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Abstract—Stream clustering methods, which group contin-
uous, temporally ordered dynamic data instances, have been
used in a number of applications such as stock market analysis,
network analysis, and cosmological analysis. Most of the popular
stream clustering algorithms are linear in nature, i.e. they assume
that the data is linearly separable in the input space and use
measures such as the Euclidean distance to define the inter-
point similarity. Though these linear clustering algorithms are
efficient, they do no achieve acceptable cluster quality on real-
world data. Kernel-based clustering algorithms, which use non-
linear similarity measures, yield better cluster quality, but are
unsuitable for clustering data streams due to their high running
time and memory complexity. We propose an efficient kernel-
based clustering algorithm, called the Approximate Stream Kernel
k-means, which uses importance sampling to sample a subset of
the data stream, and clusters the entire stream based on each data
point’s similarity to the sampled data points in real-time. Every
time a data point is sampled, the kernel matrix representing the
similarity between the sampled points is updated, and projected to
a low dimensional space spanned by its top eigenvectors. The data
points are clustered in this low-dimensional space using the k-
means algorithm. Thus, the Approximate Stream Kernel k-means
algorithm performs clustering in linear time using kernel-based
similarity. We show that only a small number of points need to be
sampled from the data stream, and the resulting approximation
error is well-bounded. Using several large benchmark data sets
to simulate data streams, we demonstrate that the proposed
algorithm achieves a significant speedup over other kernel-based
clustering algorithms with minimal loss in cluster quality. We also
demonstrate the practical applicability of the proposed algorithm
by using it to efficiently find trending topics in the Twitter stream
data.

Keywords—Stream clustering, Kernel clustering, k-means, Twit-
ter stream

I. INTRODUCTION

In many applications related to stock trading, social networks,
and communication networks, large amounts of data are gen-
erated continuously at an extremely rapid rate. For example,
about 1 terabyte of trade information is generated during
each trading session in the New York Stock Exchange. Over
100, 000 tweets are published every 60 seconds by millions of
users on Twitter1. This data needs to be analyzed in real-time
to gain useful insights and make important decisions.

Clustering is an important exploratory technique for group-
ing and learning about data. Many efficient algorithms have
been developed for clustering large data sets [1], [2], [3].
However, stream data introduces some additional challenges
to clustering:

(i) As the data is generated continuously and may be un-
bounded, it is not possible to store all the data in memory.
Each data point can be accessed at most once.

1http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-
2020.pdf

(ii) The data is non-stationary, i.e. the characteristics of the
stream data can change over time. This necessitates the
cluster model (number of clusters, cluster representatives,
cluster size and shape, etc.) to evolve dynamically.

Batch clustering algorithms such as k-means and kernel
k-means [4], assume that (i) the entire data to be clustered
is available at the time of clustering, and (ii) the input data
is drawn from a mixture of known distributions. For these
reasons, batch clustering algorithms cannot be directly used
to cluster stream data. Stream clustering algorithms generally
consist of two stages: (i) an online phase, where the stream data
is summarized into prototypes as it arrives, and (ii) an offline
phase where these prototypes are used to obtain the clusters.
The set of prototypes are dynamically updated to account for
the evolution of the clusters in the stream data.

Many stream clustering algorithms assume that the data is
linearly separable in the input space and use measures such
as the Euclidean distance to define the inter-point similarity.
While these “linear” algorithms are efficient, they are not
able to identify complex non-linearly separable clusters in real
data sets as accurately as kernel-based clustering algorithms,
which use non-linear pairwise similarity measures. However,
kernel-based clustering algorithms such as kernel k-means
and spectral clustering have at least quadratic running time
complexity, and are ill-suited to data streams [5]. The kernel-
based stream clustering algorithms, currently published in the
literature, have high running time complexity, cannot perform
real-time clustering, and usually require the selection of a
large number of parameters (e.g. thresholds on the inter-cluster
distance [6]), which are difficult to tune.

In this article, we propose a variant of the kernel k-
means algorithm, called approximate stream kernel k-means,
which samples the data points as they arrive, with probability
proportional to their “importance” in the stream, measured in
terms of the statistical leverage scores [7]. An approximate
kernel matrix is constructed, using the sampled points, and
used to find the cluster centers. Clustering is performed in a
low-dimensional space spanned by the top eigenvectors of the
approximate kernel matrix. The running time complexity of the
proposed algorithm is linear in N , the number of data points in
the stream. We show that only a small subset of points needs to
be sampled and stored in memory. As only the sampled points
are used to perform clustering, the proposed algorithm is very
efficient. We demonstrate empirically using several benchmark
data sets that the proposed algorithm can cluster stream data
sets at speeds up to 8 MBps with as few as 1, 000 sampled
data points.

Unlike other kernel-based stream clustering algorithms,

http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf
http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf


Approach Examples

CF-Trees Stream, Single-pass k-means [8]

Microcluster trees CluStream, HPStream [8]

Coresets StreamKM++ [9]

Grids D-Stream, ODAC [8]

Approximate clustering Streaming k-means approximation [10], Fast stream-
ing k-means [11]

Kernel-based Incremental spectral clustering [12], Adaptive non-
linear clustering [6], Streaming kernel k-means [13]

TABLE I: Major published approaches to stream clustering

our algorithm performs real-time clustering, and automatically
determines the novelty of the data points based on their
importance, thereby eliminating the need for tuning complex
parameters. In addition, it maintains the long-term history of
the data, resulting in cluster quality similar to that of batch
kernel k-means, while also allowing the decay and re-birth of
clusters.

The rest of the article is organized as follows: Section II
first describes the kernel k-means algorithm which forms the
basis of the proposed algorithm, and then discusses some
of the linear and kernel-based stream clustering algorithms
published in the literature. In Sections III and IV, we describe
the proposed algorithm and analyze its complexity. We finally
present our empirical analysis in Section V and conclude our
study in Section VI.

