands. To the best of our
knowledge, only a few attempts have been made to scale
kernel k -means for large data sets. In [46], the memory re-
quirement is reduced by dividing kernel matrix into blocks
and using one block of the kernel matrix at a time. Al-
though this technique handles the memory complexity, it
still requires the computation of the full kernel matrix. The
objective of our work is to reduce both the computational
complexity and the memory requirements of kernel k -means.

3. APPROXIMATE KERNEL K-MEANS
A simple and naive approach for reducing the complex-

ity of kernel k -means is to randomly sample m points from
the data set to be clustered, and find the optimal cluster
centers based only on the sampled points; then assign every
unsampled data point to the cluster whose center is nearest.
We refer to this 2-step process as the two-step kernel k-

means, detailed in Algorithm 1. Though this approach has
reduced run-time complexity and memory requirements, its



performance does not match that of the full kernel k -means,
unless it is provided with a sufficiently large sample of data
points.

We propose a superior approach for reducing the complex-
ity of kernel k -means based on a simple but important ob-
servation. Kernel k -means requires the computation of the
full kernel matrix K as the cluster centers {ck(·), k ∈ [C]}
are linear combinations of all the data points to be clus-
tered, in accordance with (2). In other words, the cluster
centers lie in the subspace spanned by all the data points,
i.e., ck(·) ∈ Ha = span(κ(x1, ·), . . . , κ(xn, ·)), k ∈ [C]. We
can avoid computing the full kernel matrix if we restrict
the solution for the cluster centers to a smaller subspace
Hb ⊂ Ha. Hb should be constructed such that (i) Hb is
small enough to allow efficient computation, and (ii) Hb is
rich enough to yield similar clustering results as those us-
ing Ha. We employ a simple randomized approach for con-
structing Hb: we randomly sample m data points (m ≪ n),

denoted by bX = {bx1, . . . , bxm}, and construct the subspace
Hb = span(bx1, . . . , bxm). Given the subspace Hb, we modify
(1) as

min
U∈P

max
{ck(·)∈Hb}

C

k=1

C
X

k=1

n
X

i=1

Uki|ck(·) − κ(xi, ·)|2Hκ
. (4)

Let KB ∈ ℜn×m represent the kernel similarity matrix be-

tween data points in X and the sampled data points bX, and
bK ∈ ℜm×m represent the kernel similarity between the sam-
pled data points. The following lemma allows us to reduce
(4) to an optimization problem involving only the cluster
membership matrix U .

Lemma 1. Given the cluster membership matrix U , the
optimal cluster centers to (4) are given by

ck(·) =
m

X

i=1

αkiκ(bxi, ·), (5)

where α = bUKB
bK−1. The optimization problem for U is

given by

min
U

tr(K) − tr( eUKB
bK−1K⊤

B
eU⊤). (6)

Proof. Let ϕi = (κ(xi, bx1), . . . , κ(xi, bxm)) and
αi = (αi1, . . . , αim) be the i-th rows of matrices KB and
α respectively. As ck(·) ∈ Hb = span(bx1, . . . , bxm), we can
write ck(·) as

ck(·) =
m

X

i=1

αkiκ(bxi, ·).

and write the objective function in (4) as

C
X

k=1

n
X

i=1

Uki|ck(·) − κ(xi, ·)|2Hκ

= tr(K) +
C

X

k=1

“

nkα⊤
k

bKαk − 2u⊤
k KBαk

”

. (7)

By minimizing over αk, we have

αk = bK−1K⊤
B buk, k ∈ [C]

and therefore, α = bUKB
bK−1. We complete the proof by

substituting the expression for α into (7).

As indicated by Lemma 1, we need to compute only KB
1

for finding the cluster memberships. When m ≪ n, this
computational cost would be significantly smaller than that
of computing the full matrix. Note that the problem in (6)
can also be viewed as approximating the kernel matrix K

in (4) by KB
bK−1K⊤

B , which is equivalent to the Nystrom
method for low rank matrix approximation. We refer to the
proposed algorithm as Approximate Kernel k-means,
outlined in Algorithm 2. Figure 1 illustrates and compares
this algorithm with the two-step kernel k -means on a 2-
dimensional synthetic data set.

Algorithm 1 Two-step Kernel k -means

1: Input:
• X = (x1, . . . , xn): the set of n data points to be

clustered
• κ(·, ·) : ℜd ×ℜd 7→ ℜ: kernel function
• m: the number of randomly sampled data points

(m ≪ n)
• C: the number of clusters

2: Randomly select m data points from X, denoted by bX =
(bx1, . . . , bxm).

