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Organizing data into sensible groupings is one of the most fundamental modes of understanding and
learning. As an example, a common scheme of scientific classification puts organisms into a system of
ranked taxa: domain, kingdom, phylum, class, etc. Cluster analysis is the formal study of methods and
algorithms for grouping, or clustering, objects according to measured or perceived intrinsic characteris-
tics or similarity. Cluster analysis does not use category labels that tag objects with prior identifiers, i.e.,
class labels. The absence of category information distinguishes data clustering (unsupervised learning)
from classification or discriminant analysis (supervised learning). The aim of clustering is to find struc-
ture in data and is therefore exploratory in nature. Clustering has a long and rich history in a variety
of scientific fields. One of the most popular and simple clustering algorithms, K-means, was first pub-
lished in 1955. In spite of the fact that K-means was proposed over 50 years ago and thousands of clus-
tering algorithms have been published since then, K-means is still widely used. This speaks to the
difficulty in designing a general purpose clustering algorithm and the ill-posed problem of clustering.
We provide a brief overview of clustering, summarize well known clustering methods, discuss the major
challenges and key issues in designing clustering algorithms, and point out some of the emerging and
useful research directions, including semi-supervised clustering, ensemble clustering, simultaneous fea-
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ture selection during data clustering, and large scale data clustering.
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1. Introduction

Advances in sensing and storage technology and dramatic
growth in applications such as Internet search, digital imaging,
and video surveillance have created many high-volume, high-
dimensional data sets. It is estimated that the digital universe con-
sumed approximately 281 exabytes in 2007, and it is projected to
be 10 times that size by 2011 (1exabyte is ~10'® bytes or
1,000,000 terabytes) (Gantz, 2008). Most of the data is stored dig-
itally in electronic media, thus providing huge potential for the
development of automatic data analysis, classification, and retrie-
val techniques. In addition to the growth in the amount of data,
the variety of available data (text, image, and video) has also in-
creased. Inexpensive digital and video cameras have made avail-
able huge archives of images and videos. The prevalence of RFID
tags or transponders due to their low cost and small size has re-
sulted in the deployment of millions of sensors that transmit data
regularly. E-mails, blogs, transaction data, and billions of Web
pages create terabytes of new data every day. Many of these data
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streams are unstructured, adding to the difficulty in analyzing
them.

The increase in both the volume and the variety of data requires
advances in methodology to automatically understand, process,
and summarize the data. Data analysis techniques can be broadly
classified into two major types (Tukey, 1977): (i) exploratory or
descriptive, meaning that the investigator does not have pre-spec-
ified models or hypotheses but wants to understand the general
characteristics or structure of the high-dimensional data, and (ii)
confirmatory or inferential, meaning that the investigator wants
to confirm the validity of a hypothesis/model or a set of assump-
tions given the available data. Many statistical techniques have
been proposed to analyze the data, such as analysis of variance,
linear regression, discriminant analysis, canonical correlation
analysis, multi-dimensional scaling, factor analysis, principal com-
ponent analysis, and cluster analysis to name a few. A useful
overview is given in (Tabachnick and Fidell, 2007).

In pattern recognition, data analysis is concerned with predic-
tive modeling: given some training data, we want to predict the
behavior of the unseen test data. This task is also referred to as
learning. Often, a clear distinction is made between learning prob-
lems that are (i) supervised (classification) or (ii) unsupervised
(clustering), the first involving only labeled data (training patterns
with known category labels) while the latter involving only unla-
beled data (Duda et al., 2001). Clustering is a more difficult and
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challenging problem than classification. There is a growing interest
in a hybrid setting, called semi-supervised learning (Chapelle et al.,
2006); in semi-supervised classification, the labels of only a small
portion of the training data set are available. The unlabeled data,
instead of being discarded, are also used in the learning process.
In semi-supervised clustering, instead of specifying the class labels,
pair-wise constraints are specified, which is a weaker way of
encoding the prior knowledge. A pair-wise must-link constraint
corresponds to the requirement that two objects should be as-
signed the same cluster label, whereas the cluster labels of two ob-
jects participating in a cannot-link constraint should be different.
Constraints can be particularly beneficial in data clustering (Lange
et al., 2005; Basu et al., 2008), where precise definitions of under-
lying clusters are absent. In the search for good models, one would
like to include all the available information, no matter whether it is
unlabeled data, data with constraints, or labeled data. Fig. 1 illus-
trates this spectrum of different types of learning problems of
interest in pattern recognition and machine learning.

2. Data clustering

The goal of data clustering, also known as cluster analysis, is to
discover the natural grouping(s) of a set of patterns, points, or ob-
jects. Webster (Merriam-Webster Online Dictionary, 2008) defines
cluster analysis as “a statistical classification technique for discov-
ering whether the individuals of a population fall into different
groups by making quantitative comparisons of multiple character-
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istics.” An example of clustering is shown in Fig. 2. The objective is
to develop an automatic algorithm that will discover the natural
groupings (Fig. 2b) in the unlabeled data (Fig. 2a).

An operational definition of clustering can be stated as fol-
lows: Given a representation of n objects, find K groups based
on a measure of similarity such that the similarities between ob-
jects in the same group are high while the similarities between
objects in different groups are low. But, what is the notion of
similarity? What is the definition of a cluster? Fig. 2 shows that
clusters can differ in terms of their shape, size, and density. The
presence of noise in the data makes the detection of the clusters
even more difficult. An ideal cluster can be defined as a set of
points that is compact and isolated. In reality, a cluster is a sub-
jective entity that is in the eye of the beholder and whose signif-
icance and interpretation requires domain knowledge. But, while
humans are excellent cluster seekers in two and possibly three
dimensions, we need automatic algorithms for high-dimensional
data. It is this challenge along with the unknown number of clus-
ters for the given data that has resulted in thousands of cluster-
ing algorithms that have been published and that continue to
appear.

2.1. Why clustering?

Cluster analysis is prevalent in any discipline that involves anal-
ysis of multivariate data. A search via Google Scholar (2009) found
1660 entries with the words data clustering that appeared in 2007
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Fig. 1. Learning problems: dots correspond to points without any labels. Points with labels are denoted by plus signs, asterisks, and crosses. In (c), the must-link and cannot-
link constraints are denoted by solid and dashed lines, respectively (figure taken from Lange et al. (2005).
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Fig. 2. Diversity of clusters. The seven clusters in (a) (denoted by seven different colors in 1(b)) differ in shape, size, and density. Although these clusters are apparent to a data

analyst, none of the available clustering algorithms can detect all these clusters.
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alone. This vast literature speaks to the importance of clustering in
data analysis. It is difficult to exhaustively list the numerous scien-
tific fields and applications that have utilized clustering techniques
as well as the thousands of published algorithms. Image segmenta-
tion, an important problem in computer vision, can be formulated
as a clustering problem (Jain and Flynn, 1996; Frigui and Krish-
napuram, 1999; Shi and Malik, 2000). Documents can be clustered
(Iwayama and Tokunaga, 1995) to generate topical hierarchies for
efficient information access (Sahami, 1998) or retrieval (Bhatia and
Deogun, 1998). Clustering is also used to group customers into dif-
ferent types for efficient marketing (Arabie and Hubert, 1994), to
group services delivery engagements for workforce management
and planning (Hu et al., 2007) as well as to study genome data (Bal-
di and Hatfield, 2002) in biology.