II. BACKGROUND

In this section, we first outline the batch kernel k-means
algorithm, and then describe some of the related work on
stream clustering.

A. Kernel k-means

Kernel k-means is a non-linear extension of the popular k-
means algorithm. The key principle behind kernel k-means is
to project the data to a high-dimensional Reproducing Kernel
Hilbert space (RKHS) Hκ, using a non-linear function φ(·),
and execute k-means on the projected data. Given an input
data set D = {x1,x2, . . . ,xN}, xi ∈ ℜd, to be clustered
into C clusters, a user-defined non-linear similarity function
κ(·, ·) : ℜd×ℜd 7→ ℜ, where κ(xi,xj) = φ(xi)

⊤φ(xj) is used
to define the similarity between data points. The C clusters are
obtained by minimizing the sum-of-squared-errors in Hκ:

min
U∈{0,1}C×N

max
{ck(·)∈Hκ}C

k=1

C∑

k=1

N∑

i=1

Uki ||ck(·)− κ(xi, ·)||
2
Hκ

, (1)

where ||·||Hκ
is the functional norm for Hκ, ck(·) represents

the kth cluster center in the RKHS, and U represents the C×N
cluster membership matrix, where Uki = 1 if xi belongs to the
kth cluster and 0 otherwise. The optimization problem (1) can
be relaxed to the following trace maximization problem [14]:

max
U∈{0,1}C×N

tr(ŨKŨ⊤), (2)

where K is the N × N pairwise similarity matrix, defined

by Kij = κ(xi,xj), and Ũ = diag (U1)
−1/2

U . The number
of data points N in the stream can be unbounded, so it is
infeasible to compute and store the full N ×N kernel matrix.
Due to this reason, it is prohibitive to execute kernel k-means
on stream data.

B. Stream Clustering

Most stream clustering algorithms summarize the data stream
using special data structures, and output a set of cluster
representatives. These algorithms differ in the data structures
used to summarize the data; common data structures are trees,
coresets, and grids (See Table I). Algorithms such as Stream
first cluster fixed-size segments of the data, and then cluster

Fig. 1: Schema of the proposed approximate stream kernel k-means
algorithm

the prototypes from each of these clusters to obtain the final
clusters. Cluster feature trees [15] and micro-cluster trees were
employed to summarize the data in algorithms like single-
pass k-means, CluStream and HPStream. The StreamKM++
algorithm summarizes the data stream into a set of coresets (a
weighted subset of points that approximate the input data), and
organizes them into a coreset tree. The clusters are obtained
by grouping the coresets in the root node of the coreset
tree. Grid-based algorithms such as DStream and DGClust
partition the d-dimensional feature space into grid cells, each
cell representing a cluster. Approximate clustering algorithms
such as streaming k-means first choose a subset of the points
from the stream, ensuring that the selected points are as distant
from each other as possible, and then execute k-means on the
data subset.

To the best of our knowledge, based on published literature,
very few attempts have been made to use non-linear similarity
measures for clustering data streams. The incremental spectral
clustering algorithm updates the graph Laplacian and its eigen-
vectors incrementally with each new edge. The clusters are
obtained by executing k-means on the updated eigenvectors.
The adaptive non-linear clustering algorithm partitions the
data into segments which are separated from each other by
novel data points, identifies the representative segments, and
executes spectral clustering on the kernel matrix obtained from
the means of the representative segments. Novelty of a data
point is determined based on its distance from the mean of
the current segment. The streaming kernel k-means algorithm
(sKKM) divides the data into windows of fixed time-steps,
and clusters the data points in every two consecutive windows
using weighted kernel k-means.

The proposed approximate stream kernel k-means algo-
rithm offers the following advantages over the existing algo-
rithms:

(i) The proposed algorithm uses kernel-based similarity
measures, resulting in higher cluster quality than linear
clustering algorithms.

(ii) Clustering is performed using the similarity of the input
points with a relatively small number of sampled points.
Therefore, the running time complexity of the proposed
algorithm is O(N).

(iii) Unlike the adaptive non-linear clustering algorithm, the
novel points are determined automatically using impor-
tance sampling.

(iv) Unlike the streaming kernel k-means algorithm, the pro-
posed method uses the complete history of the stream
data to compute the clusters, thereby achieving higher
cluster quality.

(v) The proposed method assigns the cluster labels in real-
time, and allows the decay and re-birth of clusters,
unlike most stream clustering algorithms like Stream,
StreamKM++ and single-pass k-means.

III.APPROXIMATE STREAM KERNEL k-MEANS

Given a stream data set D = {x1,x2, . . . , }, xt ∈ ℜd, the
objective of the approximate stream kernel k-means algorithm
(Algorithm 1) is to cluster the data points in real-time using
the kernel function κ(·, ·) : ℜd × ℜd 7→ ℜ, that defines
the similarity between data points. The key idea behind the
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Fig. 2: Illustration of importance sampling on a two-dimensional synthetic data set containing 1, 000 points along 10 concentric circles (100 points in each
cluster). All data points are represented by “o” and the sampled points are represented by “*”. Figure (a) shows 50 points sampled using importance sampling,
and Figures (b) and (c) show 50 and 100 points selected using Bernoulli sampling, respectively. All the 10 clusters are well-represented by just 50 points

sampled using importance sampling. On the other hand, 50 points sampled using Bernoulli distribution are not adequate to represent these 10 clusters (Cluster
4 in red has no representatives). At least 100 points are needed to represent all the clusters.

proposed algorithm is to incrementally sample a subset of
the stream data set, and construct a kernel matrix using the
sampled points. This approximate kernel matrix is used to
obtain the cluster centers. The cluster labels are assigned to
the unsampled data points using their kernel similarity with
the sampled points. A high level overview of the proposed
clustering framework is presented in Figure 1. Our framework
consists of three primary components, working in tandem:
(i) importance sampling, (ii) clustering, and (iii) cluster label
assignment. The sampling component samples the points from
the stream and constructs the approximate kernel matrix. The
clustering and label assignment components update the clusters
and the number of clusters dynamically, and assign cluster
labels to all the data points in the stream.

