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Abstract—The ubiquity of personal computing technology has
produced an abundance of staggeringly large data sets—the
Library of Congress has stored over 160 terabytes of web data
and it is estimated that Facebook alone logs over 25 terabytes
of data per day. There is a great need for systems by which
one can elucidate the similarity and dissimilarity among and
between groups in these data sets. Clustering is one way to
find these groups. In this paper, we propose an approximation
method for the fuzzy and possibilistic kernel c-means clustering
algorithms. Our approximation constrains the cluster centers to
be linear combinations of a size m randomly selected subset of
the n input objects, where m << n. The proposed algorithm
only requires an m × n rectangular portion of the full n × n
kernel matrix and the n diagonal values, resulting in significant
memory savings. Furthermore, the computational complexity of
the c-means algorithm is substantially reduced. We demonstrate
that up to 3 orders of magnitude of speedup are possible while
achieving almost the same performance as the original kernel
c-means algorithm.

I. INTRODUCTION

Clustering algorithms are an integral part of both compu-

tational intelligence and pattern recognition. Often researchers

are mired in data sets that are large and unlabeled. There are

many methods, under the heading exploratory data analysis,

by which researchers can elucidate these data. Clustering is

one such exploratory tool for deducing the nature of the data

by providing labels to individual objects that describe how the

data separate into groups. Clustering has also been shown to

improve the performance of other algorithms or systems by

separating the problem-domain into manageable sub-groups—

a different algorithm or system is tuned to each cluster [1, 2].

Also, clustering has been used to infer the properties of

unlabeled objects by clustering these objects together with a set

of labeled objects (of which the properties are well understood)

[3, 4].

The problem domains and applications of clustering are

innumerable. Virtually every field, including biology, engi-

neering, medicine, finance, mathematics, and the arts, have

used clustering. Its function—grouping objects according to

a measure of similarity—is a basic part of intelligence and is

ubiquitous to the scientific endeavor.

Consider a set of n objects, denoted O = {o1, . . . , on},
e.g., sets of vintage bass guitars, freshwater fish, or genes in

a microarray experiment. Each object is typically represented

by an associated set of vectors X = {x1, . . . ,xn} ∈ R
d,

where each x is a numerical feature vector that describes the

objects’ attributes — examples include height, weight, length,

or expression value.

Clustering in unlabeled data X is defined as the assignment

of labels to groups of similar (unlabeled) objects O. In other

words, objects are partitioned into groups such that each group

is composed of objects with similar attributes. There are two

important factors that all clustering algorithms must consider:

1) the number (and, perhaps, type) of clusters to seek and, 2) a

mathematical way to determine the similarity between various

objects (or groups of objects). Let c denote the integer number

of clusters. The number of clusters can take the values c =
1, 2, . . . , n, where c = 1 results in the universal cluster—every

object is in one cluster—and c = n results in single-object

clusters—each object is a cluster. A wide array of algorithms

exists for clustering unlabeled object data O. Descriptions of

many of these algorithms, both relational and not, can be found

in the following general references on clustering: [5–12].

A partition of the objects is defined as the set of cn
values, where each value {uik} represents the degree to which

an object ok is in the ith cluster. The c-partition is often

represented as a c × n matrix U = [uik], where each row

represents a cluster and each column represents an object.

There are three main types of partitions, crisp, fuzzy (or

probabilistic), and possibilistic [7, 13]. Crisp partitions of the

unlabeled objects are non-empty mutually-disjoint subsets of

O such that the union of the subsets covers O. The set of all

non-degenerate (no zero rows) crisp c-partition matrices for the

object set O is described in (1), where uik is the membership
of object ok in cluster i; the partition element uik = 1 if ok is

labeled i and is 0 otherwise.

Fuzzy (or probabilistic) partitions are more flexible than

crisp partitions in that each object can have membership in

more than one cluster. Note, if U is probabilistic, the partition

values are interpreted as a probability p(i|ok) that ok is in the

i-th class. We assume, in this paper, that fuzzy and probabilistic

partitions are essentially equivalent from the point of view

of clustering algorithm development. The set of all fuzzy

c-partitions is described in (2). Each column of the fuzzy

partition U must sum to 1, thus ensuring that every object

is involved in a partition (
∑

i uik = 1).