Data clustering has been used for the following three main
purposes.

e Underlying structure: to gain insight into data, generate hypoth-
eses, detect anomalies, and identify salient features.

e Natural classification: to identify the degree of similarity among
forms or organisms (phylogenetic relationship).

e Compression: as a method for organizing the data and summariz-
ing it through cluster prototypes.

An example of class discovery is shown in Fig. 3. Here, cluster-
ing was used to discover subclasses in an online handwritten char-
acter recognition application (Connell and Jain, 2002). Different
users write the same digits in different ways, thereby increasing
the within-class variance. Clustering the training patterns from a
class can discover new subclasses, called the lexemes in handwrit-
ten characters. Instead of using a single model for each character,
multiple models based on the number of subclasses are used to im-
prove the recognition accuracy (see Fig. 3).

Given the large number of Web pages on the Internet, most
search queries typically result in an extremely large number of
hits. This creates the need for search results to be organized. Search
engines like Clusty (www.clusty.org) cluster the search results and
present them in a more organized way to the user.

2.2. Historical developments

The development of clustering methodology has been a truly
interdisciplinary endeavor. Taxonomists, social scientists, psychol-
ogists, biologists, statisticians, mathematicians, engineers, com-
puter scientists, medical researchers, and others who collect and
process real data have all contributed to clustering methodology.
According to JSTOR (2009), data clustering first appeared in the title
of a 1954 article dealing with anthropological data. Data clustering
is also known as Q-analysis, typology, clumping, and taxonomy
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(Jain and Dubes, 1988) depending on the field where it is applied.
There are several books published on data clustering; classic ones
are by Sokal and Sneath (1963), Anderberg (1973), Hartigan (1975),
Jain and Dubes (1988), and Duda et al. (2001). Clustering algo-
rithms have also been extensively studied in data mining (see
books by Han and Kamber (2000) and Tan et al. (2005) and ma-
chine learning (Bishop, 2006).

Clustering algorithms can be broadly divided into two groups:
hierarchical and partitional. Hierarchical clustering algorithms
recursively find nested clusters either in agglomerative mode
(starting with each data point in its own cluster and merging the
most similar pair of clusters successively to form a cluster hierar-
chy) or in divisive (top-down) mode (starting with all the data
points in one cluster and recursively dividing each cluster into
smaller clusters). Compared to hierarchical clustering algorithms,
partitional clustering algorithms find all the clusters simulta-
neously as a partition of the data and do not impose a hierarchical
structure. Input to a hierarchical algorithm is an n x n similarity
matrix, where n is the number of objects to be clustered. On the
other hand, a partitional algorithm can use either an n x d pattern
matrix, where n objects are embedded in a d-dimensional feature
space, or an n x n similarity matrix. Note that a similarity matrix
can be easily derived from a pattern matrix, but ordination meth-
ods such as multi-dimensional scaling (MDS) are needed to derive
a pattern matrix from a similarity matrix.

The most well-known hierarchical algorithms are single-link
and complete-link; the most popular and the simplest partitional
algorithm is K-means. Since partitional algorithms are preferred
in pattern recognition due to the nature of available data, our cov-
erage here is focused on these algorithms. K-means has a rich and
diverse history as it was independently discovered in different sci-
entific fields by Steinhaus (1956), Lloyd (proposed in 1957, pub-
lished in 1982), Ball and Hall (1965), and MacQueen (1967). Even
though K-means was first proposed over 50 years ago, it is still
one of the most widely used algorithms for clustering. Ease of
implementation, simplicity, efficiency, and empirical success are
the main reasons for its popularity. Below we will first summarize
the development in K-means, and then discuss the major ap-
proaches that have been developed for data clustering.

2.3. K-means algorithm

Let X = {x;},i=1,...,n be the set of n d-dimensional points to
be clustered into a set of K clusters, C = {c, k = 1,...,K}. K-means
algorithm finds a partition such that the squared error between the
empirical mean of a cluster and the points in the cluster is mini-
mized. Let y, be the mean of cluster cy. The squared error between
1, and the points in cluster ¢, is defined as

Vi
<

e 3. P i
= 2 -1l 3 a 2
) 2 > iy
aD 72z a2 3 =
(a) (b)
e, ~

I Lo <

/ ~X !

[/

:

(©

(d)

Fig. 3. Finding subclasses using data clustering. (a) and (b) show two different ways of writing the digit 2; (c) three different subclasses for the character ‘f’; (d) three different

subclasses for the letter ‘y’.
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The goal of K-means is to minimize the sum of the squared error
over all K clusters,
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Minimizing this objective function is known to be an NP-hard prob-
lem (even for K = 2) (Drineas et al., 1999). Thus K-means, which is a
greedy algorithm, can only converge to a local minimum, even
though recent study has shown with a large probability K-means
could converge to the global optimum when clusters are well sep-
arated (Meila, 2006). K-means starts with an initial partition with
K clusters and assign patterns to clusters so as to reduce the squared
error. Since the squared error always decreases with an increase in
the number of clusters K (with J(C) = 0 when K = n), it can be mini-
mized only for a fixed number of clusters. The main steps of K-
means algorithm are as follows (Jain and Dubes, 1988):

1. Select an initial partition with K clusters; repeat steps 2 and 3
until cluster membership stabilizes.

2. Generate a new partition by assigning each pattern to its closest
cluster center.

3. Compute new cluster centers.

Fig. 4 shows an illustration of the K-means algorithm on a 2-
dimensional dataset with three clusters.

2.4. Parameters of K-means

The K-means algorithm requires three user-specified parame-
ters: number of clusters K, cluster initialization, and distance met-
ric. The most critical choice is K. While no perfect mathematical
criterion exists, a number of heuristics (see (Tibshirani et al.,

2001), and discussion therein) are available for choosing K. Typi-
cally, K-means is run independently for different values of K and
the partition that appears the most meaningful to the domain ex-
pert is selected. Different initializations can lead to different final
clustering because K-means only converges to local minima. One
way to overcome the local minima is to run the K-means algo-
rithm, for a given K, with multiple different initial partitions and
choose the partition with the smallest squared error.

K-means is typically used with the Euclidean metric for com-
puting the distance between points and cluster centers. As a result,
K-means finds spherical or ball-shaped clusters in data. K-means
with Mahalanobis distance metric has been used to detect hyper-
ellipsoidal clusters (Mao and Jain, 1996), but this comes at the ex-
pense of higher computational cost. A variant of K-means using the
Itakura-Saito distance has been used for vector quantization in
speech processing (Linde et al., 1980) and K-means with L; dis-
tance was proposed in (Kashima et al.,, 2008). Banerjee et al.
(2004) exploits the family of Bregman distances for K-means.

