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Abstract

Clustering is an unsupervised learning problem whose objective is to find a partition of the given data. However, a

major challenge in clustering is to define an appropriate objective function in order to to find an optimal partition

that is useful to the user. To facilitate data clustering, it has been suggested that the user provide some

supplementary information about the data (eg. pairwise relationships between few data points), which when

incorporated in the clustering process, could lead to a better data partition. Semi-supervised clustering algorithms

attempt to improve clustering performance by utilizing this supplementary information. In this chapter, we present
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an overview of semi-supervised clustering techniques and describe some prominent algorithms in the literature. We

also present several applications of semi-supervised clustering.

1.1 Introduction

Clustering is an inherently ill-posed problem due to its unsupervised nature. Consider a

grouping of a subset of face images from the CMU Face data set [51]1, shown in Figure 1.1.

These images have been clustered based on facial expression in Figure 1.1(a), and on the

basis of presence of sunglasses in Figure 1.1(b). Both these partitions are equally valid,

illustrating that the given data can be partitioned in many ways depending on user’s intent

and goal.

Most clustering algorithms seek a data partition that minimizes an objective function defined

in terms of the data points and cluster labels. It is often the case that multiple partitions

of the same data are equally good in terms of this objective function, making it difficult

to determine the optimal data partition. Consider the two-dimensional data shown in Fig-

ure 1.2. If an algorithm such as K-means [40] is used to cluster the points into two clusters,

then both the partitions shown in Figures 1.2(c) and 1.2(d) are equally good in terms of the

sum-of-squared-error criterion2. Hence, additional information (constraints) is required to

resolve this ambiguity and determine the partition sought by the user.

In many clustering applications, the user is able to provide some side-information be-

sides the vector representation of data points (or the pairwise similarity between the data

points). This side-information can be used to tune the clustering algorithm towards finding

the data partition sought by the user. Semi-supervised clustering deals with mechanisms

to obtain and incorporate this side-information in the clustering process to attain better

clustering performance. Formally, given a data set D = (x1, . . . ,xn) containing n points,

side-information π, and a clustering algorithm A, the objective of semi-supervised clustering

is to augment A with π, and partition D into K clusters {C1, . . . , CK}. It is expected that

the resulting partition of D will be better than the partition obtained from A in the absence

1This data set is available in the UCI repository [52].
2Sum-of-squared-error is defined as the sum of the square of the distances between each point and its corresponding cluster

center.
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(a) (b)

Figure 1.1: A clustering of a subset of face images from the CMU face data set [51]. It is
possible to cluster these images in many ways, all of them equally valid. Faces have been
clustered into two clusters based on the facial expression of the subjects in (a), and on
the basis of whether or not the subjects are wearing sunglasses in (b). Without additional
information from the user, it is not possible to determine which one is the correct or preferred
partition.
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(a) (b)

(c) (d)

(e)

Figure 1.2: User-specified pairwise constraints. It is possible to partition the data points in
(a) into two clusters in the following two ways: horizontally, as shown in (c), and vertically
as shown in (d). While both of them yield the same sum-of-squared-error value, it is not
possible to determine the desired partition, without additional information. Given the two
pairwise constraints shown in (b), we can ascertain that the correct partition is the one in
(c). A distance metric learning technique [77] for incorporating the pairwise constraints is
illustrated in (e).
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of side-information. In this chapter, two measures of clustering performance are employed:

F-measure and Normalized Mutual Information. These are external measures adapted from

information retrieval, which compare the data partition obtained from the clustering algo-

rithm with the true class labels:

F-measure: A pair of points (xi,xj) are said to be correctly paired if (i) they have the

same cluster label, and they have the same class label (represented as true positive TP ), or

(ii) they have different cluster labels and different class labels (represented as true negative

TN). Otherwise they are said to be paired incorrectly: False positive FP if they are fall in

the same cluster but belong to different classes, and false negative FN if they are assigned

to different clusters but belong to the same class. F-measure is defined as

2#TP 2

#TP (2#TP +#FN +#FP )
,

where # represents the number of the corresponding quantity.

Normalized Mutual Information (NMI): Let nc
i represent the number of data points

that have been assigned to the ith cluster (1 ≤ i ≤ K), np
j the number of data points from

the jth class (1 ≤ j ≤ P ), and nc,p
i,j the number of data points from class j that have been

assigned to the ith cluster. NMI is defined as
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There are two main issues that need to be addressed in semi-supervised clustering: (a)

How is the side-information obtained and specified?, and (b) How can the side-information be

used to improve the clustering performance? These questions are addressed in Sections 1.1.1

and 1.1.2.
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1.1.1 Acquisition and expression of side-information

The most common form of expressing the side-information is pairwise must-link and cannot-

link constraints [10]. A must-link constraint between two data points xa and xb, denoted

by ML(xa,xb), implies that the points xa and xb must be assigned the same cluster label.