We describe each of these components in the following
sections:

A. Sampling

One of the obstacles to using kernel k-means for clustering
stream data is that it requires the computation of the N ×
N kernel matrix. It is infeasible to compute the full kernel
matrix for stream data because N is potentially unbounded.
The proposed algorithm alleviates this issue by incrementally
sampling a subset of the points from the stream and using only
this subset to construct the kernel matrix. We maintain a buffer
S in memory to store the sampled points; the number of points
s in S is constrained by the user-defined parameters m and M
(m ≤ s ≤ M ). Let Kt−1 represent the kernel matrix at time
(t− 1), with K1 = 1. When a data point xt arrives at time t,
we update the kernel matrix as

Kt =





[
Kt−1 ϕ⊤

ϕ κ(xt,xt)

]
with probability pt,

Kt−1 with probability 1− pt,
(3)

where Kt−1 = [κ(xi,xj)],xi,xj ∈ S, and ϕ =

(κ(xt,x1), . . . , κ(xt,xs))
⊤
.

The simplest method for sampling data point xt is to
perform independent Bernoulli trials, i.e. xt is stored in S with
probability pt =

1
2 . However, Bernoulli sampling results in a

large kernel approximation error and requires a large number
of points to be stored in memory2.

To alleviate this issue, we perform importance sampling
instead of Bernoulli sampling. The sampling probability pt
for each point xt is based on its “importance”, defined in
terms of the statistical leverage scores [7]. Let the kernel
matrix Kt at time t be decomposed as Kt ≃ VCΣCV

⊤
C ,

where C represents the number of active clusters3 at time t,
ΣC = diag(λ1, . . . , λC) contains the highest C eigenvalues
of Kt and VC = (v1, . . . ,vC) contains the corresponding
eigenvectors. The probability of adding point xt to S is defined

2We demonstrate this using a synthetic data set in Figure 2 and using
four large benchmark data sets in Section V.

3We refer to the set of clusters that the data points in the buffer S belong
to at time t as the set of active clusters.

by

pt =
1

C

∣∣∣
∣∣∣V (t)

C

∣∣∣
∣∣∣
2

2
, (4)

where V
(j)
C is the jth row of VC . Statistical leverage scores

measure the influence of each data point in the approximation
of the kernel matrix [16]. The subset of data corresponding to
the largest statistical leverage values are the most informative,
and can represent the distribution of the entire data. By using
importance sampling, we obtain a good approximation of the
true kernel by sampling just a fraction of the data set (about
s = Ω(C lnC) samples [17]). Figures 2(a)-(c) illustrate the
advantage of importance sampling over Bernoulli sampling on
a two-dimensional data set containing 1, 000 points from 10
clusters. Each true cluster is a concentric circle with varying
radius, as shown in Figure 2(a). Figure 2(a) also shows 50
points sampled using importance sampling. We observe that all
the 10 clusters are adequately represented by the 50 sampled
points. Figure 2(b) shows that 50 points sampled from the data
using Bernoulli sampling do not represent all the clusters, as
the probability of sampling data points from all the clusters is
low. All the clusters are represented only when 100 points are
sampled, as shown in Figure 2(c).

B. Clustering

Let s be the number of points in the buffer S and C be the
number of active clusters3 at time t. After the kernel matrix Kt
is constructed in accordance with (3), the data points in S can
be partitioned into C clusters by solving the kernel k-means
problem

max
U∈{0,1}C×s

tr(ŨKtŨ
⊤). (5)

The running time complexity of this step would be O(s2).
We further reduce this complexity by constraining the cluster
centers to a smaller subspace, spanning the top C eigenvectors
of the kernel matrix Kt, along the lines of the spectral
clustering algorithm. We pose the clustering problem as the
following optimization problem:

min
U∈{0,1}C×s

max
{ck(·)∈Ha}C

k=1

C∑

k=1

s∑

i=1

Uki

s
||ck(·)− κ(xi, ·)||

2
Hκ

, (6)

where Ha = span (v1, . . . ,vC). The cluster centers can be
expressed as linear combinations of the eigenvectors of the
kernel matrix:

ck(·) =
s∑

i=1

C∑

j=1

Uki

Nk

√
λjvij =

uk

Nk
VCΣ

1/2
C , k ∈ [C], (7)

where Nk is the number of points in the kth cluster, and uk =
(Uk1, . . . , Uks).

By substituting (7) in (6), we obtain the following trace
maximization problem:

max
U∈{0,1}C×s

tr(ŨVCΣCV
⊤
C Ũ⊤). (8)

The above problem can be solved efficiently by executing k-

means on the matrix VCΣ
1/2
C . The following lemma shows



that the error incurred due to the approximation (6) is well-
bounded, provided that the tail of the eigenspectrum is fast
decaying, which is true for most real data sets:

Lemma 1: Let E and Ea represent the optimal clustering
errors in (5) and (8), respectively. We have

|E − Ea| ≤

s∑

i=C+1

λi.

The proof of this lemma is omitted due to space constraints.
We note that the eigenvalues and eigenvectors do not need

to be re-computed for clustering, as they were already com-
puted while calculating the leverage scores. This eliminates
the need for computing and storing the kernel matrix Kt, as
only its top eigenvalues and the corresponding eigenvectors
are required for both sampling and clustering. Starting with
VC = 1 and ΣC = 1, we can update the eigensystem
incrementally as the data points arrive. Efficient methods to
update the eigenvectors and eigenvalues incrementally are
discussed in Section IV.