3: // Step 1
4: Compute the cluster centers, denoted by ck(·), k ∈ [C],

by applying the standard kernel k -means to bX.
5: // Step 2
6: for i = 1, . . . , n do

7: Find the closest cluster center k∗ for xi by

k∗ = arg min
k∈[C]

|ck(·) − κ(xi, ·)|Hκ

8: Update the ith column of U by Uki = 1 for k = k∗

and zero otherwise.
9: end for

4. ANALYSIS
In this section, we first analyze the computational com-

plexity of the proposed approximate kernel k -means algo-
rithm, and then examine the quality of the data partitions
generated by the proposed algorithm.

4.1 Computational Complexity
The most expensive operation in the proposed algorithm

is the matrix inversion bK−1 and calculation of T = KB
bK−1,

which has a computational cost of O(m3 + m2n). The com-
putational cost of computing α and updating the member-
ship matrix U is O(mnCl), where l is the number of itera-
tions needed for convergence. Hence, the overall computa-
tional cost is O(m3 + m2n + mnCl). We can further reduce
the computational complexity by avoiding the matrix inver-

sion bK−1 and formulating the calculation of α = bUT =
bUKB

bK−1 as the following optimization problem:

min
α∈ℜC×m

1

2
tr(α bKα) − tr( bUKBα⊤) (8)

If bK is well conditioned (i.e., the minimum eigen value of bK
is significantly larger than zero), we can solve the optimiza-
tion problem in (8) by a simple gradient descent method

1Note that bK is part of KB and therefore does not need to
be computed separately.
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Figure 1: Illustration of the approximate kernel k -means algorithm and the two-step kernel k -means algorithm on a 2-D data set. Figure
(a) shows all the data points (in red) and the sampled points (in blue). Figures (b)-(d) and (e)-(g) show the process of discovery of the
two clusters in the data set and their centers (represented by x) by the proposed algorithm and the two-step algorithm, respectively. The
approximate kernel k -means algorithm assigns labels to all the data points during each iteration while constraining the centers to the
subspace spanned by the sampled points. The two-step algorithm clusters only the sampled points and assigns labels to the remaining

points in the final phase.

Algorithm 2 Approximate Kernel k -means

1: Input:
• X = (x1, . . . , xn): the set of n data points to be

clustered
• κ(·, ·) : ℜd ×ℜd 7→ ℜ: kernel function
• m: the number of randomly sampled data points

(m ≪ n)
• C: the number of clusters
• MAXITER: maximum number of iterations

2: Randomly sample m data points from X, denoted by
bX = (bx1, . . . , bxm).

3: Compute KB = [κ(xi, bxj)]n×m and bK = [κ(bxi, bxj)]m×m.

4: Compute T = KB
bK−1.

5: Randomly initialize the membership matrix U .
6: Set t = 0.
7: repeat

8: Set t = t + 1.
9: Compute the ℓ1 normalized membership matrix bU by

bU = [diag(U1)]−1U .

10: Calculate α = bUT .
11: for i = 1, . . . , n do

12: Find the closest cluster center k∗ for xi by

k∗ = arg min
k∈[C]

α⊤
k

bKαk − 2ϕ⊤
k αk

where αk and ϕk are the kth rows of matrix α and
KB , respectively.

13: Update the ith column of U by Uki = 1 for k = k∗

and zero otherwise.
14: end for

15: until the membership matrix U does not change or t >
MAXITER

with a convergence rate of O (log(1/ε)), where ε is the de-
sired accuracy. As the computational cost of each step in
the gradient descent method is O(m2C), the overall com-
putational cost is only O(m2Cl log(1/ε)) ≪ O(m3) when
Cl ≪ m. Using this trick, we reduce the overall compu-
tational cost to O(m2Cl + mnCl + m2n). As the largest
matrix that needs to be stored in memory in Algorithm 2 is
KB , the memory requirement is only O(mn). This is a dra-
matic decrease in the run-time and memory requirements
for large data sets when compared to the O(n2) complexity
of classical kernel k -means.

4.2 Error Bound
In this section, we compare the clustering error of our algo-

rithm with that of kernel k -means run using the full kernel.
As the proposed algorithm differs from the standard ker-
nel k -means algorithm only by the restriction of the cluster
centers to a smaller subspace Hb, constructed using the sam-
pled data points, our analysis will be focused on bounding
the expected error due to this constraint.