A cannot-link constraint, denoted by CL(xa,xb), implies that the points xa and xb should

be assigned to different clusters. Figure 1.2(b) illustrates two such constraints applied to

partition the data shown in Figure 1.2(a). Given the pairwise must-link and cannot-link

constraints, we can bias the clustering algorithm towards obtaining the desired partition.

Figure 1.3 shows the improvement in the clustering performance, measured in terms of the

F-measure [50], as a result of providing pairwise constraints, on six benchmark data sets.

All the semi-supervised clustering algorithms considered in [13], viz.: supervised-means,

PCK-means, MK-means and MPCK-means, perform better than the K-means clustering

algorithm, when provided with a sufficient number of pairwise constraints [13].

Pairwise constraints for data clustering occur naturally in many application domains. In

applications involving graph clustering, such as social network analysis, the given edges in the

graph indicate the pairwise relationships. Some protein data sets3 contain information about

co-occurring proteins, which can be viewed as must-link constraints during clustering [43].

In image segmentation, neighboring pixels are likely to be a part of the same homogeneous

region in an image, whereas pixels which are far from each other tend to belong to different

regions [47]. This fact can be used to generate pairwise constraints. Pairwise constraints

can be derived from the domain knowledge and other external sources as well [36, 56].

For example, Wikipedia [2] was used to identify semantic relationships between documents

in [36].

Although the side-information is, in general, expected to improve the clustering perfor-

mance, inaccurate or conflicting pairwise constraints may actually degrade the clustering

performance [21, 22, 23, 24]. For example, consider the scenario shown in Figure 1.4, where

point pairs (x1,x2) and (x3,x4) are involved in must-link constraints, but x2 and its neigh-

bors, and x3 and its neighbors are related by cannot-link constraints. These constraints lead

3The Database of Interacting Proteins [73].
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(a) Iris (b) Wine

(c) Protein (d) Ionosphere

(e) Digits-389 (f) Letters-IJL

Figure 1.3: Improvement in clustering performance of the K-means algorithm using pairwise
constraints on six benchmark data sets. Figures reproduced from Bilenko et al. [13].
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Figure 1.4: Pairwise constraints can lead to counter-intuitive solutions. Points pairs (x1,x2)
and (x3,x4) are related by a must-link constraints. x2 and its neighbors, and x3 and its
neighbors are related by cannot-link constraints. This yields a counter-intuitive clustering
solution, where points x2 and x3 are assigned cluster labels that are different from those of
their neighbors. Figure from [47].

to a counter-intuitive clustering solution, where points x2 and x3 are assigned cluster labels

that are different from those of their neighbors. This behavior can also be observed while

clustering real data sets, as shown in Figure 1.3. Some semi-supervised clustering algorithms

exhibit a small dip in the performance, for some number of constraints. In other words, the

performance of semi-supervised clustering algorithms is not guaranteed to increase mono-

tonically with the number of constraints. For example, in Figure 1.3(d), the accuracy of

the MK-means algorithm on the Ionosphere data set is lower than that of the unsupervised

K-means algorithm when the number of constraints is less than 400. This suggests that

the nature of the constraints, not simply the number of constraints, is crucial for attaining

performance gain from semi-supervised clustering.

In order to identify the most informative pairwise constraints, some studies [8, 38, 70] have

focused on active learning [61], originally developed for semi-supervised classification [18].

Semi-supervised classification techniques based on active learning assume the presence of an

oracle which can supply the class labels for points selected from a large pool of unlabeled

points. Starting with a small set of labeled points, the oracle is iteratively queried for the

labels of the points most useful for determining the classification model. The key idea be-

hind active learning based semi-supervised clustering is to find the constraints that would

be violated if the clustering algorithm was executed without supervision [3, 79]. Most ac-

tive clustering techniques assume an oracle can answer queries involving pairwise constraints
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among data points. These algorithms differ in the manner in which the queries are made.

For instance, the active PCK-means algorithm [8] aims at identifying the individual cluster

boundaries. It first identifies pairs of data points which are farthest from each other, and

queries the oracle until a pre-defined number of cannot-link constraints are obtained. It

then queries the relationship between the points involved in the cannot-link constraints and

their nearest neighbors to obtain must-link constraints. The active spectral clustering tech-

nique [70], on the other hand, iteratively refines the data partition by querying the pairwise

relationship between the data points which leads to the largest change in the current par-

tition towards the desired partition. Figure 1.5 compares the PCK-means algorithm, which

assumes pairwise constraints are available a priori, with the active PCK-means algorithm

on three data sets. The active PCK-means algorithm achieves better accuracy, measured

in terms of the Normalized Mutual Information [45] with respect to the true cluster mem-

bership, with fewer number of constraints, demonstrating that active clustering is able to

identify the most informative constraints [8].