Possibilistic partitions relax this condition, allowing parti-

tion columns that do not necessarily sum to 1. Possibilistic

clustering has been shown to be especially effective in parti-

tioning data that has outliers and intersecting clusters [13]. The
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set of all possibilistic c-partitions is described in (3), where uik

is the possibility that ok is in cluster i (this was also described

in [13] as the typicality of ok to cluster i). Notice that the

possibilistic partition ensures that there is at least one object

that has a non-zero possibility of being in each cluster (the

empty cluster cannot exist). An interesting property of these

three types of partitions is that all crisp partitions are fuzzy

partitions and all fuzzy partitions are possibilistic partitions.

Equations (1), (2), and (3), show that Mhcn ⊂Mfcn ⊂Mpcn.

All cluster analyses address the same questions, indepen-

dent of the type of partition. The three main questions are: i)

Cluster tendency—are there clusters, and how many clusters

are there? ii) Partitioning—which objects belong to which

cluster and to what degree? And iii) cluster validity—are the

partitions “good”? There are many algorithms that attempt

to answer these questions. This paper focuses on a specific

form of question ii), namely soft c-means partitioning of large

datasets in kernel-induced spaces.

A. Kernel c-Means

Consider some non-linear mapping function φ : x →
φ(x) ∈ R

DK , where DK is the dimensionality of the trans-

formed feature vector x. With kernel clustering, we do not

need to explicitly transform x, we simply need to represent the

dot product φ(x) · φ(x) = κ(x,x). The kernel function κ can

take many forms, with the polynomial κ(x,y) = (xTy + 1)p

and radial-basis-function (RBF) κ(x,y) = exp(||x − y||2/σ)
being two of the most well known. Given a set of n objects

X , we can thus construct an n×n kernel matrix K = [Kij =
κ(xi,xj)]

n×n. This kernel matrix K represents all pairwise dot

products of the feature vectors associated with n objects in the

transformed high-dimensional space—called the Reproducing

Kernel Hilbert Space (RKHS).

Given a kernel matrix K, the kernel c-means can be

generally defined as the constrained optimization in (4), where

U ∈ Mpcn, H = {ν1, . . . , νc} ∈ R0,+ is the cluster radii

set (which only applies to possibilistic clustering), m ≥ 1
is the fuzzification parameter, and dκ(xi,xk) is the kernel-

based distance between the ith and kth objects. All three of

the major c-means algorithms—hard, fuzzy, and possibilistic—

can be instantiated by adjusting the parameters appropriately in

the objective function in (4). Table I shows how the parameters

of (4) are set for each algorithm. For simplicity, we denote the

cluster center to object distance dκ(vj ,xi) as dκ(j, i).

TABLE I: Hard, Fuzzy, and Possibilistic Variations of Solving

the c-Means Optimization in Eq. (4) [14]

Algorithm m H U
Hard (Crisp) m = 1 νj = 0, ∀j Use Eq. (5)

Fuzzy m > 1 νj = 0, ∀j Use Eq. (6)
Possibilistic m > 1 νj > 0, ∀j Use Eq. (7)

Hard c-means membership update [15]:

uij =

{
1, dκ(j, i) = min1≤k≤c dκ(k, i)
0, else

, ∀j, i (5)

Fuzzy c-means membership update [15]:

uij =

(
c∑

k=1

(
dκ(j, i)

dκ(k, i)

) 2
m−1

)−1

, ∀i, j (6)

Possibilistic c-means membership update [15]:

uij =

(
1 +

(
dκ(j, i)

νj

) 2
m−1

)−1

, ∀i, j (7)

The partition update equations in Table I are all based on a

kernel distance between an object and a cluster center, which

is computed as

dκ(j, i) = ||φ(vj)− φ(xi)||2, (8)

where

φ(vj) =

∑n
l=1 u

m
ljφ(xl)∑n

l=1 u
m
lj

. (9)

We can simplify (8) by using the identity Kij = φ(xi) ·φ(xj)
and denoting ũj = um

j /||um
j ||1 (uj is the jth column of U ),
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where ei is a length n unit vector with the ith element equal

to 1.