C. Label Assignment

Data points are assigned cluster labels using the cluster centers
obtained from the sampled data points, and the active clusters
are updated using a fading cluster mechanism, similar to that
used by the adaptive non-linear clustering algorithm [6]. Each
cluster k is associated with a timestamp tk representing the
last time a data point was assigned the kth cluster label, and
a recency value defined by a monotonic function

fk(t) = exp (−γ (t− tk)) , (9)

where γ is a user-defined parameter, representing the decay
rate of a cluster [18]. A data point xt is added to cluster k∗ if

k∗ = arg min
k∈[C]

||ck(·)− gt(·)||
2
Hκ

and fk∗(t) > η, (10)

where ck(·) is the cluster center given by (7), gt(·) is the
projection of κ(xt, ·) into the subspace spanned by the eigen-
vectors VC , and η is a user-defined lifetime threshold which
determines how long a cluster remains active. If the recency
fk∗(t) of the closest cluster k∗ is less than η, then a new cluster
is created with the data point xt. After the cluster assignment
is made, the timestamp and recency of the assigned cluster
are updated. Clusters whose recency is less than η (called
stale clusters) are deleted and the data points in the buffer
that belong to these stale clusters are removed from the buffer.

IV. IMPLEMENTATION AND COMPLEXITY

The two major operations in the proposed algorithm are:
computing the leverage scores, and clustering the top C
eigenvectors of the approximate kernel matrix using k-means.
Both the operations require the eigenvalues and eigenvectors
of the kernel matrix. Let s be the number of points in the
sample set S at time t. Eigendecomposition of an s × s
kernel matrix Kt takes O

(
s3
)
time, if performed naively.

However, we can update the eigensystem incrementally using
the fast rank-one update mechanism proposed in [19]. Given
the eigendecomposition, Kt = V ΣV ⊤, and vector ϕ ∈ ℜs,
this method finds the eigendecomposition of

(
Kt + ϕϕ⊤

)
as

Kt + ϕϕ⊤ =

[
V

p

||p||

]
Σ′

[
V

p

||p||

]⊤
(11)

where p =
(
I − V V ⊤

)
ϕ is the component of Kt that is

orthogonal to V , and Σ′ contains the dominant eigenvalues
of the sparse matrix [

Σ V ⊤ϕ
ϕ⊤V ||p||

]
.

Algorithm 1 Approximate Stream Kernel k-means

1: Input:
• D = {x1,x2, . . .}: the data stream to be clustered
• κ(·, ·) : ℜd ×ℜd 7→ ℜ: kernel function
• C: the initial number of clusters
• m: the initial number of points in the buffer (m > C)
• M : maximum number of points allowed in the buffer (m < M )
• γ: cluster decay rate
• η: cluster lifetime threshold

2: Output: Cluster labels for the data points in the stream
3: Initialize S = {x1}, VC = 1 and ΣC = κ(x1,x1).
4: for t = 1, 2, . . . ,m do
5: Set S = S ∪ {xt}.
6: Update the eigenvalues ΣC and eigenvectors VC using (11).
7: end for
8: Cluster the data points in S into C clusters by executing k-means on

VCΣC
1/2.

9: Set the last update time tk = t, k ∈ [C].
10: Evaluate the recency function fk(t), k ∈ [C] according to (9).
11: for t = m+ 1,m+ 2, . . . do
12: Calculate the probability pt using (4) and set S = S ∪ {xt} with

probability pt.
13: If xt was added to S in Step 12, update the eigenvalues ΣC and

eigenvectors VC using (11), and recluster the points in S by executing

k-means on VCΣC
1/2, otherwise find the cluster k∗ whose center is

closest to xt.
14: If fk∗ (t) > η, assign xt to k∗, otherwise create a new cluster with

xt and set C = C + 1.
15: Find clusters whose recency fk(t) ≤ η, k ∈ [C], and remove these

stale clusters. Set C = C − c, where c is the number of stale clusters.

16: If card(S) >= M , find index q = argmin
l

∣

∣

∣

∣

∣

∣
V

(l)
C

∣

∣

∣

∣

∣

∣

2

2
and remove

data point xq from S.
17: end for

This operation, repeated every time a new data point is input
to the system, can be performed in O(sC + C3) time.

Clustering is performed every time a point is added to the
sample set S, which takes O(sC2l) time, where l is the number
of iterations required to reach convergence. In order to reduce
the running time, we can employ a lazy reclustering approach,
by which we perform the clustering after every T data point
additions. To further enhance the efficiency of the algorithm,
the data points can be processed in batches of size B.

In summary, the time taken by the proposed approximate
stream kernel k-means algorithm to cluster a data set of
size N is O

(
NCM +NC3 +M2C2l

)
∼ O (NCM), when

max(C,M, l) ≪ N . This contrasts with the O(N2) running
time complexity of typical kernel-based clustering.

V. EXPERIMENTAL RESULTS

In this section, we demonstrate that the proposed approximate
stream kernel k-means algorithm is more efficient and accurate
than the state-of-the-art stream clustering algorithms.

We first use four benchmark data sets (CIFAR-10, Forest
Cover Type, Imagenet, and Network Intrusion) to simulate
stream data and study the affect of varying the parameters of
the algorithm, and the order of the data, on the performance
of the proposed algorithm. We use the true class labels of
these data sets to evaluate the performance of our algorithm
in comparison with the baseline algorithms. We then use the
proposed algorithm to cluster the Twitter data stream con-
taining tweets related to programming languages. We find the
trend in programming languages over time using the proposed
algorithm and compare these topic trends with the true topic
trends.

A. Data sets

We demonstrate the effectiveness of the proposed algorithm
using the following data sets:

• CIFAR-10 [20]: The CIFAR-10 image data set contains
60, 000 unique 32×32 color images from 10 classes. The
images are represented by 384 GIST features. We use this
medium-sized data set to compare the cluster quality of
the proposed algorithm with that of batch kernel k-means.