Given that the most common form of specifying side-information to clustering algorithms

is pairwise constraints, semi-supervised clustering is also referred to as constrained clus-

tering to distinguish between semi-supervised clustering and general semi-supervised learn-

ing [14]. In its most popular form, semi-supervised learning involves using a large number

of unlabeled examples along with the labeled training set to improve the learning efficiency.

Figure 1.6 illustrates the spectrum of learning methodologies as we transition from supervised

learning to unsupervised learning.

Besides pairwise constraints, other forms of side-information and constraints to obtain

the desired clusters have also been studied in the literature. Class labels for a subset of the

data set to be clustered can be used as the side-information [7, 25, 41]. In applications such

as document clustering and multimedia retrieval, class labels are easily obtained through

crowdsourcing [6] tools such as the Amazon Mechanical turk [1]. Class labels of subsets

of data can be used to assign temporary labels to the remaining unlabeled data points by

learning a classifier. These labels can then be employed to constrain the solution search

space [25, 28]. The class labels can also be employed to initialize the clusters in addition to

restricting the possible partitions [7].
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(a) Iris (b) Newsgroups

(c) Classic3

Figure 1.5: Better clustering results are achieved by employing active learning to obtain the
most informative pairwise constraints. Figures reproduced from [8].

Figure 1.6: Spectrum between supervised and unsupervised learning. Dots correspond to
points without label information. Points with labels are denoted by pluses, asterisks and
crosses, each representing a different class. In (c), the must-link and cannot-link constraints
are denoted by solid and dashed lines, respectively. Figure from [46].
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Triplet constraints deal with the relative distance between sets of three data points, and

are less restrictive than pairwise constraints. A triplet constraint (xa,xb,xc) indicates that

xa is closer to xb than xa is to xc, which in turn, implies that xa is more likely to form a

cluster with xb than with xc. These constraints are used to estimate the similarity between

data points and thereby enhance the clustering performance [12, 37, 44]. The SSSVaD

algorithm [44] uses the triplet constraints to learn the underlying dissimilarity measure. In [5,

78, 80], the triplet constraints are used to determine the order in which the agglomerative

hierarchical clustering algorithm merges the clusters.

When the data set is sufficiently small in size, user feedback can also be employed to

obtain the partition sought by the user [19, 30, 33, 35]. For instance, in [30], the user is

iteratively presented with a possible partition of the data, and allowed to choose whether or

not it is the desired partition. This feedback is used to eliminate undesired partitions that

are similar to the one presented to the user. User supervision is employed to select the most

informative features that lead to the desired clusters in [35].

1.1.2 Incorporation of side-information

Several mechanisms have been developed to exploit the side-information to achieve better

clustering performance. They can be classified into two main categories: (i) methods based

on constraining the solution space, and (ii) methods based on distance metric learning [10].

Solution space restriction

Most methods in this category deal with side-information in the form of pairwise constraints.

They use the pairwise constraints to restrict the feasible data partitions when deciding the

cluster assignment. The COP-Kmeans [68] and the SS-SOM [3] algorithms modify the cluster

membership update phase of the K-means and the Self Organizing map algorithms respec-

tively, to ensure that the data partitions are consistent with the given pairwise constraints.

In the COP-Kmeans algorithm, the cluster centers are first initialized randomly. Each data

point is then assigned to the nearest cluster center ensuring that no constraints are violated.

The cluster centers are updated by finding the mean of the points assigned to the cluster, like
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in the K-means algorithm. In [62], the generalized Expectation Maximization (EM) algo-

rithm is modified such that only the mixture models that are compliant with the constraints

are considered. These approaches treat the side-information as hard constraints and ensure

that all the constraints are strictly satisfied. As mentioned before, such an approach may

lead to counter-intuitive clustering solutions, as shown in Figure 1.4, and may even render

the clustering problem infeasible.

A number of studies have used the side-information in the form of soft constraints . Instead

of trying to satisfy all the constraints, the key idea behind such methods is to satisfy as

many constraints as possible, and introduce a penalty term to account for constraints that

cannot be satisfied [8, 11, 41, 46, 47]. In [47], the authors modified the mixture model for

data clustering by redefining the data generation process through the introduction of hidden

variables. In [46], a mean field approximation method was proposed to find appropriate data

partition that is consistent with pairwise constraints. The pairwise constraints are enforced

in the form of additional penalty terms in the objective function for clustering in spectral

learning [41] and PCK-means [8].

Distance metric learning

The distance measure used to determine the dissimilarity between data points is crucial to

the clustering process. Semi-supervised clustering methods which fall under this category

attempt to find and apply a transformation to the data such that (a) the data points in

must-link constraints are separated by small distances, and (b) data point in cannot-link

constraints are separated by larger distances [77]. The distance between any two data points

xa and xb is expressed as

dM(xa,xb) = ‖xa − xb‖2M = (xa − xb)
⊤M(xa − xb),

where M is the distance metric cast as a positive semi-definite matrix.