2.5. Extensions of K-means

The basic K-means algorithm has been extended in many differ-
ent ways. Some of these extensions deal with additional heuristics
involving the minimum cluster size and merging and splitting clus-
ters. Two well-known variants of K-means in pattern recognition
literature are ISODATA Ball and Hall (1965) and FORGY Forgy
(1965). In K-means, each data point is assigned to a single cluster
(called hard assignment). Fuzzy c-means, proposed by Dunn
(1973) and later improved by Bezdek (1981), is an extension of
K-means where each data point can be a member of multiple clus-
ters with a membership value (soft assignment). A good overview of
fuzzy set based clustering is available in (Backer, 1978). Data
reduction by replacing group examples with their centroids before
clustering them was used to speed up K-means and fuzzy C-means
in (Eschrich et al., 2003). Some of the other significant modifica-
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Fig. 4. Illustration of K-means algorithm. (a) Two-dimensional input data with three clusters; (b) three seed points selected as cluster centers and initial assignment of the
data points to clusters; (c) and (d) intermediate iterations updating cluster labels and their centers; (e) final clustering obtained by K-means algorithm at convergence.
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tions are summarized below. Steinbach et al. (2000) proposed a
hierarchical divisive version of K-means, called bisecting K-means,
that recursively partitions the data into two clusters at each step.
In (Pelleg and Moore, 1999), kd-tree is used to efficiently identify
the closest cluster centers for all the data points, a key step in K-
means. Bradley et al. (1998) presented a fast scalable and single-
pass version of K-means that does not require all the data to be
fit in the memory at the same time. X-means (Pelleg and Moore,
2000) automatically finds K by optimizing a criterion such as
Akaike Information Criterion (AIC) or Bayesian Information Crite-
rion (BIC). In K-medoid (Kaufman and Rousseeuw, 2005), clusters
are represented using the median of the data instead of the mean.
Kernel K-means (Scholkopf et al., 1998) was proposed to detect
arbitrary shaped clusters, with an appropriate choice of the kernel
similarity function. Note that all these extensions introduce some
additional algorithmic parameters that must be specified by the
user.

2.6. Major approaches to clustering

As mentioned before, thousands of clustering algorithms have
been proposed in the literature in many different scientific disci-
plines. This makes it extremely difficult to review all the pub-
lished approaches. Nevertheless, clustering methods differ in the
choice of the objective function, probabilistic generative models,
and heuristics. We will briefly review some of the major
approaches.

Clusters can be defined as high density regions in the feature
space separated by low density regions. Algorithms following this
notion of clusters directly search for connected dense regions in
the feature space. Different algorithms use different definitions of
connectedness. The Jarvis-Patrick algorithm defines the similarity
between a pair of points as the number of common neighbors they
share, where neighbors are the points present in a region of pre-
specified radius around the point (Frank and Todeschini, 1994). Es-
ter et al. (1996) proposed the DBSCAN clustering algorithm, which
is similar to the Jarvis-Patrick algorithm. It directly searches for
connected dense regions in the feature space by estimating the
density using the Parzen window method. The performance of
the Jarvis-Patrick algorithm and DBSCAN depend on two parame-
ters: neighborhood size in terms of distance, and the minimum
number of points in a neighborhood for its inclusion in a cluster.
In addition, a number of probabilistic models have been developed
for data clustering that model the density function by a probabilis-
tic mixture model. These approaches assume that the data is gen-
erated from a mixture distribution, where each cluster is described
by one or more mixture components (McLachlan and Basford,
1987). The EM algorithm (Dempster et al., 1977) is often used to
infer the parameters in mixture models. Several Bayesian ap-
proaches have been developed to improve the mixture models
for data clustering, including Latent Dirichlet Allocation (LDA) (Blei
et al., 2003), Pachinko Allocation model (Li and McCallum, 2006)
and undirected graphical model for data clustering (Welling
et al., 2005).

While the density based methods, particularly the non-para-
metric density based approaches, are attractive because of their
inherent ability to deal with arbitrary shaped clusters, they have
limitations in handling high-dimensional data. When the data is
high-dimensional, the feature space is usually sparse, making it
difficult to distinguish high-density regions from low-density re-
gions. Subspace clustering algorithms overcome this limitation
by finding clusters embedded in low-dimensional subspaces of
the given high-dimensional data. CLIQUE (Agrawal et al., 1998) is
a scalable clustering algorithm designed to find subspaces in the
data with high-density clusters. Because it estimates the density

only in a low dimensional subspace, CLIQUE does not suffer from
the problem of high dimensionality.

Graph theoretic clustering, sometimes referred to as spectral
clustering, represents the data points as nodes in a weighted
graph. The edges connecting the nodes are weighted by their
pair-wise similarity. The central idea is to partition the nodes into
two subsets A and B such that the cut size, i.e.,, the sum of the
weights assigned to the edges connecting between nodes in A
and B, is minimized. Initial algorithms solved this problem using
the minimum cut algorithm, which often results in clusters of
imbalanced sizes. A cluster size (number of data points in a clus-
ter) constraint was later adopted by the ratio cut algorithm (Ha-
gen and Kahng, 1992). An efficient approximate graph-cut based
clustering algorithm with cluster size (volume of the cluster, or
sum of edge weights within a cluster) constraint, called Normal-
ized Cut, was first proposed by Shi and Malik (2000). Its multi-
class version was proposed by Yu and Shi (2003). Meila and Shi
(2001) presented a Markov Random Walk view of spectral clus-
tering and proposed the Modified Normalized Cut (MNCut) algo-
rithm that can handle an arbitrary number of clusters. Another
variant of spectral clustering algorithm was proposed by Ng
et al. (2001), where a new data representation is derived from
the normalized eigenvectors of a kernel matrix. Laplacian Eigen-
map (Belkin and Niyogi, 2002) is another spectral clustering
method that derives the data representation based on the eigen-
vectors of the graph Laplacian. Hofmann and Buhmann (1997)
proposed a deterministic annealing algorithm for clustering data
represtented using proximity measures between the data objects.
Pavan and Pelillo (2007) formulate the pair-wise clustering prob-
lem by relating clusters to maximal dominant sets (Motzkin and
Straus, 1965), which are a continuous generalization of cliques
in a graph.