In possibilistic c-means (PCM), the parameters ν determine

the influence of each cluster on the value of the objective

function in (4), where the second term in (4) penalizes the

trivial solution of uij = 0, ∀i, j.
Algorithms 1, 2, and 3 outline the kernel-based variants

of hard c-means (HCM), fuzzy c-means (FCM), and PCM,

respectively. This variant of the PCM algorithm first initializes

the memberships by using FCM, then the ν parameter is

estimated by

νj = Θ

∑n
i=1 u

m
ijdκ(j, i)∑n

i=1 u
m
ij

, ∀j, (11)

where Θ > 0 and is usually set to Θ = 1 [8, 13].

Algorithm 1: Hard c-Means (HCM) Kernel Clustering

Algorithm

Input: K - n× n kernel matrix

Data: m = 1, U ∈ {0, 1}c×n cluster membership matrix

Initialize U
while max{|U − U ′|} > 0 do

U ′ = U
Compute dκ(j, i), ∀i, j, using Eq.(10)

Update U using Eq. (5)

Algorithm 2: Fuzzy c-Means (FCM) Kernel Clustering

Algorithm

Input: K - n× n kernel matrix; m - fuzzifier

Data: U ∈ [0, 1]c×n cluster membership matrix

Initialize U
while max{|U − U ′|} > ε do

U ′ = U
Compute dκ(j, i), ∀i, j, using Eq.(10)

Update U using Eq. (6)

In all these c-means variants, Eq.(10) is computationally

expensive for large number of objects n as it requires O(n2)
operations. Furthermore, the entire kernel matrix K is required

and producing and storing this matrix for the entire data set

is often very computationally expensive; e.g., n = 100, 000
requires 40 gigabytes of memory, which is not a small amount

by today’s standards. We approximate dκ(j, i) by constraining

the space in which the cluster centers exist.

Algorithm 3: Possibilistic c-Means (PCM) Kernel Clus-

tering Algorithm [13, 16]

Input: K - n× n kernel matrix; m - fuzzifier

Data: U ∈ [0, 1]c×n cluster membership matrix

Run FCM to initialize U
Estimate νj by Eq. (11)

while max{|U − U ′|} > ε do
U ′ = U
Compute dκ(j, i), ∀i, j, using Eq. (10)

Update U using Eq.(7)

II. LARGE SCALE c-MEANS APPROXIMATION

ALGORITHMS

The cluster centers in kernel c-means algorithms are rep-

resented by a linear sum of the high-dimensional transformed

features φ(xi),

φ(vj) =
n∑

i=1

ũijφ(xi), (12)

where this equation is equivalent to (9) with ũij substituted. In

data where the number of objects n is large, we hypothesize

that the cluster centers φ(vj) can be accurately represented

by a subset of the feature vectors φ(x). Let ξ = (ξ1, . . . , ξn)
be binary variables indicating the instances that are selected

for constructing the cluster centers, with ξi = 1 if xi is

selected and 0 otherwise. Let s denote the number of selected

objects, where s =
∑

i ξi. The following derivation follows,

very closely, that of our previous work [17] on approximating

HCM for large-scale data.

In our approximation, the cluster centers are approximated

by a linear sum of the selected feature vectors

φ̂(v) =

n∑
i=1

aiξiφ(xi), (13)

where ai is the weight of the ith feature vector. We are

only interested in the values of ai when ξi = 1; hence,

we denote the weights for the jth cluster center as αj =
(α1j = a(1), . . . , αsj = a(s)), where a(1), . . . , a(s) are the

set of associated weights where ξ = 1. Although this notation

seems cumbersome, it dramatically simplifies the description

of our derivation. With this notation, we can rewrite (13) for

the jth cluster center as

φ̂(vj) =

s∑
i=1

αijφ(x(i)), (14)

where it is clear now that we are representing the cluster center

φ(vj) as a linear sum of s selected objects.