An example of distance metric learning is illustrated in Figure 1.2(e). The data points

which satisfy must-link constraints move closer to each other, and the data points that

satisfy cannot-link constraints move farther away. After learning this distance metric, any

conventional clustering algorithm such as K-means or spectral clustering can be applied to
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the resulting similarity matrix.

Techniques for distance metric learning have been studied extensively in the semi-supervised

and unsupervised learning literature [77]. Local distance metric learning techniques only

focus on constraints in local regions, and are typically used in semi-supervised classifica-

tion [4, 32]. On the other hand, global distance metric learning methods consider all the

pairwise constraints simultaneously [17, 31, 49, 74, 76]. For example, a convex optimization

problem that minimizes the distance between points that are related by must-link constraints,

and maximizes the distance between points that are related by cannot-link constraints, is

solved to find the optimal metric in [74]. Techniques to learn non-linear distance metrics

such as Bregman divergence were proposed in [20, 72]. Besides pairwise constraints, triplet

constraints have also been employed for distance metric learning.

The idea of distance metric learning for semi-supervised clustering has been extended to

learn the kernel representing the pairwise data similarity [26, 34]. Similar to distance metric

learning, the kernel similarity function is modified to accommodate the given pairwise con-

straints, i.e., (a) data points in must-link relationships have large similarity, and (b) data

points in cannot-link relationships have small similarity. The kernel similarity is modified

by incorporating the constraints in the objective function in [9, 15, 43]. Non-parametric ap-

proaches for kernel learning are proposed in [34, 65] to learn the pairwise similarity measure.

Methods that combine the two approaches to semi-supervised clustering have also been

proposed [9, 13]. One example is the MPCK-means [13] which performs both solution space

restriction and distance metric learning. It performs better than the methods that employ

only distance metric learning, or methods that only constrain the solution space.

Table 1.1 presents a summary of the major semi-supervised clustering techniques proposed

in the literature. They are classified based on the form of the available side-information and

the manner in which the side-information is acquired and incorporated.
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Table 1.1: Summary of prominent semi-supervised clustering techniques

Type of side-
information

Side-
information
acquisition

Side-
information
incorporation

Examples

Pairwise
constraints Prior knowledge

Constrain the
solution space

PCK-Means [8], Spectral
Learning [41],

COPK-Means [68],
[11], [46], [47], [48],
[58], [62] [71], [75]

Pairwise
constraints

Prior knowledge
Distance metric

learning

HMRF-Kmeans [9],
MPCK-means [13],

SSKKM [43],
BoostCluster [49],
[15], [16], [20], [34],
[65], [72], [74], [76]

Pairwise
constraints

Active learning
Constrain the
solution space

Active PCK-Means [8],
Active spectral
clustering [70],
[3], [36], [38], [79]

Pairwise
constraints

Active learning
Distance metric

learning [31]

Class labels
Prior knowledge,
Crowdsourcing

Constrain the
solution space

Constrained
K-means [7], [25], [28]

Triplet
constraints

Prior knowledge
Distance metric

learning SSSVaD [44], [78], [80]

User feedback
Constrain the
solution space [19], [20], [30], [33], [35]

1.2 Semi-supervised clustering algorithms

We describe three semi-supervised clustering algorithms in this section. These three algo-

rithms are representatives of various approaches that have been used for semi-supervised

clustering. The semi-supervised kernel K-means (SSKKM) [43] and BoostCluster [49] algo-

rithms are based on distance metric learning. The SSKKM algorithm modifies the pairwise

similarity between the data points using the must-link and cannot-link constraints. The

BoostCluster algorithm projects the data into a subspace where points related by must-links

are closer to each other, than the points related by cannot-links. In both these algorithms,

the pairwise constraints are assumed to be available a priori. The active spectral clustering

algorithm [70] obtains the constraints using the active learning mechanism. It then finds the

solution by restricting the solution space of the spectral clustering algorithm.
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1.2.1 Semi-supervised Kernel K-means

The semi-supervised kernel K-means algorithm, abbreviated as SSKKM, is based on the

strategy of distance metric learning. It aims to enhance the accuracy of the K-means algo-

rithm by constructing a kernel matrix, which incorporates the given pairwise constraints.

The objective of the K-means algorithm is to minimize the sum-of-squared-error, ex-

pressed as the following optimization problem:

min

K
∑

k=1

∑

xi∈Ck

‖xi − ck‖2, (1.1)

where ck is the cluster center of Ck, k = 1, 2, . . . , K.