Several clustering algorithms have an information theoretic
formulation. For example, the minimum entropy method pre-
sented in Roberts et al. (2001) assumes that the data is generated
using a mixture model and each cluster is modeled using a semi-
parametric probability density. The parameters are estimated by
maximizing the KL-divergence between the unconditional density
and the conditional density of a data points conditioned over the
cluster. This minimizes the overlap between the conditional and
unconditional densities, thereby separating the clusters from
each other. In other words, this formulation results in an ap-
proach that minimizes the expected entropy of the partitions
over the observed data. The information bottleneck method
(Tishby et al.,, 1999) was proposed as a generalization to the
rate-distortion theory and adopts a lossy data compression view.
In simple words, given a joint distribution over two random vari-
ables, information bottleneck compresses one of the variables
while retaining the maximum amount of mutual information
with respect to the other variable. An application of this to doc-
ument clustering is shown in (Slonim and Tishby, 2000) where
the two random variables are words and documents. The words
are clustered first, such that the mutual information with respect
to documents is maximally retained, and using the clustered
words, the documents are clustered such that the mutual infor-
mation between clustered words and clustered documents is
maximally retained.

3. User’s dilemma

In spite of the prevalence of such a large number of clustering
algorithms, and their success in a number of different application
domains, clustering remains a difficult problem. This can be attrib-
uted to the inherent vagueness in the definition of a cluster, and
the difficulty in defining an appropriate similarity measure and
objective function.
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The following fundamental challenges associated with cluster-
ing were highlighted in (Jain and Dubes, 1988), which are relevant
even to this day.

a) What is a cluster?

b) What features should be used?

c) Should the data be normalized?

d) Does the data contain any outliers?

e) How do we define the pair-wise similarity?

(f) How many clusters are present in the data?

(g) Which clustering method should be used?

(h) Does the data have any clustering tendency?
(i) Are the discovered clusters and partition valid?

(
(
(
(
(

We will highlight and illustrate some of these challenges below.

3.1. Data representation

Data representation is one of the most important factors that
influence the performance of the clustering algorithm. If the repre-
sentation (choice of features) is good, the clusters are likely to be
compact and isolated and even a simple clustering algorithm such
as K-means will find them. Unfortunately, there is no universally
good representation; the choice of representation must be guided
by the domain knowledge. Fig. 5a shows a dataset where K-means
fails to partition it into the two “natural” clusters. The partition ob-
tained by K-means is shown by a dashed line in Fig. 5a. However,
when the same data points in (a) are represented using the top two
eigenvectors of the RBF similarity matrix computed from the data
in Fig. 5b, they become well separated, making it trivial for K-
means to cluster the data (Ng et al., 2001).

3.2. Purpose of grouping

The representation of the data is closely tied with the purpose
of grouping. The representation must go hand in hand with the
end goal of the user. An example dataset of 16 animals represented
using 13 Boolean features was used in (Pampalk et al., 2003) to
demonstrate how the representation affects the grouping. The ani-
mals are represented using 13 Boolean features related to their
appearance and activity. When a large weight is placed on the
appearance features compared to the activity features, the animals
were clustered into mammals vs. birds. On the other hand, a large
weight on the activity features clustered the dataset into predators

vs. non-predators. Both these partitionings shown in Fig. 6 are
equally valid, and they uncover meaningful structures in the data.
It is up to the user to carefully choose his representation to obtain a
desired clustering.

3.3. Number of clusters

Automatically determining the number of clusters has been one
of the most difficult problems in data clustering. Most methods for
automatically determining the number of clusters cast it into the
problem of model selection. Usually, clustering algorithms are
run with different values of K; the best value of K is then chosen
based on a predefined criterion. Figueiredo and Jain (2002) used
the minimum message length (MML) criteria (Wallace and Boul-
ton, 1968; Wallace and Freeman, 1987) in conjunction with the
Gaussian mixture model (GMM) to estimate K. Their approach
starts with a large number of clusters, and gradually merges the
clusters if this leads to a decrease in the MML criterion. A related
approach but using the principle of Minimum Description Length
(MDL) was used in (Hansen and Yu, 2001) for selecting the number
of clusters. The other criteria for selecting the number of clusters
are the Bayes Information Criterion (BIC) and Akiake Information
Criterion (AIC). Gap statistics (Tibshirani et al., 2001) is another
commonly used approach for deciding the number of clusters.
The key assumption is that when dividing data into an optimal
number of clusters, the resulting partition is most resilient to the
random perturbations. The Dirichlet Process (DP) (Ferguson,
1973; Rasmussen, 2000) introduces a non-parametric prior for
the number of clusters. It is often used by probabilistic models to
derive a posterior distribution for the number of clusters, from
which the most likely number of clusters can be computed. In spite
of these objective criteria, it is not easy to decide which value of K
leads to more meaningful clusters. Fig. 7a shows a two-dimen-
sional synthetic dataset generated from a mixture of six Gaussian
components. The true labels of the points are shown in Fig. 7e.
When a mixture of Gaussians is fit to the data with 2, 5, and 6 com-
ponents, shown in Fig. 7b-d, respectively, each one of them seems
to be a reasonable fit.

3.4. Cluster validity

Clustering algorithms tend to find clusters in the data irrespec-
tive of whether or not any clusters are present. Fig. 8a shows a
dataset with no natural clustering; the points here were generated

(a)

(b)

Fig. 5. Importance of a good representation. (a) “Two rings” dataset where K-means fails to find the two “natural” clusters; the dashed line shows the linear cluster separation
boundary obtained by running K-means with K = 2. (b) a new representation of the data in (a) based on the top 2 eigenvectors of the graph Laplacian of the data, computed

using an RBF kernel; K-means now can easily detect the two clusters.
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Fig. 6. Different weights on features result in different partitioning of the data. Sixteen animals are represented based on 13 Boolean features related to appearance and
activity. (a) Partitioning with large weights assigned to the appearance based features; (b) a partitioning with large weights assigned to the activity features. The figures in (a)
and (b) are excerpted from Pampalk et al. (2003), and are known as “heat maps” where the colors represent the density of samples at a location; the warmer the color, the

larger the density.

uniformly in a unit square. However, when the K-means algorithm
is run on this data with K = 3, three clusters are identified as shown
in Fig. 8b! Cluster validity refers to formal procedures that evaluate
the results of cluster analysis in a quantitative and objective fash-
ion (Jain and Dubes, 1988). In fact, even before a clustering algo-
rithm is applied to the data, the user should determine if the
data even has a clustering tendency (Smith and Jain, 1984).
Cluster validity indices can be defined based on three different
criteria: internal, relative, and external (Jain and Dubes, 1988). Indi-
ces based on internal criteria assess the fit between the structure
imposed by the clustering algorithm (clustering) and the data

using the data alone. Indices based on relative criteria compare
multiple structures (generated by different algorithms, for exam-
ple) and decide which of them is better in some sense. External
indices measure the performance by matching cluster structure to
the a priori information, namely the “true” class labels (often re-
ferred to as ground truth). Typically, clustering results are evalu-
ated using the external criterion, but if the true labels are
available, why even bother with clustering? The notion of cluster
stability (Lange et al., 2004) is appealing as an internal stability
measure. Cluster stability is measured as the amount of variation
in the clustering solution over different subsamples drawn from

(a) Input data

(b) GMM (K=2)

(c) GMM (K=5)

(d) GMM (K=6)