• Forest Cover Type [21]: This data set contains 581, 012
data points, each representing the attributes of a 30× 30
square meter cell of the forest floor in the United States.
The data, represented using 54 features, belongs to 7
classes, each class representing a different forest cover
type.

• Imagenet [22]: The Imagenet data set contains about 14
million images organized into a concept-based “synset”
hierarchy. We downloaded 1, 262, 102 images from 34
classes, and represented them using 900 bag-of-words
features, obtained from the SIFT descriptors.

• Network Intrusion [23]: The Network Intrusion data
set contains 4, 897, 988 50-dimensional data points from
10 classes, representing the TCP dump data from seven
weeks of a local-area network traffic.

B. Baselines

We compared the performance of the proposed algorithm with
two recent stream clustering algorithms, StreamKM++[9] and
sKKM [13], which have been shown to perform better than the
other stream clustering algorithms. We show that the proposed
approximate stream kernel k-means is more effective than these
algorithms. Unlike the StreamKM++ algorithm, the proposed
algorithm can perform real-time label assignment, and unlike
sKKM, it maintains the long-term history of the data, resulting
in higher cluster quality. We also compared the performance of
the proposed algorithm with (i) the batch k-means algorithm
to show that our algorithm achieves higher cluster quality,
and (ii) the batch kernel k-means algorithm to evaluate the
loss in the cluster quality. We could execute the kernel k-
means algorithm only on the medium-sized CIFAR-10 data
set. It is prohibitive to compute the full kernel matrix for
the remaining data sets, so we executed kernel k-means on
a 50, 000-sized randomly selected subset of the data, and
assigned the remaining points to the closest cluster centers.
This gives us an approximation of the time taken to execute
kernel k-means on the full data set. We finally evaluated
the performance of the proposed approximate stream kernel
k-means algorithm when each data point is sampled with
probability 1/2, and show that importance sampling plays
a significant role in reducing the memory requirements and
enhancing the cluster quality.

C. Algorithm Parameters

We used the universal RBF kernel for the proposed algorithm
and the other kernel-based baseline algorithms on all the data
sets. We tuned the kernel width using grid search in the range
[0, 1] to obtain best performance. For the proposed approximate
stream kernel k-means algorithm, we varied the initial sample
size fromm = 1, 000 tom = 5, 000 in multiples of 1, 000, and
the maximum buffer size from M = 5, 000 to M = 20, 000
in multiples of 5, 000, to constrain the memory used to 4 GB.
We employed the lazy reclustering approach with T set to
50 and processed the data in batches of size B = 10, 000.
We set the cluster decay factor γ = 0.5 as suggested in [6],
and varied the lifetime threshold η as η = exp(−γτ), where
τ = {1, 2, . . . , 5}. The coreset size and chunk size parameters
for the StreamKM++ and sKKM algorithms were varied from
1, 000 to 5, 000. The initial number of clusters C was set
equal to the true number of classes in the data set, for all
the algorithms.

We obtained the code for the StreamKM++ algorithm
from the authors4, and implemented the other algorithms
in MATLAB5. We executed each algorithm 10 times on a
2.8 GHz processor with the memory constrained to 4 GB
for the stream clustering algorithms, and to 20 GB for the

4The code for StreamKM++ is available at http://tinyurl.com/streamKM.
5The code for the proposed approximate stream kernel k-means algorithm

is available at http://tinyurl.com/approxStreamKKmeans.

M Running time NMI

5,000 10,000 15,000 5,000 10,000 15,000

CIFAR-10 9.34 8.50 9.57 6.22 8.07 15.49

(±0.76) (±3.33) (±2.79) (±0.27) (±2.73) (±0.18)

Forest 7.07 24.17 40.65 0.56 0.72 12.19

Cover Type (±0.27) (±6.69) (±12.81) (±0.07) (±0.05) (±0.02)

Imagenet 10.57 18.77 48.15 1.58 1.73 6.55

(±2.62) (±4.85) (±18.18) (±1.27) (±1.62) (±1.19)

Network 12.09 27.15 43.05 13.71 13.86 13.75

Intrusion (±2.57) (±7.07) (±15.31) (±0.01) (±0.40) (±0.30)

TABLE III: Effect of the maximum buffer size M on the running time (in
milliseconds) and NMI (in %) of the proposed approximate stream kernel

k-means algorithm.

τ 1 2 3 4 5

CIFAR-10 7.48 9.28 8.33 8.54 9.08

(±1.24) (±1.03) (±1.53) (±1.66) (±1.12)

Forest 58.55 42.80 48.78 40.09 41.88

Cover Type (±21.57) (±17.26) (±20.72) (±13.81) (±15.90)

Imagenet 57.91 60.25 55.77 57.24 54.98

(±22.20) (±24.43) (±26.20) (±24.57) (±31.10)

Network 161.89 164.61 165.18 162.36 163.05

Intrusion (±0.69) (±0.70) (±0.71) (±0.68) (±0.64)

TABLE IV: Effect of the cluster lifetime threshold η = exp(−γτ) on the
running time (in milliseconds) of the proposed approximate stream kernel

k-means algorithm.

batch clustering algorithms. We present the mean and variance
of the time taken for clustering (in milliseconds) and the
cluster quality, measured in terms of the Normalized Mutual
Information (NMI), over these 10 runs. Different permutations
of the data set were input to the clustering algorithms in each
run.