Let wa,b be the cost of violating the constraint between data points xa and xb. The set

of pairwise must-link and cannot-link constraints, denoted by ML and CL respectively, are

embedded in the optimization problem (1.1) as follows:

min
K
∑

k=1









∑

xi∈Ck

‖xi − ck‖2 −
∑

(xp,xq)∈ML

xp,xq∈Ck

wp,q

nk

+
∑

(xr ,xs)∈CL
xr ,xs∈Ck

wr,s

nk









which is equivalent to

min

K
∑

k=1









∑

xi,xj∈Ck

‖xi − xj‖2
nk

−
∑

(xp,xq)∈ML

xp,xq∈Ck

2wp,q

nk
+

∑

(xr ,xs)∈CL
xr ,xs∈Ck

2wr,s

nk









(1.2)

where nk is the number of data points assigned to cluster Ck.
Let U = [uk,j] be the K × n normalized cluster membership matrix defined as

uk,j =







1/
√
nk if xj ∈ Ck,
0 otherwise.

Also, define the Euclidean similarity matrix E = [Ea,b] and the constraint matrix W = [Wa,b]
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as

Ea,b = ‖xa − xb‖2 = x⊤

a xa + x⊤

b xb − 2x⊤

a xb (1.3)

and

Wa,b =















wa,b if there is a must-link constraint between xa and xb,

−wa,b if there is a cannot-link constraint between xa and xb,

0 otherwise.

The problem in (1.2) can be re-written as

min trace
(

U (E − 2W )U⊤
)

,

which is equivalent to the trace maximization problem

max trace
(

UKU⊤
)

, (1.4)

where the kernel matrix is given by K = S + W and the entries of the similarity matrix

S = [Sa,b] are given by Sa,b = x⊤
a xb.

It has been shown that the optimization problem (1.4) can be solved by applying the

kernel K-means algorithm [29, 59] on the kernel matrix K. To ensure that K is positive

semi-definite, it is diagonal shifted using a positive parameter σ. The method is illustrated

in Figure 1.7.

Sa,b was replaced by the RBF kernel κ(xa,xb) = exp(−λ‖xa − xb‖2) to achieve better

clustering performance [42]. An adaptive scheme to estimate the kernel width λ using the

pairwise constraints was proposed in [75]. This was done by scaling the penalty terms in

(1.2) by the kernel distance between the data points involved in the pairwise constraints.
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Figure 1.7: Illustration of SSKKM algorithm [43] on a toy two-dimensional example. Figure
(a) shows the 2-D dataset containing 20 points, along with the must-link (solid lines) and
cannot-link constraints (dashed lines). Figures (b)-(d) represent the Euclidean similarity
matrix S, the constraint matrix W , and the kernel matrix K = S +W between the points.
The points get clustered perfectly into the two groups indicated in Figure (a) on executing
kernel K-means with K as the input, whereas the points do not get clustered as expected
using the Euclidean similarity between them.
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Algorithm SSKKM

Input

• Input data set D = (x1, . . . ,xn).

• Set of pairwise constraints ML and CL.

• Constraint penalty matrix W .

• Kernel function κ(·, ·) to obtain the pairwise similarity matrix.

• Parameter σ for making the kernel matrix positive semi-definite.

• Number of clusters K.

1. Compute the n× n similarity matrix S using the kernel function Si,j = κ(xi,xj).

2. Compute the kernel matrix K = S +W + σI .

3. Initialize the cluster membership of all the data points, ensuring no constraints are violated.

4. Repeat until convergence or a pre-defined maximum number of iterations is reached:

(a) For each point xi and cluster Ck, compute distance

d(xi, Ck) = Ki,i −
2
∑

xj∈Ck
Ki,j

nk

+

∑
xj ,xl∈Ck

Kj,l

n2
k

,

where nk is the number of points assigned to cluster Ck.

(b) Assign each point xi to the cluster C∗
k which minimizes the distance d(xi, Ck), resolving ties arbitrarily.

Output Cluster memberships of the data points.

1.2.2 BoostCluster

The BoostCluster algorithm [49] follows the general boosting framework employed in data

classification. Given a clustering algorithm A, the BoostCluster algorithm iteratively mod-

ifies the input data representation, ensuring that the data points related by must-link con-

straints are more similar to each other than the data points related by cannot-link constraints.

This idea is illustrated in Figure 1.8. A 2-dimensional representation of a subset of the Bal-

ance scale data set [39] from the UCI repository [52] is shown in Figure 1.8(a). The three
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Figure 1.8: Illustration of BoostCluster algorithm [49] on the Balance Scale data set [39].
A 2-dimensional projection of the Balance Scale data set, obtained using PCA is shown in
Figure (a). Figures (b)-(d) show the derived data representations based on the must-link
and cannot-link constraints in iterations 1, 2 and 7 of the BoostCluster algorithm. Figure
from [49].
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clusters in this data are represented by triangles, crosses and circles. The must-link and

cannot-link constraints are represented using the solid and dotted lines, respectively. The

data is iteratively projected into subspaces such that the constraints are satisfied (see Fig-

ures 1.8(b)-(d)), thereby increasing the separation among the three clusters and enhancing

the clustering performance.