We introduce binary random variables ξ = (ξ1, ξ2, ..., ξn)⊤ ∈
{0, 1}n to represent the random sampling process, where
ξi = 1 if xi is selected for constructing the subspace and
zero otherwise. The following proposition allows us to write
the clustering error in terms of random variable ξ.

Proposition 1. Given the cluster membership matrix U =
(u1, . . . ,uC)⊤, the clustering error can be expressed in ξ as

L(U, ξ) = tr(K) +
C

X

k=1

Lk(U, ξ), (9)

where Lk(U, ξ) is

Lk(U, ξ) = min
αk∈ℜn

−2u⊤
k K(αk ◦ ξ) + nk(αk ◦ ξ)⊤K(αk ◦ ξ).

Note that ξ = 1, where 1 is a vector of all ones, implies that
all the data points are chosen for constructing the subspace
Hb, which is equivalent to kernel k -means using the full ker-



nel matrix. As a result, L(U,1) is the clustering error of the
standard kernel k -means algorithm.

The following lemma bounds the expectation of the clus-
tering error.

Lemma 2. Given the membership matrix U , we have the
expectation of L(U, ξ) bounded as follows

Eξ [L(U, ξ)] ≤ L(U,1)+tr

„

eU
h

K−1 +
m

n
[diag(K)]−1

i−1
eU⊤

«

,

where L(U,1) = tr(K) − tr( eUK eU⊤).

Proof. We first bound Eξ[Lk(U, ξ)] as

1

nk

Eξ[Lk(U, ξ)]

= Eξ

h

min
α

−2bu
⊤
k K(α ◦ ξ) + (α ◦ ξ)⊤K(α ◦ ξ)

i

≤ min
α

Eξ

h

−2bu
⊤
k K(α ◦ ξ) + (α ◦ ξ)⊤K(α ◦ ξ)

i

= min
α

−2
m

n
bu
⊤
k Kα +

m2

n2
α⊤Kα +

m

n

“

1 − m

n

”

α⊤diag(K)α

≤ min
α

−2
m

n
bu
⊤
k Kα +

m

n
α⊤

“m

n
K + diag(K)

”

α.

By minimizing over α, we obtain

α∗ =
“m

n
K + diag(K)

”−1

Kbuk.

Thus, Eξ[Lk(U, ξ)] is bounded as

Eξ [Lk(U, ξ)] + nkbu
⊤
k Kbuk

≤ nk bu
⊤
k

„

K − K
h

K +
n

m
diag(K)

i−1

K

«

buk

= eu
⊤
k

“

K−1 +
m

n
[diag(K)]−1

”−1

euk.

We complete the proof by adding up Eξ [Lk(U, ξ)] and using
the fact that

Lk(U,1) = min
α

−2u⊤
k Kα + nkα⊤Kα = −eu

⊤
k Keuk.

Corollary 1. Assume κ(x, x) ≤ 1 for any x. Let λ1 ≥
λ2 ≥ . . . ≥ λn ≥ 0 be the eigen values of matrix K.Given
the membership matrix U , we have

Eξ[L(U, ξ)]

L(U,1)
≤ 1 +

PC

i=1 λi/[1 + λim/n]

tr(K) − PC

i=1 λi

≤ 1 +
C/m

Pn

i=C+1 λi/n
.

Proof. As κ(x, x) ≤ 1 for any x, we have diag(K) � I ,

where I is an identity matrix. As eU is an ℓ2 normalized
matrix, we have

tr

„

eU
h

K−1 +
m

n
[diag(K)]−1

i−1
eU⊤

«

≤ tr

„

eU
h

K−1 +
m

n
I

i−1
eU⊤

«

≤
C

X

i=1

λi

1 + mλi/n
≤ Cn

m

and

L(U,1) = tr(K − UKU⊤) ≥ tr(K) −
C

X

i=1

λi.

We complete the proof by combining the above inequali-
ties.
To illustrate the result of Corollary 1, consider a special
kernel matrix K that has its first a eigen values equal n/a
and the remaining eigen values equal zero; i.e. λ1 = . . . =
λa = n/a and λa+1 = . . . = λn = 0. We further assume
a > 2C; i.e., the number of non-zero eigen values of K is
larger than twice the number of clusters. Then, according
to Corollary 1, we have

Eξ [L(U, ξ)] − L(U,1)

L(U,1)
≤ 1 +

Ca

m(a − C)
≤ 1 +

2C

m
,

indicating that when the number of non-zero eigen values
of K is significantly larger than the number of the clusters,
the difference in the clustering errors between the standard
kernel k -means and our approximation scheme will decrease
at the rate of O(1/m).