D. Results

Clustering efficiency and quality: Clustering time for our
algorithm is computed as the average time taken to assign
a label to each data point. For the baseline algorithms, we
computed this time by dividing the total time taken to cluster
the data set by the number of points in the data set. Table II
compares the running time and NMI of the proposed algorithm
with the baseline algorithms when m = 5, 000, M = 20, 000
and τ = 1. As expected, the proposed algorithm was faster
than batch kernel k-means algorithms and its approximation

τ 1 2 3 4 5

CIFAR-10 15.49 15.55 15.41 15.45 15.50

(±0.39) (±0.23) (±0.33) (±0.23) (±0.25)

Forest 14.27 12.10 12.11 12.10 12.10

Cover Type (±2.13) (±0.03) (±0.03) (±0.03) (±0.03)

Imagenet 7.04 7.04 6.95 6.95 7.76

(±1.24) (±1.24) (±1.14) (±1.14) (±1.54)

Network 14.32 13.65 13.65 13.65 13.66

Intrusion (±0.10) (±0.06) (±0.06) (±0.06) (±0.06)

TABLE V: Effect of the cluster lifetime threshold η = exp(−γτ) on the
NMI (in %) of the proposed approximate stream kernel k-means algorithm.

Data set Importance sampling Bernoulli sampling

Running NMI Number Running NMI Number

time (%) of points time (%) of points

(ms) sampled (ms) sampled

CIFAR-10 7.48 15.49 5,434 2091.50 11.33 31,483

(±1.24) (±0.39) (±2, 093) (±47.34) (±4.9) (±717)

Forest 58.55 14.27 16,561 1257.03 3.93 407,220

Cover Type (±21.57) (±2.13) (±3, 710) (±39.33) (±0.7) (±5, 807)

Imagenet 57.91 7.04 14,735 3002.45 4.97 389,177

(±22.20) (±1.24) (±1, 790) (±77.97) (±0.19) (±11, 325)

Network 161.89 14.32 14,886 923.16 6.50 1,711,101

Intrusion (±0.69) (±0.10) (±2, 627) (±40.41) (±0.15) (±44, 866)

TABLE VI: Comparison of the performance of the approximate stream
kernel k-means with importance sampling and Bernoulli sampling.

http://tinyurl.com/streamKM
http://tinyurl.com/approxStreamKKmeans


Data set Running time NMI

Approximate StreamKM++ sKKM Kernel k-means Approximate StreamKM++ sKKM Kernel k-means

stream kernel k-means (batch) stream kernel k-means (batch)

k-means (proposed) (batch) k-means (proposed) (batch)

CIFAR-10 7.48 9.22 16.86 12.09 2.65 15.40 8.55 4.98 16.98 10.18

(±1.24) (±0.74) (±0.79) (±0.12) (±1.26) (±0.39) (±0.35) (±0.28) (±0.02) (±0.13)

Forest 58.55 3.82 54.35 8.13 0.05 14.27 5.28 1.70 7.51 9.53

Cover Type (±0.22) (±0.32) (±1.19) (±0.87) (±0.02) (±2.13) (±1.90) (±0.37) (±1.90) (±0.01)

Imagenet 57.91 18.82 29.78 168.32 32.73 7.04 9.66 8.41 10.40 10.01

(±22.20) (±0.77) (±4.11) (±34.52) (±9.85) (±1.24) (±0.22) (±0.26) (±0.19) (±0.01)

Network 57.91 2.00 42.12 695.69 1.82 14.32 7.02 10.32 7.14 9.51

Intrusion (±22.20) (±0.06) (±0.09) (±29.87) (±0.57) (±0.10) (±0.44) (±0.64) (±1.01) (±0.001)

TABLE II: Running time (in milliseconds) and NMI (in %) of the clustering algorithms. It is not feasible to execute kernel k-means on the Forest Cover Type,
Imagenet, and Network Intrusion data sets due to their large size. The running time of kernel k-means on these data sets is obtained by executing kernel
k-means on a randomly chosen subset of 50, 000 data points to find the cluster centers, and assigning the remaining points to the closest cluster center.

(described in Section V-B) on most of the data sets, but took
longer than the k-means algorithm because our algorithm has
to compute the kernel similarity and its top eigenvectors unlike
the k-means algorithm. The NMI achieved by our algorithm
is higher than that of k-means because of the use of non-
linear similarity measures. On the CIFAR-10 data set, the
batch kernel k-means achieved an NMI value of 16.9%. The
proposed algorithm achieved comparable NMI values (15.4%).

Compared to the StreamKM++ algorithm, the proposed al-
gorithm achieved better cluster quality although it took longer
to assign cluster labels to the points. Our algorithm offers the
advantage that the cluster labels can be obtained in real-time,
unlike the StreamKM++ algorithm which needs to process all
the data points before assigning the cluster labels. For instance,
the proposed algorithm was able to cluster about 2, 700 images
from the CIFAR-10 data set per second, which is equivalent
to a speed of about 8 MBps. On the remaining three data sets,
the clustering speed ranged from 30 KBps to 700 KBps. Our
algorithm also outperformed the sKKM clustering algorithm in
terms of cluster quality. While the sKKM algorithm was slower
than the proposed algorithm on the CIFAR-10 data set, it’s
speed was at par with the proposed algorithm on the remaining
data sets. The StreamKM++ algorithm obtains clusters from
coresets which summarize all the points in the data set. The
sKKM algorithm relies on the information from only two time
steps and discards most of the historical information. The
proposed approximate stream kernel k-means algorithm finds
the middle ground by retaining potentially useful data points
using importance sampling and discarding the rest of the data
points. This is reflected in the NMI values achieved by the
algorithms.