The key steps in the BoostCluster algorithm involve (i) identifying the constraints that

are not satisfied by the current partition, and (ii) projecting the data into a space where

the points linked by must-link constraints are relatively closer to each other than the points

linked by cannot-link constraints.

Let kernel matrix K denote the current similarity between the points. The objective of

Boostcluster is to minimize the inconsistency between K and the pairwise constraints:

L(K) =

n
∑

i,j=1

n
∑

a,b=1

ML(xi,xj)CL(xa,xb) exp(Ka,b −Ki,j), (1.5)

where ML(xi,xj) = 1 if there is a must-link constraint between points xi and xj and 0

otherwise, and CL(xi,xj) = 1 if there is a cannot-link constraint between points xi and xj

and 0 otherwise.

Let ∆ = [∆i,j] represent the incremental similarity matrix inferred from the current

partition of the data. Entry ∆i,j = 1 when points xi and xj belong to the same cluster

in the current partition, and ∆i,j = 0 otherwise. The kernel is incrementally updated as

K′ = K + α∆, where α is a weight parameter. Let matrix T = [Ti,j ], defined by

Ti,j =
pi,j

∑n
a,b=1 pa,b

− qi,j
∑n

a,b=1 qa,b
,

where pi,j = ML(xi,xj) exp(−Ki,j) and qi,j = CL(xi,xi) exp(Ki,j), represent the incon-

sistency between K and the constraints. A large positive (negative) value of the entry Ta,b

indicates that the corresponding entry in the similarity matrix Ka,b does not reflect the must-

link (cannot-link) constraint between the data points xa and xb. Using Jensen’s inequality,
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the loss L(K′) can be upper bounded by

L(K′) ≤ L(K)×
(

(exp(3α) + exp(−3α) + 1)− (1− exp(−3α)) trace(T∆)

3

)

In order to ensure that L(K′) ≤ L(K) in successive iterations of the algorithm, the upper

bound is minimized with respect to α, which can be accomplished by maximizing the ex-

pression trace(T∆). The incremental kernel matrix ∆ is approximated as
(

P⊤D
)⊤ (

P⊤D
)

,

where P is a projection matrix that specifies the direction along which the data should be

projected to obtain the new data representation. The optimal projection matrix is obti-

ained as P = (
√
λ1v1,

√
λ2v2, · · · ,

√
λsvs), where {(λi,vi)}si=1 represent the top s (non-zero)

eigenvalues and the corresponding eigenvectors of DTD⊤.

The BoostCluster algorithm falls into the same category of semi-supervised clustering

algorithms as the SSKKM algorithm discussed in Section 1.2.1. It also modifies the similarity

between the data points based on the given constraints, and hence yields similar clustering

performance enhancement as the SSKKM algorithm. The advantage of BoostCluster over

other semi-supervised clustering algorithms is that it can serve as a wrapper around any

clustering algorithm. Hence, given the pairwise constraints, BoostCluster is able to boost the

performance of any clustering algorithm. BoostCluster was used to enhance the performance

of K-Means, single-link hierarchical clustering and spectral clustering algorithms on several

data sets [49].
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Algorithm BoostCluster

Input

• Input data set D = (x1, . . . ,xn).

• Clustering algorithm A.

• Set of pairwise constraints ML and CL.

ML(xi,xj) = 1 if there exists a must-link constraint between points xi and xj , and 0 otherwise.

CL(xi,xj) = 1 if there exists a cannot-link constraint between points xi and xj , and 0 otherwise.

• Number of principal eigenvectors s to be used for data projection.

• Number of clusters K.

1. Initialize Ki,j = 0 ∀i, j = 1, 2, · · · , n.

2. Repeat until all constraints are satisfied or a pre-defined maximum number of iterations is reached:

(a) Compute the inconsistency matrix T given by

Ti,j =
pi,j∑n

a,b=1 pa,b
− qi,j∑n

a,b=1 qa,b
,

where pi,j = ML(xi,xj) exp(−Ki,j) and qa,b = CL(xa,xb) exp(Ka,b).

(b) Construct the projection matrix P = (
√
λ1v1,

√
λ2v2, · · · ,

√
λsvs), where {(λi,vi)}si=1 represent the top

s (non-zero) eigenvalues and the corresponding eigenvectors of DTD⊤.

(c) Project the data D into the space spanned by the vectors in P and obtain the new representation of the

data set D̂ = P⊤D.

(d) Run algorithm A with D̂ as the input.