5. EXPERIMENTS
In this section, we demonstrate empirically that the pro-

posed algorithm is not only more efficient than kernel k -
means in terms of run-time complexity and memory, its
performance in terms of clustering error and prediction ac-
curacy is on par with that of the kernel k -means. We have
evaluated our algorithm on two popular image data sets:
Imagenet and MNIST. We first execute our algorithm on
small and medium-sized data sets and compare its perfor-
mance with that of the full kernel k -means, and then assess
its performance on a large data set, for which computing the
full kernel is infeasible. All algorithms were implemented in
MATLAB and run on an Intel Xeon 2.8GHz processor with
140GB RAM.

5.1 Data sets

• Small Imagenet: The Imagenet data set [11] consists
of over 1.2 million images that are organized according
to the WordNet hierarchy. Each node in this hierarchy
represents a concept (known as the “synset”). In or-
der to perform preliminary analysis, we chose 20, 000
images from 12 synsets (odometer, geyser, manhole
cover, rapeseed, cliff dwelling, door, monarch butter-
fly, mountain, daily paper, shoji, villa and website) at
the leaf nodes in the hierarchy. We call this data set
the small Imagenet data set. Figure 2 shows a few ex-
amples of the images from the synsets used to form
this data set. We extracted keypoints from each im-
age using the VLFeat library [42] and represented each
keypoint as a 128 dimensional SIFT descriptor; an av-
erage of 3, 055 keypoints were extracted from each im-
age. We employed the spatial pyramid kernel [30] to
calculate the pairwise similarity with the number of
pyramid levels set to be 4, which has been shown to
be effective for object recognition and image retrieval.

• MNIST: The MNIST data set [2] is a subset of the
database of handwritten digits available from NIST. It
contains a total of 70, 000 784-dimensional binary im-
ages from 10 digit classes. Two types of kernel func-
tions were used for this data set, as suggested in [46]:
the neural kernel defined as κ(x, y) = tanh(ax⊤y +
b), and the normalized polynomial kernel defined by
κ(x, y) = (x⊤y + 1)d. We set the parameters a, b and
d to 0.0045, 0.11 and 5, respectively, according to [46].
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Figure 2: Imagenet Data set

• Full Imagenet: To evaluate the performance of our
algorithm on very large data sets, we tested it on the
full Imagenet data set containing 1,262,102 images.
The images are organized to form a synset tree with
1000 leaf nodes, each leaf node representing a class of
images. We merged the leaves of this synset tree based
on their similarity to form a 164-class data set. The
SIFT descriptors were computed using the VLFeat li-
brary [42] and a random subset of 10 million SIFT
features were clustered to form a visual vocabulary.
Each SIFT descriptor was then quantized into a visual
word using the nearest cluster center.2 We obtain a
900-dimensional vector representation for each image,
which is then normalized to lie in the range [0, 1]. We
employed the RBF kernel, with the parameter σ set to
0.1, to compute their pairwise similarity.

5.2 Baseline and evaluation metrics
For the small Imagenet and MNIST data sets, we compare

the proposed approximate kernel k -means algorithm with
the full kernel k -means and the two-step kernel k -means al-
gorithms using the same randomly initialized membership
matrix. For the full Imagenet data set, it is currently infea-
sible to compute and store the full kernel on a single system
due to memory constraints. We compare the performance
of our algorithm on this data set with that of the two-step
kernel k -means algorithm.

We evaluate the efficiency of the proposed algorithm for
different sample sizes ranging from 50 to 10, 000. We mea-
sure the time taken for computing the kernel matrix and
clustering the data points. We measure the clustering per-
formance using the error reduction, defined as the ratio of
the difference between the initial clustering error (on ran-
dom initialization) and the final clustering error (after run-
ning the clustering algorithm) to the initial clustering error.
Larger the error reduction, greater is the cluster compact-
ness. To evaluate the difference in the clustering results of
our algorithm and the full kernel k -means, we calculate the
Adjusted Rand Index (ARI) [22], a measure of similarity be-
tween two data partitions. The adjusted Rand index value
lies in [0, 1]. A value close to 1 indicates better matching
between the two partitions than a value close to 0. We fi-
nally examine the prediction accuracy of our algorithm by
calculating the Normalized Mutual Information (NMI) [29]
with respect to the true class distribution. Analogous to the

2This data set can be downloaded from http://image-net.
org/download-features.