Now we want to solve for the weights αj such that the

distance between the true cluster center and the approximated

cluster center, ||φ(vj)− φ̂(vj)||2, is minimized. This distance



can be written as

||φ(vj)− φ̂(vj)||2 =
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= ũT
j Kũj + (a ◦ ξ)Tj K(a ◦ ξ)j − 2ũT

j K(a ◦ ξ)j , (15)

where ◦ indicates the Hadamard product or element-by-

element multiplication (.* in MATLAB) and (a ◦ ξ)j is an

n-length vector that represents the weights of the approximated

cluster center φ̂(vj). We can substitute αj into (15) by defining

two sub-matrices of the kernel matrix K,

Kξξ = [Kij ]
s×s

, ξi = 1, ξj = 1, (16)

Kξ = [Ki]
n×s

, ξi = 1, (17)

where Ki is the ith column of K. Notice that Kξξ is the s×s
square matrix corresponding to the pairwise elements of K
for the ξ-selected objects. Kξ is the n× s rectangular matrix

corresponding to the columns of K for the ξ-selected objects;

also, Kξξ is a sub-matrix of Kξ. Hence, we can now rewrite

(15) as

||φ(vj)− φ̂(vj)||2 = ũT
j Kũj +αT

j Kξξαj − 2ũT
j Kξαj . (18)

We determine αj by minimizing (18) with respect to α, which

is solved by setting the derivative of (18) with respect to αj

to zero,

d||φ(vj)− φ̂(vj)||2
dαj

= 2Kξξαj − 2ũT
j Kξ = 0,

leading to the solution

αj = −
(
K−1

ξξ KT
ξ ũj

)T
. (19)

In practice, Kξξ could be rank-deficient (have a number of

relatively small eigenvalues); hence, it is advisable to use

a pseudo-inverse when computing K−1
ξξ , which we denote

as K†
ξξ. Also, the calculation of K−1

ξξ KT
ξ only needs to be

performed once, at the beginning of the algorithm, with the

result stored.

The key element of our approximation algorithms is the

redefinition of Eq. (10) using the solution of αj , i.e.,

d̂κ(j, i) = αt
jKξξαj +Kii − 2(Kξαj)i. (20)

Notice that we no longer require the full kernel matrix to

compute the distance d̂κ(j, i); the only required kernel matrix

elements are the diagonal elements (which for the RBF are all

equal to one) and the s columns of K corresponding to the

selected objects.

We are now ready to define our large-scale approximations

of the kernel FCM and PCM algorithms. Algorithms 4 and

5 outline the approximations of the kernel FCM and PCM

algorithms, respectively, which we call akFCM and akPCM.

The computational complexity of the distance calculation

in (20) is O(sn), which for s << n is a significant im-

provement on the O(n2) complexity of the full-kernel distance

calculation in (10). Furthermore, only sn + n − s elements

of K need to be calculated—the sn elements of Kξ and

Algorithm 4: Approximate Fuzzy c-Means (akFCM) Ker-

nel Clustering Algorithm

Input: Kξ - n× s kernel sub-matrix; diag(K) - Kernel

matrix diagonal; m - fuzzifier; ξ - selection vector

Data: U ∈ [0, 1]c×n cluster membership matrix

Initialize U
K̂ = −K†

ξξK
T
ξ

while max{|U − U ′|} > ε do
U ′ = U

αj =
(
K̂ũj

)T
, ∀j

d̂κ(j, i) = αt
jKξξαj +Kii − 2(Kξαj)i, ∀i, j

Update U using Eq. (6)

Algorithm 5: Approximate Possibilistic c-Means

(akPCM) Kernel Clustering Algorithm

Input: Kξ - n× s kernel sub-matrix; diag(K) - Kernel

matrix diagonal; m - fuzzifier; ξ - selection vector

Data: U ∈ [0, 1]c×n cluster membership matrix

K̂ = −K†
ξξK

T
ξ

Run akFCM to initialize U
Estimate νj by Eq. (11)

while max{|U − U ′|} > ε do
U ′ = U

αj =
(
K̂ũj

)T
, ∀j

d̂κ(j, i) = αt
jKξξαj +Kii − 2(Kξαj)i, ∀i, j

Update U using Eq. (7)

the n − s additional diagonal elements—which both reduces

the computation time to produce the kernel elements and the

storage requirements. However, for very large n both the com-

putational and memory requirements can still be significant—

e.g. a 10, 000×1, 000, 000 array of floats (4 bytes) requires 40

gigabytes of working memory. While this memory requirement

is large (at the time this paper was written), it is manageable

compared to the 4 terabyte memory requirement for the full

1, 000, 000× 1, 000, 000 kernel matrix.