(e) Update the similarity matrix K as K = K+ α∆, where

α =
1

2
log

(∑n

i,j=1 pi,jδ (∆i,j , 1)∑n

i,j=1 pi,jδ (∆i,j , 0)
×
∑n

i,j=1 qi,jδ (∆i,j , 0)∑n

i,j=1 qi,jδ (∆i,j , 1)

)

and

∆i,j =






1 if xi and xj belong to the same cluster

0 otherwise

3. Run algorithm A with K as kernel similarity matrix or with the data representation generated by the top s+1

eigenvectors of K.

Output Cluster memberships of the data points.
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1.2.3 Active spectral clustering

The spectral clustering algorithm [63] poses data clustering as a graph partitioning problem.

The data points are represented as nodes in a graph and the pairwise similarities are rep-

resented as the weights on the edges connecting the vertices. The algorithm then finds the

minimum weight normalized cut of the graph, and the resulting components of the graph

form the clusters. The active spectral clustering algorithm [70] employs pairwise constraints

to enhance the performance of spectral clustering. Instead of using the pairwise relationships

between randomly sampled data point pairs, it employs the active learning mechanism to

identify a subset of the most informative pairwise constraints.

Let S represent the n× n pairwise similarity matrix corresponding to the given set of n

data points. The objective of spectral clustering, expressed as a graph bi-partition problem,

is to find the solution to the following optimization problem:

arg min
u∈Rn

u⊤Lu

s.t. u⊤Du = 1⊤D1

u⊤D1 = 0, (1.6)

where L = D − S is the graph Laplacian, D is the degree matrix given by

Di,j =







∑n
l=1 Si,l if i = j,

0 otherwise.
,

and u is the relaxed cluster membership vector. If the data is perfectly separable into two

clusters, then u ∈ {−1, 1}n. Its ith element ui = 1 if the point xi belongs to the first cluster,

and ui = −1 if it belongs to the second cluster.

The solution is given by the eigenvector associated with the second smallest eigenvalue of

the normalized Laplacian D−1/2LD−1/2. A data partition containing K clusters is obtained

through recursive bi-partitioning [63].

The active spectral clustering algorithm embeds the pairwise constraints in the form of a
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constraint matrix W in the above optimization problem as follows:

arg min
u∈Rn

u⊤Lu

s.t. u⊤Du = 1⊤D1

u⊤Wu ≥ α, (1.7)

where α is a user-defined parameter, indicating how well the constraints in W are satisfied.

A heuristic for selecting a suitable value for α is described in [71]. To obtain the constraint

matrix, the active spectral clustering algorithm uses the active learning scheme. It assumes

the presence of an oracle which has access to the true pairwise relationship matrix W ∗ =

u∗u∗⊤, where u∗ is the desired data partition. The objective is to minimize the difference

between the solution u obtained from the spectral clustering algorithm and u∗ by querying

the oracle for entries from W ∗. The problem (1.7) is solved using the algorithm proposed

in [71].

This active clustering mechanism is shown to perform better than methods which assume

that the pairwise constraints are available a priori. Its only drawback is the high computa-

tional complexity of solving the eigenvalue problem. Fast approximate eigendecomposition

techniques [64, 66] can be used to mitigate this issue.
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Algorithm Active Spectral Clustering

Input

• Input data set D = (x1, . . . ,xn).

• Oracle which has access to the true pairwise relationships W ∗.

• Number of clusters K.

• Parameter α.

1. Compute the similarity matrix S = [d(xi,xj)]n×n.

2. Compute the graph Laplacian L = D − S, where

Di,j =






∑n

l=1 Si,l if i = j,

0 otherwise.

3. Initialize the constraint matrix W = 0.

4. Repeat until convergence

(a) Find the eigenvector u of Lu = λ(W −αI)u, which is associated with a positive eigenvalue and minimizes

u⊤Lu.

(b) Find the singular vector ū corresponding to the largest singular value of W .

(c) Compute the rank one approximation of W as W̄ = ūū⊤.

(d) Calculate the probability pi,j that the data points xi and xj are related by a must-link constraint, given

by

pi,j =
1 +min{1,max{−1, W̄i,j}}

2
.

(e) Solve

(r, s) = arg max
(i,j)|Wi,j=0

pi,j(uiu
⊤
j − 1)2 + (1− pi,j)(uiu

⊤
j + 1)2.

(f) Query the oracle for the entry W ∗
r,s, and set Wr,s and Ws,r equal to W ∗

r,s.