(e) True labels, K=6

Fig. 7. Automatic selection of number of clusters, K. (a) Input data generated from a mixture of six Gaussian distributions; (b)-(d) Gaussian mixture model (GMM) fit to the

data with 2, 5, and 6 components, respectively; and (e) true labels of the data.
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Fig. 8. Cluster validity. (a) A dataset with no “natural” clustering; (b) K-means partition with K= 3.

the input data. Different measures of variation can be used to ob-
tain different stability measures. In (Lange et al., 2004), a super-
vised classifier is trained on one of the subsamples of the data,
by using the cluster labels obtained by clustering the subsample,
as the true labels. The performance of this classifier on the testing
subset(s) indicates the stability of the clustering algorithm. In
model based algorithms (e.g., centroid based representation of
clusters in K-means, or Gaussian mixture models), the distance be-
tween the models found for different subsamples can be used to
measure the stability (von Luxburg and David, 2005). Shamir and
Tishby (2008) define stability as the generalization ability of a clus-
tering algorithm (in PAC-Bayesian sense). They argue that since
many algorithms can be shown to be asymptotically stable, the
rate at which the asymptotic stability is reached with respect to
the number of samples is a more useful measure of cluster stabil-
ity. Cross-validation is a widely used evaluation method in super-
vised learning. It has been adapted to unsupervised learning by
replacing the notation of “prediction accuracy” with a different
validity measure. For example, given the mixture models obtained
from the data in one fold, the likelihood of the data in the other
folds serves as an indication of the algorithm’s performance, and
can be used to determine the number of clusters K.

3.5. Comparing clustering algorithms

Different clustering algorithms often result in entirely different
partitions even on the same data. In Fig. 9, seven different algo-
rithms were applied to cluster the 15 two-dimensional points.
FORGY, ISODATA, CLUSTER, and WISH are partitional algorithms
that minimize the squared error criterion (they are variants of
the basic K-means algorithm). Of the remaining three algorithms,
MST (minimum spanning tree) can be viewed as a single-link hier-
archical algorithm, and JP is a nearest neighbor clustering algo-
rithm. Note that a hierarchical algorithm can be used to generate
a partition by specifying a threshold on the similarity. It is evident
that none of the clustering is superior to the other, but some are
similar to the other.

An interesting question is to identify algorithms that generate
similar partitions irrespective of the data. In other words, can we
cluster the clustering algorithms? Jain et al. (2004) clustered 35
different clustering algorithms into 5 groups based on their parti-
tions on 12 different datasets. The similarity between the cluster-
ing algorithms is measured as the averaged similarity between
the partitions obtained on the 12 datasets. The similarity between
a pair of partitions is measured using the Adjusted Rand Index
(ARI). A hierarchical clustering of the 35 clustering algorithms is

o

&3

(a) 15 points in 2D (b) MST (c) FORGY (d) ISODATA
(e) WISH (f) CLUSTER (g) Complete-link (h) JP

Fig. 9. Several clusterings of fifteen patterns in two dimensions: (a) fifteen patterns; (b) minimum spanning tree of the fifteen patterns; (c) clusters from FORGY; (d) clusters
from ISODATA; (e) clusters from WISH; (f) clusters from CLUSTER; (g) clusters from complete-link hierarchical clustering; and (h) clusters from Jarvis-Patrick clustering

algorithm. (Figure reproduced from Dubes and Jain (1976).)
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(b)

Fig. 10. Clustering of clustering algorithms. (a) Hierarchical clustering of 35 different algorithms; (b) Sammon’s mapping of the 35 algorithms into a two-dimensional space,
with the clusters highlighted for visualization. The algorithms in the group (4, 29, 31-35) correspond to K-means, spectral clustering, Gaussian mixture models, and Ward’s
linkage. The algorithms in group (6, 8-10) correspond to CHAMELEON algorithm with different objective functions.

shown in Fig. 10a. It is not surprising to see that the related algo-
rithms are clustered together. For a visualization of the similarity
between the algorithms, the 35 algorithms are also embedded in
a two-dimensional space; this is achieved by applying the Sam-
mon’s projection algorithm (Sammon, 1969) to the 35 x 35 simi-
larity matrix. Fig. 10b shows that all the CHAMELEON variations
(6, 8-10) are clustered into a single cluster. This plot suggests that
the clustering algorithms following the same clustering strategy
result in similar clustering in spite of minor variations in the
parameters or objective functions involved. In (Meila, 2003), a dif-
ferent metric in the space of clusterings, termed Variation of Infor-
mation, was proposed. It measures the similarity between two
clustering algorithms by the amount of information lost or gained
when choosing one clustering over the other.

Clustering algorithms can also be compared at the theoretical le-
vel based on their objective functions. In order to perform such a
comparison, a distinction should be made between a clustering
method and a clustering algorithm (Jain and Dubes, 1988). A cluster-
ing method is a general strategy employed to solve a clustering prob-
lem. A clustering algorithm, on the other hand, is simply an instance
of a method. For instance, minimizing the squared error is a cluster-
ing method, and there are many different clustering algorithms,
including K-means, that implement the minimum squared error
method. Some equivalence relationships even between different
clustering methods have been shown. For example, Dhillon et al.
(2004) show that spectral methods and kernel K-means are equiva-
lent; for a choice of kernel in spectral clustering, there exists a kernel
for which the objective functions of kernel K-means and spectral
clustering are the same. The equivalence between non-negative ma-
trix factorization for clustering and kernel K-means algorithm is
shown in (Ding et al., 2005). All these methods are directly related
to the analysis of eigenvectors of the similarity matrix.

The above discussion underscores one of the important facts
about clustering; there is no best clustering algorithm. Each cluster-
ing algorithm imposes a structure on the data either explicitly or
implicitly. When there is a good match between the model and
the data, good partitions are obtained. Since the structure of the
data is not known a priori, one needs to try competing and diverse
approaches to determine an appropriate algorithm for the cluster-
ing task at hand. This idea of no best clustering algorithm is par-
tially captured by the impossibility theorem (Kleinberg, 2002),
which states that no single clustering algorithm simultaneously
satisfies a set of basic axioms of data clustering.

3.6. Admissibility analysis of clustering algorithms

Fisher and vanNess (1971) formally analyzed clustering algo-
rithms with the objective of comparing them and providing guid-
ance in choosing a clustering procedure. They defined a set of
admissibility criteria for clustering algorithms that test the sensitiv-
ity of clustering algorithms with respect to the changes that do not
alter the essential structure of the data. A clustering is called A-
admissible if it satisfies criterion A. Example criteria include convex,
point and cluster proportion, cluster omission, and monotone. They
are briefly described below.

e Convex: A clustering algorithm is convex-admissible if it results in
a clustering where the convex hulls of clusters do not intersect.

e Cluster proportion: A clustering algorithm is cluster-proportion
admissible if the cluster boundaries do not alter even if some
of the clusters are duplicated an arbitrary number of times.

e Cluster omission: A clustering algorithm is omission-admissible if
by removing one of the clusters from the data and re-running
the algorithm, the clustering on the remaining K — 1 clusters is
identical to the one obtained on them with K clusters.

e Monotone: A clustering algorithm is monotone-admissible if the
clustering results do not change when a monotone transforma-
tion is applied to the elements of the similarity matrix.