Table 1: Results for the small Imagenet data set

C = 12 Preprocessing time: 24,236.22 seconds
Sample Running time (seconds) ARI

size Kernel Approx Two-step Approx Two-step
calculation Kernel Kernel vs Full vs Full

k -means k -means kernel kernel
Full 33,132.06 81.23 (±43.66) -
1000 1564.26 34.56 1.05 0.77 0.58

(±63.66) (±4.20) (±0.28) (±0.18) (±0.06)
500 810.03 10.81 0.01 0.75 0.51

(±24.36) (±2.31) (±0.001) (±0.11) (±0.04)
100 203.65 4.33 0.02 0.71 0.28

(±20.87) (±1.32) (±0.005) (±0.05) (±0.06)
50 79.88 3.99 0.01 0.68 0.26

(±4.61) (±1.61) (±0.001) (±0.05) (±0.13)

adjusted Rand index, an NMI value of 1 indicates perfect
matching with the true class distribution whereas 0 indi-
cates perfect mismatch.

5.3 Experimental results
Small Imagenet: Table 1, and Figures 3(a) and 4(a)

compare the performance of the proposed algorithm on the
small Imagenet data set with full kernel k -means and the
two-step kernel k -means. Table 1 lists the running time of
the algorithms and the ARI values. Figures 3(a) and 4(a)
show the error reduction and NMI achieved by the the three
algorithms, respectively. All the results are averaged over
10 runs.

In order to make the comparison meaningful, we divide the
running time into three categories: the preprocessing time,
needed for constructing the multi-resolution histogram and
the spatial pyramid from the SIFT descriptors, the time for
computing the kernel matrix, and the time for clustering.
Note that the preprocessing time is shared by all the clus-
tering algorithms. We observe that a significant speedup
(over 90%) is achieved by both the proposed algorithm and
the two-step algorithm in kernel computation when com-
pared to the full kernel k -means. When we compare the
clustering time of our algorithm with that of the two-step
algorithm for the same sample sizes, the two-step algorithm
seems more efficient. This is due to the fact that our algo-

rithm needs to compute the inverse matrix bK−1. However,
when the two algorithms are compared with the require-
ment that they yield the same clustering performance, we
observe from the ARI, error reduction and NMI values that
our algorithm is more efficient. With just 50 samples, our
algorithm significantly outperforms the two-step algorithm
provided with 1000 samples.

We also observe that our algorithm is able to achieve
clustering performance equivalent to that of the full kernel
k -means. The two-step kernel k -means algorithm yields a
much lower error reduction and NMI. This observation in-
dicates that it is insufficient to estimate the cluster centers
using only the randomly sampled data points and further
justifies the design of the proposed algorithm.

MNIST: Tables 2 and 3 show the results for the MNIST
data set using the neural and polynomial kernels, respec-
tively. Compared to the full kernel k -means, we observe
that a significant amount of time was saved by the proposed
clustering algorithm as well as by the two-step algorithm in
clustering the data.

As seen in Figures 3(b) and 3(c), equal amount of error
reduction is achieved by both the full kernel k -means and the
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Figure 3: Clustering error reduction
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Figure 4: Normalized Mutual Information with respect to the true class labels

Table 2: Results for the MNIST data set using the neural kernel

C = 10 Kernel parameters: a=0.0045 b=0.11
Sample Running time (seconds) ARI

size Kernel Approx Two-step Approx Two-step
calculation Kernel Kernel vs Full vs Full

k -means k -means kernel kernel
Full 514.54 3953.62 (±2157.69) -

10000 107.58 13759.05 75.93 0.71 0.71
(±41.38) (±6273.2) (±0.01) (±0.13) (±0.08)

5000 41.07 1478.85 14.63 0.71 0.70
(±5.12) (±178.97) (±6.58) (±0.12) (±0.12)

1000 7.88 75.26 0.59 0.70 0.58
(±0.18) (±22.42) (±0.08) (±0.12) (±0.09)

500 5.37 72.24 0.25 0.69 0.48
(±0.53) (±29.44) (±0.02) (±0.11) (±0.07)

200 5.34 53.48 0.18 0.61 0.36
(±0.33) (±30.17) (±0.03) (±0.24) (±0.05)