The computational complexity of the pseudo-inverse of Kξξ

is O(m3), which could lead to problems for large m. However,

in practice, one could employ gradient descent to solve for α.

Next, we move on to some experiments.

III. EXPERIMENTS

We performed two sets of experiments. The first compared

the performance of the proposed algorithms with the full kernel

solution. The second set of experiments applies the proposed

algorithms to data sets for which computing the full kernel

solution was impossible because of memory limitations.

The experiments described in this paper were performed on

a single core of an AMD Opteron in a Sun Fire X4600 M2

server with 256 gigabytes of memory. All code was written in

the MATLAB [18] computing environment.



A. Evaluation Criteria

We judge the performance of our proposed algorithms with

three criteria. Each criteria is computed for 20 independent

runs. For each run, we initialize the full kernel c-means

and the sampled kernel c-means algorithms with the same

initialization. Thus, both the approximation algorithm and the

full kernel algorithm begin with the same initial partition,

with a different initialization for each run. We initialize U
by choosing c objects as the initial cluster centers. The value

of ε = 1× 10−3 and the fuzzifier m = 2.

1) Speedup Factor: This criteria represents an actual run-

time comparison. Speedup is defined as tfull/tsamp, where

these values are times in seconds for computing the member-

ship matrix U . Note that we de not include the time savings

from having to only compute a portion of the kernel matrix in

our calculation. Thus, the speedup we present is a conservative

measure. In practice, one would see further improvement by

only calculating the necessary portions of the kernel matrix—

the m× n rectangular matrix Kξ and the diagonal of K.

2) Cluster Purity: This measure is defined as

P =
1

n

c∑
j=1

max
ω∈Ω

|ω ∩ Cj |, (21)

where Ω is the set of all class labels and Cj is the set of

labels of the objects in the jth cluster. This measure cannot

be directly applied to soft partitions; hence, we first harden
the partitions before applying (21). Hardening is the process

of setting the maximum cluster membership in each column

of U to 1 and all else to 0.

The figures in this paper show relative purity, which is

calculated as Psamp − Pfull for each run.

3) Squared Error Distortion: This criteria is the c-means

objective and is defined as

E =

c∑
j=1

n∑
i=1

um
ji ||φ(vj)− φ(xi)||2 =

c∑
j=1

n∑
i=1

um
jidκ(j, i).

(22)

We present the % error in E, which is calculated as

% Error =
Esamp − Efull

Efull
∗ 100.

As with relative purity, % Error is only calculated between

the approximation result and the full kernel result that start

with the same initialization. By doing this, we are negating

the effect that the initialization has on the result.

B. Comparison with Full Kernel c-Means

We compared the proposed approximation to the full kernel

method on two different data sets.

1) A3: These data are composed of 7,500 2-dimensional

vectors, with a visually-preferred grouping into 50 clus-

ters.1 Figure 1 shows a plot of these data. We used the

RBF kernel with σ = 0.5.

1The A3 data was designed by Ilja Sidoroff and can be downloaded at
http://cs.joensuu.fi/∼isido/clustering/.

0 1 2 3 4 5 6 7

x 104

1

2

3

4

5

6

x 104

Feature 1

Fe
at

ur
e 

2

Fig. 1: Plot of A3 data set.

2) MNIST: This data set is a subset of the collection of

handwritten digits available from the National Institute
of Standards and Technology (NIST)2. There are 70,000

28 × 28 pixel images of the digits 0 to 9. Each pixel

has an integer value between 0 and 255. We normalize

the the pixel values to the interval [0, 1] by dividing by

255 and concatenate each image into a 784-dimensional

column vector. The kernel used for this example was

a degree-5 polynomial kernel κ(x,y) = (xTy + 1)5,

which was shown to be effective in [19].