Fisher and Van Ness proved that one cannot construct algo-
rithms that satisfy certain admissibility criteria. For example, if
an algorithm is monotone-admissible, it cannot be a hierarchical
clustering algorithm.

Kleinberg (2002) addressed a similar problem, where he defined
three criteria:

e Scale invariance: An arbitrary scaling of the similarity metric
must not change the clustering results.

e Richness: The clustering algorithm must be able to achieve all
possible partitions on the data.

e Consistency: By shrinking within-cluster distances and stretch-
ing between-cluster distances, the clustering results must not
change.

Kleinberg also provides results similar to that of (Fisher and
vanNess, 1971), showing that it is impossible to construct an algo-
rithm that satisfies all these properties, hence the title of his paper
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“An Impossibility Theorem for Clustering”. Further discussions in
(Kleinberg, 2002) reveal that a clustering algorithm can indeed
be designed by relaxing the definition of satisfying a criterion to
nearly-satisfying the criterion. While the set of axioms defined here
are reasonable to a large extent, they are in no way the only possi-
ble set of axioms, and hence the results must be interpreted
accordingly (Ben-David and Ackerman, 2008).

4. Trends in data clustering

Information explosion is not only creating large amounts of data
but also a diverse set of data, both structured and unstructured.
Unstructured data is a collection of objects that do not follow a spe-
cific format. For example, images, text, audio, video, etc. On the
other hand, in structured data, there are semantic relationships
within each object that are important. Most clustering approaches
ignore the structure in the objects to be clustered and use a feature
vector based representation for both structured and unstructured
data. The traditional view of data partitioning based on vector-
based feature representation does not always serve as an adequate
framework. Examples include objects represented using sets of
points (Lowe, 2004), consumer purchase records (Guha et al,
2000), data collected from questionnaires and rankings (Critchlow,
1985), social networks (Wasserman and Faust, 1994), and data
streams (Guha et al., 2003b). Models and algorithms are being
developed to process huge volumes of heterogeneous data. A brief
summary of some of the recent trends in data clustering is pre-
sented below.

4.1. Clustering ensembles

The success of ensemble methods for supervised learning has
motivated the development of ensemble methods for unsupervised
learning (Fred and Jain, 2002). The basic idea is that by taking muil-
tiple looks at the same data, one can generate multiple partitions
(clustering ensemble) of the same data. By combining the resulting
partitions, it is possible to obtain a good data partitioning even
when the clusters are not compact and well separated. Fred and
Jain used this approach by taking an ensemble of partitions ob-
tained by K-means; the ensemble was obtained by changing the
value of K and using random cluster initializations. These parti-
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tions were then combined using a co-occurrence matrix that re-
sulted in a good separation of the clusters. An example of a
clustering ensemble is shown in Fig. 11 where a “two-spiral” data-
set is used to demonstrate its effectiveness. K-means is run multi-
ple, say N, times with varying values of the number of clusters K.
The new similarity between a pair of points is defined as the num-
ber of times the two points co-occur in the same cluster in N runs
of K-means. The final clustering is obtained by clustering the data
based on the new pair-wise similarity. Strehl and Ghosh (2003)
proposed several probabilistic models for integrating multiple par-
titions. More recent work on cluster ensembles can be found in
(Hore et al., 2009a).

There are many different ways of generating a clustering
ensemble and then combining the partitions. For example, multi-
ple data partitions can be generated by: (i) applying different clus-
tering algorithms, (ii) applying the same clustering algorithm with
different values of parameters or initializations, and (iii) combining
of different data representations (feature spaces) and clustering
algorithms. The evidence accumulation step that combines the
information provided by the different partitions can be viewed as
learning the similarity measure among the data points.

4.2. Semi-supervised clustering

Clustering is inherently an ill-posed problem where the goal is
to partition the data into some unknown number of clusters based
on intrinsic information alone. The data-driven nature of clustering
makes it very difficult to design clustering algorithms that will cor-
rectly find clusters in the given data. Any external or side informa-
tion available along with the n x d pattern matrix or the n x n
similarity matrix can be extremely useful in finding a good parti-
tion of data. Clustering algorithms that utilize such side informa-
tion are said to be operating in a semi-supervised mode (Chapelle
et al.,, 2006). There are two open questions: (i) how should the side
information be specified? and (ii) how is it obtained in practice?
One of the most common methods of specifying the side informa-
tion is in the form of pair-wise constraints. A must-link constraint
specifies that the point pair connected by the constraint belong
to the same cluster. On the other hand, a cannot-link constraint
specifies that the point pair connected by the constraint do not be-
long to the same cluster. It is generally assumed that the con-

><><><><><><><><

Fig. 11. Clustering ensembles. Multiple runs of K-means are used to learn the pair-wise similarity using the “co-occurrence” of points in clusters. This similarity can be used

to detect arbitrary shaped clusters.
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straints are provided by the domain expert. There is limited work
on automatically deriving constraints from the data. Some at-
tempts to derive constraints from domain ontology and other
external sources into clustering algorithms include the usage of
WordNet ontology, gene ontology, Wikipedia, etc. to guide cluster-
ing solutions. However, these are mostly feature constraints and
not constraints on the instances (Hotho et al., 2003; Liu et al.,
2004; Banerjee et al., 2007b). Other approaches for including side
information include (i) “seeding”, where some labeled data is used
along with large amount of unlabeled data for better clustering
(Basu et al., 2002) and (ii) methods that allow encouraging or dis-
couraging some links (Law et al., 2005; Figueiredo et al., 2006).

Fig. 12 illustrates the semi-supervised learning in an image seg-
mentation application (Lange et al., 2005). The textured image to
be segmented (clustered) is shown in Fig. 12a. In addition to the
image, a set of user-specified pair-wise constraints on the pixel la-
bels are also provided. Fig. 12b shows the clustering obtained
when no constraints are used, while Fig. 12c shows improved clus-
tering with the use of constraints. In both the cases, the number of
clusters was assumed to be known (K = 5).

Most approaches (Bar-Hillel et al., 2003; Basu et al., 2004; Chap-
elle et al., 2006; Lu and Leen, 2007) to semi-supervised clustering
modify the objective function of existing clustering algorithms to
incorporate the pair-wise constraints. It is desirable to have an ap-
proach to semi-supervised clustering that can improve the perfor-
mance of an already existing clustering algorithm without
modifying it. BoostCluster (Liu et al., 2007) adopts this philosophy
and follows a boosting framework to improve the performance of
any given clustering algorithm using pair-wise constraints. It iter-
atively modifies the input to the clustering algorithm by generat-
ing new data representations (transforming the n x n similarity
matrix) such that the pair-wise constraints are satisfied while also
maintaining the integrity of the clustering output. Fig. 13 shows
the performance of BoostCluster evaluated on handwritten digit
database in the UCI repository (Blake, 1998) with 4000 points in
256-dimensional feature space. BoostCluster is able to improve
the performance of all the three commonly used clustering algo-
rithms, K-means, single-link, and Spectral clustering as pair-wise
constraints are added to the data. Only must-link constraints are
specified here and the number of true clusters is assumed to be
known (K = 10).