100 2.02 22.7 0.06 0.47 0.37
(±0.09) (±13.30) (±0.002) (±0.14) (±0.05)

50 1.46 12.11 0.05 0.40 0.25
(±0.14) (±8.42) (±0.002) (±0.10) (±0.03)

Table 3: Results for the MNIST data set using the polynomial
kernel

C = 10 Kernel parameter: degree=5
Sample Running time (seconds) ARI

size Kernel Approx Two-step Approx Two-step
calculation Kernel Kernel vs Full vs Full

k -means k -means kernel kernel
Full 472.19 2027.68 (±570.63) -

10000 119.71 14407.35 47.72 0.95 0.87
(±38.09) (±7161.1) (±0.10) (±0.05) (±0.03)

5000 47.72 1449.33 6.25 0.90 0.81
(±5.88) (±229.83) (±1.29) (±0.06) (±0.04)

1000 9.13 51.54 0.54 0.91 0.72
(±0.07) (±13.23) (±0.09) (±0.06) (±0.07)

500 5.49 45.59 0.24 0.90 0.65
(±0.38) (±18.40) (±0.02) (±0.03) (±0.08)

200 5.21 43.03 0.16 0.84 0.33
(±0.82) (±15.47) (±0.05) (±0.03) (±0.05)

100 2.27 21.55 0.09 0.68 0.41
(±0.6) (±5.60) (±0.002) (±0.03) (±0.03)

50 1.84 13.16 0.05 0.62 0.32
(±0.48) (±4.32) (±0.002) (±0.06) (±0.16)

Table 4: Results for the full Imagenet data set using the RBF
kernel

C = 20 Kernel parameter: σ = 0.1
Sample Running time (seconds)

size Kernel Approx Two-step
calculation Kernel Kernel

k -means k -means
2000 344.39 22890.79 24.06

(±3.77) (±1987.79) (±1.97)
1000 181.93 11406.77 11.81

(±11.95) (±1170.08) (±1.36)
500 168.83 2649.13 5.44

(±0.27) (±12.15) (±0.02)
200 68.15 1912.05 2.36

(±0.16) (±8.98) (±0.02)
100 47.29 1119.33 1.34

(±1.12) (±43.25) (±0.01)

proposed algorithm for m ≥ 500. For m < 500, we observed
that the algorithm does not always converge to the optimal
solution owing to the relatively small sample size, leading
to significant variations in the error reduction. Figures 4(b)
and 4(c) show the NMI plots for the neural and polynomial
kernels, respectively. We again observe that the performance
of the proposed algorithm is significantly better than that of
the two-step kernel k -means and comparable to that of the
full kernel k -means.

Full Imagenet: Over 6.4TB of memory is required to
store the full kernel matrix for this data set. Hence, it is cur-
rently infeasible to store the full kernel and execute the full
kernel k -means on a single system. The proposed approxi-
mate scheme alleviates this issue as it does not require the
computation of the full kernel. Table 4 compares the run-
ning time of our algorithm with that of the two-step kernel
k -means algorithm for different sample sizes with the RBF
kernel parameter σ set to 0.1. We observe that although the
time taken for clustering the points by the our method is
considerably greater than that of the two-step method, our
algorithm performs significantly better than the two-step al-
gorithm, in terms of both error reduction and NMI, as seen



in Figures 3(d) and 4(d). These results demonstrate that
our algorithm is more effective than the two-step algorithm
for clustering large data sets.

6. CONCLUSIONS
We have proposed an efficient approximation for the ker-

nel k -means algorithm, suitable for large data sets. The key
idea is to avoid computing the full kernel matrix by restrict-
ing the cluster centers to a small subspace spanned by a set
of randomly sampled data points. We show theoretically
and empirically that the proposed algorithm is (i) efficient
in both computational complexity and memory requirement,
and (ii) is able to yield similar clustering results as the ker-
nel k -means algorithm using the full kernel matrix. In the
future, we plan to analytically investigate the sample com-
plexity of the proposed algorithm, i.e. the minimum num-
ber of samples required to yield similar clustering results as
the full kernel K-mean algorithm. We also plan to further
enhance the efficiency of the proposed algorithm through
ensemble and semi-supervised clustering techniques.