Figure 3 shows how the NMI values of the proposed algo-
rithm fall due to the accumulation of the kernel approximation
error over time. We observe that the reduction in NMI was
slow and stabilized over time for all the data sets. The error
accumulation can be further minimized by clustering the points
in the buffer more frequently (as discussed in Section IV),
although this would increase the running time. The user can
trade-off between the efficiency and accuracy by tuning the
parameters of the algorithm.
Parameter sensitivity: The proposed approximate stream ker-
nel k-means algorithm relies on five parameters: initial sample
size m, maximum buffer size M , initial number of clusters
C, cluster decay rate γ and cluster lifetime threshold η. We
study the influence of these parameters on the algorithm’s
performance and present heuristics to set the parameter values:

• Initial sample size m: The time taken by the proposed
algorithm to cluster each data point xt is influenced by
the number of points in the buffer S at time t, because the
size of the eigenvector matrix VC increases proportionally.
The buffer size at time t, in turn, depends on the first
m data points {x1, . . . ,xm} input to the system. More
data points were sampled from the stream and added

to S, if the initial sample did not contain a sufficient
number of representative points. On the CIFAR-10 data
set, the number of additional points sampled reduced
from 6, 087 to 4, 434 as the initial sample size m was
increased from 1, 000 to 5, 000. Similar trends were
observed for the remaining data sets as well. Figure 4
compares the running time of the proposed algorithm with
the StreamKM++ and sKKM algorithms as the parameter
m is varied. As m was increased, the time taken for
clustering by the baseline algorithms also increased. As
expected, the proposed algorithm took slightly longer than
the StreamKM++ and sKKM algorithms for most data
sets, especially whenm was large. However, the NMI val-
ues achieved by the proposed algorithm were much higher
than those achieved by the baseline algorithms, as shown
in Figure 5. Our algorithm’s cluster quality improved
significantly as m increased, while there was minimal
improvement in the cluster quality of the StreamKM++
algorithm. This improvement in accuracy compensates for
the higher running time of the proposed algorithm. These
results indicate that the initial sample, determined by the
order of the data, plays a crucial role in the performance
of the proposed algorithm. The variance in the NMI tends
to reduce as m increases, again indicating that the order
of the data is important.

• Maximum buffer size M : The maximum buffer size
M does not affect the efficiency of the proposed algo-
rithm, provided that M ∼ 2m and the initial sample
is representative of the stream (See Table III). If M is
small, data points need to be removed from the buffer
S to accommodate for the newly sampled data points,
which results in an increased running time. For instance,
when M = 5, 000, about 2, 500 points were removed
from S, whereas no points needed to be removed when
M = 20, 000, resulting in a 2 millisecond reduction of the
clustering time per data point. The NMI values increased
as M increased because a larger number of representative
data points could be stored in the buffer.

• Cluster decay rate γ, lifetime threshold η and number
of clusters C: The final number of clusters at the end of
clustering depends on the ordering of the data set, and
the cluster decay and lifetime parameters γ and η. For
instance, when the points in the CIFAR-10 data set were
input in their true order (i.e. all images from class i were
input before all images from class j (i < j)) for C = 5,
γ = 0.5 and η = exp(−γ) = 0.61, 10 clusters were
found. On the other hand, when the data was permuted
randomly and clustered, there was no increase in the
number of clusters, because no clusters became stale. The
number of clusters increased more rapidly when γ and η
were set to lower values because the clusters became stale
faster. This also influenced the clustering time minimally.
The effect of the parameter η on the running time is
recorded in Table IV. The NMI is better for lower values
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Fig. 3: Change in the NMI (in %) over time for the four data sets.

of γ and η as shown in Table V. These parameters can be
selected using prior knowledge of how fast the clusters
evolve and change.

Sampling techniques: Table VI shows how the performance
of the proposed algorithm on the four data sets changes, when
importance sampling is replaced by Bernoulli sampling, where
each data point is sampled with probability 1/2, and no limit
is placed on the size of the sample set. We record, for each
sampling procedure, the running time in milliseconds, the NMI
values and the average number of points stored in memory
after all the data points have been clustered. For importance
sampling, we set m = 5, 000. We observe that the number
of points sampled using Bernoulli sampling was much higher
than that using importance sampling. For instance, about
31, 483 points were sampled from the CIFAR-10 data set when
Bernoulli sampling was employed, whereas only about 5, 434
points were sampled using importance sampling. In addition,
the cluster quality of Bernoulli sampling was much lower
than that of importance sampling. This is because the kernel
approximation error is much higher when the data is sampled
with equal probability. The running time was also higher when
compared to the proposed algorithm with importance sampling
due to the large number of sampled points.

E. Application to Twitter Stream Clustering

Twitter6 is a popular microblogging social network for shar-
ing information over the web. Users post short messages
(called tweets), limited to 140 characters, which include user-
mentions, links, and emoticons in addition to plain text.
Tweets are also often annotated with hashtags that denote
keywords related to the tweets. A large body of work on
topic detection, event detection, hashtag recommendation, and
sentiment analysis has been performed on the Twitter data.
Clustering has been used to find trending topics in Twitter
posts, find user communities based on the similarity of their
posts, and automatically annotate tweets with hashtags [24],
[25]. In order to demonstrate the practical applicability of the
proposed approximate stream kernel k-means algorithm, we
used it to cluster the Twitter data, and find the most-tweeted-
about technologies over a period of time. We used the Twitter
streaming search API to obtain over a billion tweets generated
during the month of January 2015, using the following 20
popular keywords as hashtag search queries: Python, Perl,
C#, Java, Ruby, C++, JavaScript, VBScript, Scala, Objective
C, PHP, SQL, Postgresql, GO, Julia, Erlang, HTML, XML,
Swift, and ASP.NET. We filtered out the non-English tweets,
removed the hashtags and eliminated stop words to obtain a
vocabulary containing 8, 042 terms. We used the corresponding
tf-idf (term frequency-inverse document frequency) features
and the timestamp of the tweets as features for calculating
the kernel

κ(xa,xb) = λ exp
(
−‖tsa − tsb‖

2
)
+ (1− λ)

f⊤
a fb

‖fa‖‖fb‖
,

where tsa and fa denote the timestamp and the tf-idf features
of a tweet represented by data point xa. The first term in the
kernel function ensures that two tweets which were generated
in the same time period are likely to be assigned to the same
cluster, and the second term ensures that two tweets with
similar vocabulary are grouped together. We gave equal impor-
tance to both the timestamp and the tf-idf features by setting

6www.twitter.com
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(b) True trends of the topics

Fig. 7: Trending clusters in Twitter. The horizontal axis represents the
timeline in days and the vertical axis represents the percentage ratio of the
number of tweets in the cluster to the total number of tweets obtained on the
day. Figure (a) shows the trends obtained using the proposed approximate
stream kernel k-means algorithm and Figure (b) shows the true trends.