4.3. Large-scale clustering

Large-scale data clustering addresses the challenge of clustering
millions of data points that are represented in thousands of fea-
tures. Table 1 shows a few examples of real-world applications

(a) Input image and constraints

(b) No constraints
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Fig. 13. Performance of BoostCluster (measured using Normalized Mutual Infor-
mation (NMI)) as the number of pair-wise constraints is increased. The three plots
correspond to boosted performance of K-means, Single-Link (SLINK), and Spectral
clustering (SPEC).

for large-scale data clustering. Below, we review the application
of large-scale data clustering to content-based image retrieval.

The goal of Content Based Image Retrieval (CBIR) is to retrieve
visually similar images to a given query image. Although the topic
has been studied for the past 15 years or so, there has been only
limited success. Most early work on CBIR was based on computing
color, shape, and texture based features and using them to define a
similarity between the images. A 2008 survey on CBIR highlights
the different approaches used for CBIR through time (Datta et al.,
2008). Recent approaches for CBIR use key point based features.
For example, SIFT (Lowe, 2004) descriptors can be used to repre-
sent the images (see Fig. 14). However, once the size of the image
database increases (~10 million), and assuming 10 ms to compute
the matching score between an image pair, a linear search would
take approximately 30h to answer one query. This clearly is
unacceptable.

On the other hand, text retrieval applications are much faster. It
takes about one-tenth of a second to search 10 billion documents
in Google. A novel approach for image retrieval is to convert the
problem into a text retrieval problem. The key points from all
the images are first clustered into a large number of clusters
(which is usually much less than the number of key points

2 s ]
(c) 10% pixels in constraints

Fig. 12. Semi-supervised learning. (a) Input image consisting of five homogeneous textured regions; examples of must-link (solid blue lines) and must not link (broken red
lines) constraints between pixels to be clustered are specified. (b) 5-Cluster solution (segmentation) without constraints. (c) Improved clustering (with five clusters) with 10%

of the data points included in the pair-wise constraints (Lange et al., 2005).
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Table 1
Example applications of large-scale data clustering.
Application Description # #
Objects Features
Document Group documents of similar topics ~ 10° 10*
clustering (Andrews et al., 2007)
Gene clustering ~ Group genes with similar 10° 10?
expression levels (Lukashin et al.,
2003)
Content-based Quantize low-level image features 10° 10?

image (Philbin et al., 2007)
retrieval

Clustering of Derive climate indices (Steinbach 10° 102
earth science et al., 2003)

data

themselves). These are called visual words. An image is then repre-
sented by a histogram of visual words, i.e., the number of key-
points from the image that are in each word or each cluster. By rep-
resenting each image by a histogram of visual words, we can then
cast the problem of image search into a problem of text retrieval
and exploit text search engines for efficient image retrieval. One
of the major challenges in quantizing key points is the number of
objects to be clustered. For a collection of 1000 images with an
average of 1000 key points and target number of 5000 visual
words, it requires clustering 10° objects into 5000 clusters.

A large number of clustering algorithms have been developed to
efficiently handle large-size data sets. Most of these studies can be
classified into four categories:

o Efficient Nearest Neighbor (NN) Search: One of the basic opera-
tions in any data clustering algorithm is to decide the cluster
membership of each data point, which requires NN search. Algo-
rithms for efficient NN search are either tree-based (e.g. kd-tree
(Moore, 1998; Muja and Lowe, 2009)) or random projection
based (e.g., Locality Sensitive Hash (Buhler, 2001)).

e Data summarization: The objective here is to improve the clus-
tering efficiency by first summarizing a large data set into a rel-
atively small subset, and then applying the clustering algorithms

to the summarized data set. Example algorithms include BIRCH
(Zhang et al., 1996), divide-and-conquer (Steinbach et al., 2000),
coreset K-means (Har-peled and Mazumdar, 2004), and coarsen-
ing methods (Karypis and Kumar, 1995).

e Distributed computing: Approaches in this category (Dhillon and
Modha, 1999) divide each step of a data clustering algorithm
into a number of procedures that can be computed indepen-
dently. These independent computational procedures will then
be carried out in parallel by different processors to reduce the
overall computation time.

o Incremental clustering: These algorithms, for example (Bradley
et al., 1998) are designed to operate in a single pass over data
points to improve the efficiency of data clustering. This is in con-
trast to most clustering algorithms that require multiple passes
over data points before identifying the cluster centers. COBWEB
is a popular hierarchical clustering algorithm that does a single
pass through the available data and arranges it into a classifica-
tion tree incrementally (Fisher, 1987).

e Sampling-based methods: Algorithms like CURE (Guha et al.,
1998; Kollios et al., 2003) subsample a large dataset selectively,
and perform clustering over the smaller set, which is later trans-
ferred to the larger dataset.

4.4. Multi-way clustering

Objects or entities to be clustered are often formed by a combi-
nation of related heterogeneous components. For example, a docu-
ment is made of words, title, authors, citations, etc. While objects
can be converted into a pooled feature vector of its components
prior to clustering, it is not a natural representation of the objects
and may result in poor clustering performance.

Co-clustering (Hartigan, 1972; Mirkin, 1996) aims to cluster
both features and instances of the data (or both rows and columns
of the n x d pattern matrix) simultaneously to identify the subset
of features where the resulting clusters are meaningful according
to certain evaluation criterion. This problem was first studied un-
der the name direct clustering by Hartigan (1972). It is also called
bi-dimensional clustering (Cheng et al., 2000), double clustering,

(a) 370

(b) 64

Fig. 14. Three tattoo images represented using SIFT key points. (a) A pair of similar images has 370 matching key points; (b) a pair of different images has 64 matching key
points. The green lines show the matching key-points between the images (Lee et al., 2008).
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coupled clustering, or bimodal clustering. This notion is also related
to subspace clustering where all the clusters are identified in a
common subspace. Co-clustering is most popular in the field of
bioinformatics, especially in gene clustering, and has also been suc-
cessfully applied to document clustering (Slonim and Tishby, 2000;
Dhillon et al., 2003).

The co-clustering framework was extended to multi-way clus-
tering in (Bekkerman et al., 2005) to cluster a set of objects by
simultaneously clustering their heterogeneous components. In-
deed, the problem is much more challenging because different
pairs of components may participate in different types of similarity
relationships. In addition, some relations may involve more than
two components. Banerjee et al. (2007a) present a family of mul-
ti-way clustering schemes that is applicable to a class of loss func-
tions known as Bregman divergences. Sindhwani et al. (2008)
apply semi-supervised learning in the co-clustering framework.