Figure 2 illustrates the evaluation criteria for the sFCM

clustering algorithm on the A3 data set. The error-bars indicate

the maximum and minimum values of each criteria over 20

independent runs. View (a) shows that an order of magnitude

speedup is attained with sample sizes m ≤ 250, or at a

3% sampling rate. Views (b) and (c) show that even at very

low sample rates, the quality of the approximated clustering

solution is equal to that of the full kernel solution and in one

instance, at sample size m = 1500, the cluster purity was 2%

greater than that of the full kernel solution.

The results of the akPCM algorithm on the A3 data set

are illustrated in Fig. 3. View (a) shows that akPCM provides

similar speedup results as akFCM and views (b) and (c)

demonstrate that the quality of the solution is better than that

of the full kernel algorithm. We conjecture that this is because

the influence of objects in regions where classes overlap is

perhaps lessened by the sampling process.

Figures 4 and 5 show the results of the experiments per-

formed on the MNIST data set. The results of the akFCM algo-

rithm show significant speedup at low sampling rates (the two

lowest sampling rates are 0.1% and 0.2%, respectively) with

negligible difference in the quality of the clustering, relative

to the full kernel c-means. Figure 3(a) shows that 1-2 orders

of magnitude in speedup is achieved; however, in the akPCM

experiments, a degradation in the cluster purity of about 3%

was observed. Again, the lower sampling rates perform better

than the higher sampling rates. We aim to investigate this

phenomenon in subsequent studies and conjecture that this

behavior is either due to the psuedo-inverse calculation in the

approximation algorithm or because of the influence of outlier

2The MNIST data can be downloaded at http://yann.lecun.com/exdb/mnist/.
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Fig. 2: Performance of akFCM on A3 data set using RBF kernel with σ = 0.5, n = 7500, c = 50. Lines denotes mean values

over 21 runs; error-bars represent maximum and minimum values. Membership matrix was hardened to compute cluster purity.
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Fig. 3: Performance of akPCM on A3 data set using RBF kernel with σ = 0.5, n = 7500, c = 50. Lines denote mean values

over 21 runs; error-bars represent maximum and minimum values. Membership matrix was hardened to compute cluster purity.

and overlapping classes.

C. Performance on Very Large Data Sets

Now we present the results of our proposed approximation

algorithms on two data sets which are considerably larger than

than the those in the previous experiments.

To store the full kernel matrix for either of the data

sets in this section in single-precision format would require

1+ terabytes (1,000 gigabytes) of memory. At the time of

this study, 1 terabyte of memory was an exceptionally large

amount. Without considering distributed memory architectures,

this is out of reach for most researchers and consumers.

1) Forest Cover Type [20]3: These data are composed

of cartographic variables obtained from United States
Geological Survey (USGS) and United State Forest Ser-
vice (USFS) data. There are 10 quantitative variables,

such as elevation and horizontal distance to hydrology,

4 binary wilderness area designation variables, and 40

binary soil type variables. These features were collected

from a total of 581,012 30× 30 meter cells, which were

then determined to be one of 7 forest cover types by the

USFS. We normalize the features to the interval [0, 1].

3The Forest Cover Type and Quadreped Mammals data sets can be down-
loaded at http://uisacad2.uis.edu/dstar/data/clusteringdata.html.

2) Quadruped Mammals [20]: These data are generated

by the program animals.c, which can be downloaded

from the UCI Machine Learning depository. The pro-

gram generates instances of 72-dimensional feature vec-

tors which belong to one of 4 classes of animals: dogs,

cats, horses, and giraffes. We use 500,000 examples from

this data set, with an approximately equal number of

each class.