Acknowledgements
This research was partially supported by the Office of Naval
Research (ONR Grant N00014-11-1-0100). Timothy Havens
is supported by the National Science Foundation under Grant
1019343 to the Computing Research Association for the CI
Fellows Project. Part of Anil Jain’s research was also sup-
ported by WCU (World Class University) program funded
by the Ministry of Education, Science and Technology through
the National Research Foundation of Korea (R31-10008).
Anil Jain is also affiliated with Korea University, Anam-
Dong, Seoul, S. Korea.

7. REFERENCES
[1] http://gigaom.files.wordpress.com/2010/05/

2010-digital-universe-iview_5-4-10.pdf.

[2] http://yann.lecun.com/exdb/mnist.

[3] C.C. Aggarwal, J. Han, J. Wang, and P.S. Yu. A
framework for clustering evolving data streams. In
Proceedings of the International Conference on Very
Large Databases, pages 81–92, 2003.

[4] M.A. Belabbas and P.J. Wolfe. Spectral methods in
machine learning and new strategies for very large
datasets. Proceedings of the National Academy of
Sciences, 106(2):369–374, 2009.

[5] F. Can. Incremental clustering for dynamic
information processing. ACM Transactions on
Information Systems, 11(2):143–164, 1993.

[6] F. Can, E.A. Fox, C.D. Snavely, and R.K. France.
Incremental clustering for very large document
databases: Initial MARIAN experience. Information
Sciences, 84(1-2):101–114, 1995.

[7] C.T. Chu, S.K. Kim, Y.A. Lin, Y.Y. Yu, G. Bradski,
A.Y. Ng, and K. Olukotun. Map-reduce for machine
learning on multicore. In Advances in Neural
Information Processing Systems 19, pages 281–288,
2007.

[8] S. Daruru, N.M. Marin, M. Walker, and J. Ghosh.
Pervasive parallelism in data mining: dataflow solution
to co-clustering large and sparse netflix data. In
Proceedings of the SIGKDD conference on Knowledge
Discovery and Data mining, pages 1115–1124, 2009.

[9] A.S. Das, M. Datar, A. Garg, and S. Rajaram. Google
news personalization: scalable online collaborative
filtering. In Proceedings of the International
Conference on World Wide Web, pages 271–280, 2007.

[10] S. Datta, C. Giannella, and H. Kargupta. K-means
clustering over a large, dynamic network. In
Proceedings of the SIAM Data Mining Conference,
pages 153–164, 2006.

[11] J. Deng, W. Dong, R. Socher, L.J. Li, K. Li, and
L. Fei-Fei. Imagenet: A large-scale hierarchical image
database. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2009.

[12] I. Dhillon, Y. Guan, and B. Kulis. A unified view of
kernel k-means, spectral clustering and graph cuts.
Technical report, University of Texas at Austin, 2004.
(Tech. rep. TR-04-25).

[13] C. Ding, X. He, and H.D. Simon. On the equivalence
of nonnegative matrix factorization and spectral
clustering. In Proceedings of the SIAM Data Mining
Conference, pages 606–610, 2005.

[14] P. Drineas and M.W. Mahoney. On the Nystrom
method for approximating a Gram matrix for
improved kernel-based learning. The Journal of
Machine Learning Research, 6:2153–2175, 2005.

[15] D. Foti, D. Lipari, C. Pizzuti, and D. Talia. Scalable
parallel clustering for data mining on multicomputers.
Parallel and Distributed Processing, pages 390–398,
2000.

[16] C. Fowlkes, S. Belongie, F. Chung, and J. Malik.
Spectral grouping using the Nystrom method. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, pages 214–225, 2004.

[17] M. Girolami. Mercer kernel-based clustering in feature
space. IEEE Transactions on Neural Networks,
13(3):780–784, 2002.

[18] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and
L. O’Callaghan. Clustering data streams: Theory and
practice. IEEE Transactions on Knowledge and Data
Engineering, pages 515–528, 2003.

[19] S. Guha, R. Rastogi, and K. Shim. Cure: an efficient
clustering algorithm for large databases. Information
Systems, 26(1):35–58, 2001.

[20] W. Hackbusch. Integral equations: Theory and
Numerical treatment. Birkhauser, 1995.

[21] S. Har-Peled and S. Mazumdar. On coresets for
k-means and k-median clustering. In Proceedings of
the ACM Symposium on Theory of Computing, pages
291–300, 2004.

[22] L. Hubert and P. Arabie. Comparing partitions.
Journal of classification, 2(1):193–218, 1985.

[23] R. Inokuchi and S. Miyamoto. LVQ clustering and
SOM using a kernel function. In IEEE International
Conference on Fuzzy Systems, volume 3, pages
1497–1500, 2005.