4.5. Heterogeneous data

In traditional pattern recognition settings, a feature vector con-
sists of measurements of different properties of an object. This rep-
resentation of objects is not a natural representation for several
types of data. Heterogeneous data refers to the data where the ob-
jects may not be naturally represented using a fixed length feature
vector.

Rank data: Consider a dataset generated by ranking of a set of n
movies by different people; only some of the n objects are ranked.
The task is to cluster the users whose rankings are similar and also
to identify the ‘representative rankings’ of each group (Mallows,
1957, Critchlow, 1985; Busse et al., 2007).

Dynamic data: Dynamic data, as opposed to static data, can
change over the course of time e.g., blogs, Web pages, etc. As the
data gets modified, clustering must be updated accordingly. A data
stream is a kind of dynamic data that is transient in nature, and can-
not be stored on a disk. Examples include network packets received
by a router and stock market, retail chain, or credit card transaction
streams. Characteristics of the data streams include their high vol-
ume and potentially unbounded size, sequential access, and
dynamically evolving nature. This imposes additional requirements
to traditional clustering algorithms to rapidly process and summa-
rize the massive amount of continuously arriving data. It also re-
quires the ability to adapt to changes in the data distribution, the
ability to detect emerging clusters and distinguish them from out-
liers in the data, and the ability to merge old clusters or discard ex-
pired ones. All of these requirements make data stream clustering a
significant challenge since they are expected to be single-pass algo-
rithms (Guha et al., 2003b). Because of the high-speed processing
requirements, many of the data stream clustering methods (Guha
et al., 2003a; Aggarwal et al., 2003; Cao et al., 2006; Hore et al.,
2009b) are extensions of simple algorithms such as K-means, K-
medoid, fuzzy c-means, or density-based clustering, modified to
work in a data stream environment setting.

Graph data: Several objects, such as chemical compounds, pro-
tein structures, etc. can be represented most naturally as graphs.
Many of the initial efforts in graph clustering focused on extracting
graph features to allow existing clustering algorithms to be applied
to the graph feature vectors (Tsuda and Kudo, 2006). The features
can be extracted based on patterns such as frequent subgraphs,
shortest paths, cycles, and tree-based patterns. With the emer-
gence of kernel learning, there have been growing efforts to devel-
op kernel functions that are more suited for graph-based data
(Kashima et al., 2003). One way to determine the similarity be-
tween graphs is by aligning their corresponding adjacency matrix
representations (Umeyama, 1988).

Relational data: Another area that has attracted considerable
interest is clustering relational (network) data. Unlike the cluster-

ing of graph data, where the objective is to partition a collection of
graphs into disjoint groups, the task here is to partition a large
graph (i.e., network) into cohesive subgraphs based on their link
structure and node attributes. The problem becomes even more
complicated when the links (which represent relations between
objects) are allowed to have diverse types. One of the key issues
is to define an appropriate clustering criterion for relational data.
A general probabilistic model for relational data was first proposed
in (Taskar et al., 2001), where different related entities are modeled
as distributions conditioned on each other. Newman’s modularity
function (Newman and Girvan, 2004; Newman, 2006) is a
widely-used criterion for finding community structures in net-
works, but the measure considers only the link structure and
ignores attribute similarities. A spectral relaxation to Newman
and Girvan's objective function (Newman and Girvan, 2004) for
network graph clustering is presented in (White and Smyth,
2005). Since real networks are often dynamic, another issue is to
model the evolutionary behavior of networks, taking into account
changes in the group membership and other characteristic features
(Backstrom et al., 2006).

5. Summary

Organizing data into sensible groupings arises naturally in
many scientific fields. It is, therefore, not surprising to see the con-
tinued popularity of data clustering. It is important to remember
that cluster analysis is an exploratory tool; the output of clustering
algorithms only suggest hypotheses. While numerous clustering
algorithms have been published and new ones continue to appear,
there is no single clustering algorithm that has been shown to
dominate other algorithms across all application domains. Most
algorithms, including the simple K-means, are admissible algo-
rithms. With the emergence of new applications, it has become
increasingly clear that the task of seeking the best clustering prin-
ciple might indeed be futile. As an example, consider the applica-
tion domain of enterprise knowledge management. Given the
same set of document corpus, different user groups (e.g., legal,
marketing, management, etc.) may be interested in generating par-
titions of documents based on their respective needs. A clustering
method that satisfies the requirements for one group of users may
not satisfy the requirements of another. As mentioned earlier,
“clustering is in the eye of the beholder” - so indeed data cluster-
ing must involve the user or application needs.

Clustering has numerous success stories in data analysis. In
spite of this, machine learning and pattern recognition communi-
ties need to address a number of issues to improve our understand-
ing of data clustering. Below is a list of problems and research
directions that are worth focusing in this regard.

(a) There needs to be a suite of benchmark data (with ground
truth) available for the research community to test and eval-
uate clustering methods. The benchmark should include
data sets from various domains (documents, images, time
series, customer transactions, biological sequences, social
networks, etc.). Benchmark should also include both static
and dynamic data (the latter would be useful in analyzing
clusters that change over time), quantitative and/or qualita-
tive attributes, linked and non-linked objects, etc. Though
the idea of providing a benchmark data is not new (e.g.,
UCI ML and KDD repository), current benchmarks are lim-
ited to small, static data sets.

(b) We need to achieve a tighter integration between clustering
algorithms and the application needs. For example, some
applications may require generating only a few cohesive
clusters (less cohesive clusters can be ignored), while others
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may require the best partition of the entire data. In most
applications, it may not necessarily be the best clustering
algorithm that really matters. Rather, it is more crucial to
choose the right feature extraction method that identifies
the underlying clustering structure of the data.
Regardless of the principle (or objective), most clustering
methods are eventually cast into combinatorial optimization
problems that aim to find the partitioning of data that opti-
mizes the objective. As a result, computational issue
becomes critical when the application involves large-scale
data. For instance, finding the global optimal solution for
K-means is NP-hard. Hence, it is important to choose cluster-
ing principles that lead to computationally efficient
solutions.
(d) A fundamental issue related to clustering is its stability or
consistency. A good clustering principle should result in a
data partitioning that is stable with respect to perturbations
in the data. We need to develop clustering methods that lead
to stable solutions.
Choose clustering principles according to their satisfiability
of the stated axioms. Despite Kleinberg's impossibility theo-
rem, several studies have shown that it can be overcome by
relaxing some of the axioms. Thus, maybe one way to eval-
uate a clustering principle is to determine to what degree
it satisfies the axioms.

(f) Given the inherent difficulty of clustering, it makes more
sense to develop semi-supervised clustering techniques in
which the labeled data and (user specified) pair-wise con-
straints can be used to decide both (i) data representation
and (ii) appropriate objective function for data clustering.

—
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