λ = 0.5. We set the parameters m = 5, 000, M = 10, 000,
C = 20, γ = 0.5, η = exp(−γ) = 0.6 and B = 10, 000.
Our algorithm assigned a cluster label to each tweet in about
200 milliseconds. Treating the hashtags as the ground truth
labels7, we obtained an average cluster quality of 61% in
terms of NMI. On the other hand, the StreamKM++ algorithm
took about 83 milliseconds per tweet and achieved an NMI
value of 40%, and the sKKM algorithm took about 2 seconds
per tweet and achieved an NMI value of 53%. Figures 6(a)
and 6(b) show some sample tweets from the ASP.NET and
HTML clusters, respectively. We observed that, by giving equal
importance to the timestamp of the tweet, and the words in the
tweet, we obtained clusters containing tweets that have both
temporal proximity and vocabulary similarity. Retweets were
always assigned to the same cluster as the original tweet. For
example, both the tweets about sticky headers were assigned
to the HTML cluster, as seen in Figure 6(b). More recent
tweets rather than old tweets were stored in the memory.
Figure 7(a) shows the trends of the top five clusters over the
month. This coincides well with the true trend of the top topics
shown in Figure 7(b). We found that the order of popularity
of the topic clusters was ASP.NET, HTML, SQL, JavaScript,
Perl, C++, Postgresql, Python, GO, PHP, Swift, Scala, Java,
Ruby, C#, XML, Erlang, Julia, Objective C and VBScript;
while the true order of topic popularity was ASP.NET, HTML,
Python, JavaScript, Perl, Java, PHP, Ruby, SQL, C++, Swift,
C#, Scala, Postgresql, XML, Erlang, Julia, GO, Objective C,
and VBScript.

VI.CONCLUSIONS

We have proposed an efficient and effective real-time stream
clustering algorithm called the approximate stream kernel k-
means. Experimental results on benchmark data sets show
that the proposed algorithm offers a good trade-off between
clustering efficiency and cluster quality (in terms of NMI).
Further, unlike some state-of-the-art kernel-based stream clus-
tering algorithms, the proposed algorithm can control the
decay and birth of clusters, thereby dynamically controlling
the final number of clusters. The key to the efficiency of the
proposed algorithm is sampling the stream data based on their
importance, defined in terms of the statistical leverage scores.
This allows us to maintain the long-term history of the stream
data and also limit the memory required to store the data.
We demonstrated empirically that the proposed algorithm can
cluster fast streams such as the Twitter stream with limited

7Although hashtags are prone to error, they are the best indicators of
the topic of a tweet. They have been used as topic labels in many other
studies [24].
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(d) Network Intrusion

Fig. 4: Effect of the initial sample size m on the running time (in milliseconds) of the proposed approximate stream kernel k-means algorithm. m represents
the initial sample set size, the coreset size and the chunk size for the approximate stream kernel k-means, StreamKM++ and sKKM algorithms, respectively.
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Fig. 5: Effect of the initial sample size m on the NMI (in %) of the proposed approximate stream kernel k-means algorithm. m represents the initial sample
set size, the coreset size and the chunk size for the approximate stream kernel k-means, StreamKM++ and sKKM algorithms, respectively.

(a) (b)

Fig. 6: Sample tweets from the (a) ASP.NET and (b) HTML clusters. Tweets which are proximal in time and have similar keywords belong to the same cluster.

memory, and achieve higher cluster quality than the current
stream clustering algorithms. By using a parallelized scheme
for updating the eigensystem and defining the kernel function
appropriately, our algorithm can be easily extended to cluster
parallel data streams and time series data. This is a potential
direction for future work.

REFERENCES

[1] R. Chitta, R. Jin, T. C. Havens, and A. K. Jain, “Approximate kernel k-
means: Solution to large scale kernel clustering,” in Proceedings of the
International Conference on Knowledge Discovery and Data mining,
2011, pp. 895–903.

[2] T. Liu, C. Rosenberg, and H. Rowley, “Clustering billions of images
with large scale nearest neighbor search,” in Proceedings of the IEEE
Workshop on Applications of Computer Vision, 2007, pp. 28–33.

[3] D. Judd, P. K. McKinley, and A. K. Jain, “Large-scale parallel data
clustering,” in Proceedings of the International Conference on Pattern
Recognition, vol. 4, 1996, pp. 488–493.

[4] M. Girolami, “Mercer kernel-based clustering in feature space,” IEEE
Transactions on Neural Networks, vol. 13, no. 3, pp. 780–784, 2002.

[5] M. Filippone, F. Camastra, F. Masulli, and S. Rovetta, “A survey
of kernel and spectral methods for clustering,” Pattern Recognition,
vol. 41, no. 1, pp. 176–190, 2008.

[6] A. Jain, Z. Zhang, and E. Y. Chang, “Adaptive non-linear clustering
in data streams,” in Proceedings of the International Conference on
Information and Knowledge Management, 2006, pp. 122–131.

[7] P. Drineas, M. Magdon-Ismail, M. W. Mahoney, and D. P. Woodruff,
“Fast approximation of matrix coherence and statistical leverage,” The
Journal of Machine Learning Research, vol. 13, no. 1, pp. 3475–3506,
2012.

[8] J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. de Carvalho,
and J. Gama, “Data stream clustering: A survey,” ACM Computing
Surveys, vol. 46, no. 1, pp. 1–37, 2013.
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