These problems become manageable by applying our ap-

proximation algorithms. We collected results for these two data

sets at sample rates, m = 0.01%n, 0.05%n, and 0.1%n. We

produced 5 random draws of the selection variable ξ and for

each random draw computed the akFCM and akPCM solutions

for 5 different initializations; thus, a total of 25 experiments

were done at each sample rate. Two different kernels were

used, a degree-2 polynomial and an RBF with σ = 2.

Table II contains the run-time and cluster purity values for

the two very large data sets. These results show that the akFCM

algorithm can be used to cluster the Mammals data set in 8

seconds, with a cluster purity of 85%, and the Cover Type data

set in 58 seconds, with a cluster purity of 52%.

For comparison, it was reported in [21] that the CLUTO

[22] hard clustering algorithm achieved a purity score of 0.49

in on the Cover Type data and 0.82 purity on the Mammals

data set. Our approximation algorithm produces results slightly
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Fig. 4: Performance of akFCM on MNIST data set using degree-5 polynomial kernel, n = 70000, c = 10. Lines denote mean

values over independent 21 runs; error-bars represent maximum and minimum values. Membership matrix was hardened to

compute cluster purity.
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Fig. 5: Performance of akPCM on MNIST data set using degree-5 polynomial kernel, n = 70000, c = 10. Lines denote mean

values over independent 21 runs; error-bars represent maximum and minimum values. Membership matrix was hardened to

compute cluster purity.

TABLE II: Clustering Results of akFCM and akPCM Algorithms on Very-Large Data

Data Set Quadruped Mammals Forest Cover Type
Kernel Degree-2 Polynomial RBF (σ = 1) Degree-2 Polynomial RBF (σ = 1)

Sample size m 50 250 500 50 250 500 59 291 582 59 291 582
akFCM c = 4 c = 7

Run-time (secs) 8 34 91 8 60 88 75 229 416 58 154 384
Purity 0.85 0.86 0.86 0.85 0.86 0.86 0.53 0.53 0.53 0.52 0.52 0.52

akPCM c = 4 c = 7
Run-time (secs) 30 129 199 35 151 224 125 352 600 87 215 570

Purity 0.68 0.69 0.71 0.68 0.69 0.69 0.50 0.50 0.50 0.49 0.49 0.49

better to those of CLUTO on these data. The GARDENHD

hard clustering algorithm [21] achieved a purity score of 0.65

on the Cover Type data; although, this algorithm is based on

recursive division of the vector data and determined that the

Cover Type data has 84 clusters. Cluster purity, by definition,

tends to increase as the number of clusters increases; e.g., when

the number of clusters c = n, purity = 1. Thus, comparing

our results directly against GARDENHD is not advised. The

GARDENHD algorithm achieved a purity of 0.76 with 1250

clusters and a purity of 1 with 6314 clusters on the Mammals

data set. In comparison, akFCM achieved a purity of 0.86 with

4 clusters on this data and many of the individual runs in our

experiment did produce a perfect cluster purity of 1. We believe

that these results show that our algorithm is producing results

that are as good as or better than existing algorithms that work

on large scale data.

IV. CONCLUSION

We proposed an approximation of the fuzzy and possibilistic

kernel c-means that has a reduced computational complexity

and memory requirement. Our experimental results show that

run-time can be decreased by 1-2 orders of magnitude, while

achieving equal clustering performance to the classical kernel

c-means. Furthermore, the memory requirements of our ap-

proximation is O(mn), compared to O(n2) for the full kernel

solution, where m << n.
In the future we are going to do a theoretical analysis on the

loss imposed on the fuzzy and possibilistic c-means objective

functions by the error in our approximation of the kernel-based



distance between the cluster-center and objects. We have done

analysis on a related approximation of the hard c-means, which

can be found in [17]. In short, we discovered that with some

modest assumptions the error imposed by our approximation

on the hard c-means objective decreases at the rate of O(1/m),
which is intuitively pleasing. We expect similar results with the

soft partitioning algorithms.

Also, we plan to investigate other sampling methods. There

have been many sampling methods, both random and deter-

ministic, proposed and analyzed for the Nyström method of

approximating a kernel matrix [23, 24]. We aim to further

investigate and build upon these methods to optimize the

trade-off between the computational complexity and memory

requirements and the imposed error.
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