[24] D. Jiang, C. Tang, and A. Zhang. Cluster analysis for
gene expression data: A survey. IEEE Transactions
on Knowledge and Data Engineering,
16(11):1370–1386, 2004.

[25] D. Judd, P.K. McKinley, and A.K. Jain. Large-scale
parallel data clustering. IEEE Transactions on



Pattern Analysis and Machine Intelligence,
20(8):871–876, 1998.

[26] L. Kaufman and P.J. Rousseeuw. Finding Groups in
Data: An Introduction to Cluster Analysis. Wiley
Blackwell, 2005.

[27] D.W. Kim, K.Y. Lee, D. Lee, and K.H. Lee.
Evaluation of the performance of clustering algorithms
in kernel-induced feature space. Pattern Recognition,
38(4):607–611, 2005.

[28] S. Kumar, M. Mohri, and A. Talwalkar. Sampling
techniques for the Nystrom method. In Proceedings of
the Conference on Artificial Intelligence and Statistics,
pages 304–311, 2009.

[29] T.O. Kvalseth. Entropy and correlation: Some
comments. IEEE Transactions on Systems, Man and
Cybernetics, 17(3):517–519, 1987.

[30] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing
natural scene categories. In Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition, volume 2, pages 2169–2178, 2006.

[31] L.L. Liu, X.B. Wen, and X.X. Gao. Segmentation for
SAR Image Based on a New Spectral Clustering
Algorithm. Life System Modeling and Intelligent
Computing, pages 635–643, 2010.

[32] D. MacDonald and C. Fyfe. The kernel self-organising
map. In Proceedings of the International Conference
on Knowledge-Based Intelligent Engineering Systems
and Allied Technologies, volume 1, pages 317–320,
2002.

[33] D. Newman, A. Asuncion, P. Smyth, and M. Welling.
Distributed inference for latent dirichlet allocation. In
Advances in Neural Information Processing Systems,
volume 20, pages 17–24, 2007.

[34] A. Ng, M. Jordan, and Y. Weiss. On spectral
clustering: Analysis and an algorithm. In Advances in
Neural Information Processing Systems 14, pages
849–856, 2001.

[35] R.T. Ng and J. Han. CLARANS: A method for
clustering objects for spatial data mining. IEEE
Transactions on Knowledge and Data Engineering,
pages 1003–1016, 2002.

[36] A. K. Qinand and P. N. Suganthan. Kernel neural gas
algorithms with application to cluster analysis.
Pattern Recognition, 4:617–620, 2004.

[37] T. Sakai and A. Imiya. Fast spectral clustering with
random projection and sampling. Machine Learning
and Data Mining in Pattern Recognition, pages
372–384, 2009.

[38] B. Scholkopf, R. Herbrich, and A. Smola. A
generalized representer theorem. In Proceedings of
Computational Learning Theory, pages 416–426, 2001.

[39] B. Scholkopf, A. Smola, and K.R. Muller. Nonlinear
component analysis as a kernel eigenvalue problem.
Neural Computation, 10(5):1299–1314, 1996.

[40] J. Shawe-Taylor and N. Cristianini. Kernel Methods
for Pattern Analysis. Cambridge University Press,
2004.

[41] J. Shi and J. Malik. Normalized cuts and image
segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(8):888–905, 2002.

[42] A. Vedaldi and B. Fulkerson. Vlfeat: An open and
portable library of computer vision algorithms.
http://www.vlfeat.org, 2008.

[43] C. Williams and M. Seeger. Using the Nystrom
method to speed up kernel machines. In Advances in
Neural Information Processing Systems 13, pages
682–688, 2001.

[44] W. Xu, X. Liu, and Y. Gong. Document clustering
based on non-negative matrix factorization. In
Proceedings of the ACM SIGIR Conference, pages
267–273, 2003.

[45] H. Zha, X. He, C. Ding, M. Gu, and H. Simon.
Spectral relaxation for k-means clustering. In
Advances in Neural Information Processing Systems,
volume 2, pages 1057–1064, 2002.

[46] R. Zhang and A.I. Rudnicky. A large scale clustering
scheme for kernel k-means. In Proceedings of the
International Conference on Pattern Recognition,
pages 289–292, 2002.

[47] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH:
an efficient data clustering method for very large
databases. ACM SIGMOD Record, 25(2):103–114,
1996.