Output Cluster memberships of the data points.
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1.3 Applications

Semi-supervised clustering has been successfully applied in several fields including bioin-

formatics, medical diagnosis, marketing, social network analysis, and web mining. Prior

knowledge has been used to generate the side-information to enhance the clustering perfor-

mance. Some of the applications are described below:

• Character recognition: Semi-supervised clustering was employed to decipher heavily

degraded characters in historical typewritten documents in [56]. Due to various prob-

lems such as discoloration, aging, and disintegration of portions of documents, commer-

cial OCR systems fail to recognize a majority of the characters. The documents were

segmented down to the glyph4 level, and each glyph was represented by a set of features

such as width, height and the ratio of the number of black pixels to the number of white

pixels. The glyphs were then clustered using the MPCK-means semi-supervised cluster-

ing algorithm [13]. Pairwise constraints were generated from typography related domain

knowledge. For example, characters with very different aspect ratios were related by

cannot-link constraints. Constraints were also obtained through pre-clustering of the

glyph images. Figure 1.9 shows a plot of the clustering performance (F-measure [50]) of

K-means, FineReader OCR engine and semi-supervised MPCK-means as a function of

the number of constraints. The plots show that the availability of pairwise constraints

improves the character recognition performance. The best performance was achieved

using a set of constraints containing 731 must-link constraints and 2, 091 cannot-link

constraints.

• Image Segmentation: Image segmentation is an important problem in computer

vision. The goal is to identify homogeneous regions in an image whose pixels share

similar visual patterns (eg. color and texture). Figure 1.10(b) shows a segmentation

of a Mondrian image, consisting of five textured regions, that was obtained using the

mean field approximation technique [46]. The segmented image in Figure 1.10(b) does

not capture the true textured regions in Figure 1.10(a) very well. In order to generate

the pairwise constraints, the image was divided into grids; segment labels for the grids

4A glyph represents a character or a symbolic figure.
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Figure 1.9: Character recognition using semi-supervised clustering [56]. ML1-ML5 and CL1-
CL5 represent sets of must-link and cannot-link constraints, respectively with increasing
number of constraints. Best performance is achieved using the set ML3 + CL3, containing
731 must-link constraints and 2, 091 cannot-link constraints.

Figure 1.10: Image segmentation using semi-supervised clustering [46].

were obtained from the ground truth and converted to pairwise constraints. With 10%

of the grids in pairwise constraints, the true textured regions were very well identified

through semi-supervised clustering, as shown in Figure 1.10(c).

Image segmentation algorithms based on semi-supervised clustering have been employed

in various applications such as medical imaging [27, 57], and remote sensing [67].

• Document clustering: Semi-supervised clustering has been very useful in document

clustering. Semi-supervised Non-negative Matrix factorization (SS-NMF) [15] and its

variants supplied with pairwise relationships between the documents were used to cluster

documents in [15] and [16]. In [35], users were allowed to label discriminative features

in addition to specifying pairwise constraints. This is useful in scenarios where the
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user desires clusters based on specific attributes. For example, a set of articles related

to sports may be organized by sport or by country. The users identified words which

described the topic of the document, when presented with a subset of documents for

labeling. This information was incorporated in the K-Means algorithm to obtain the

desired document clusters.

• Gene expression data analysis: Semi-supervised clustering techniques have been

popular in the domain of gene expression analysis [53, 54, 55]. In addition to pairwise

constraints, interval constraints which define the spatial and temporal cluster bound-

aries, are employed. Genes which are known to have the same function in a biological

process are related by must-link constraints. Interval constraints relate genes which

are close to each other in terms of sampling time and/or spatial position in the DNA

sequence. These constraints are easily attainable and aid biologists in capturing inter-

esting patterns in the data. In [60], the yeast gene expression data was augmented with

labels for a subset of the data. These labels were used to generate pairwise constraints,

which were then used in the semi-supervised EM algorithm [46] to obtain better clusters.

1.4 Conclusions and open problems

Semi-supervised clustering is a useful mechanism to integrate side-information or prior knowl-

edge in the clustering algorithm to find desired clusters in a data set. We have described

different ways in which side-information can be utilized in clustering. Pairwise must-link

and cannot-link constraints are the most common form of specifying the side-information.

Between them, experimental results suggest that must-link constraints are more useful than

cannot-link constraints [65]. The side-information can be incorporated in two ways: con-

straining the set of partitions that can be found by the clustering algorithm, and learning a

distance metric which takes the constraints into account. Many semi-supervised algorithms

have been developed and studied in the literature, and it continues to be a thriving field of

study.

We have seen that the accuracy of the constraints is crucial to the semi-supervised clus-
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tering performance. A major challenge in semi-supervised clustering is identifying the most

useful constraints, while minimizing user effort [69]. Though active clustering alleviates this

issue to some extent, it may not always lead to the desired solution. In some scenarios, only

partial information may be available, and it may not be feasible to determine the pairwise

relationship accurately. In [28], class labels are associated with a confidence rating and used

as side-information. Similar mechanisms for assigning confidence measures to the pairwise

constraints and incorporating them in the semi-supervised clustering algorithm need to be

developed.
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