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image segmentation� object recognition� and information retrieval�
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Fig� �� Data clustering�

General Terms� Clustering

Additional Key Words and Phrases� Cluster analysis� unsupervised learning� similarity indices�
exploratory data analysis� incremental clustering� clustering applications�

�� INTRODUCTION

��� Motivation

Data analysis underlies many computing applications� either in a design phase or as
part of their on�line operations� Data analysis procedures can be dichotomized as
either exploratory or con�rmatory� based on the availability of appropriate models
for the data source� but a key element in both types of procedures �whether for
hypothesis formation or decision�making� is the grouping or classi�cation of mea�
surements based on either �i� goodness�of��t to a postulated model or �ii� natural
groupings �clustering� revealed through analysis� Cluster analysis is the organiza�
tion of a collection of patterns �usually represented as a vector of measurements� or
a point in a multidimensional space� into clusters based on similarity� Intuitively�
patterns within a valid cluster are more similar to each other than they are to a
pattern belonging to a di�erent cluster� An example of clustering is depicted in
Figure 	� The input patterns are shown in Figure 	�a� and the desired clusters
are shown in Figure 	�b�� Here� points belonging to the same cluster are given the
same label� The variety of techniques for representing data� measuring proximity
�similarity� between data elements� and grouping data elements has produced a
rich and often confusing assortment of clustering methods�
It is important to understand the di�erence between clustering �unsupervised

classi�cation� and discriminant analysis �supervised classi�cation�� In supervised
classi�cation� we are provided with a collection of labeled �preclassi�ed� patterns
and the problem is to label a newly encountered� yet unlabeled� pattern� Typically�
the given labeled �training� patterns are used to learn the descriptions of classes
which in turn are used to label a new pattern� In the case of clustering� the problem
is to group a given collection of unlabeled patterns into meaningful clusters� In a
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sense� labels are associated with clusters also� but these category labels are data

driven
 that is� they are obtained solely from the data�
Clustering is useful in several exploratory pattern analysis� grouping� decision

making and machine learning situations including data mining� document retrieval�
image segmentation and pattern classi�cation� However� in many such problems�
there is little prior information �e�g�� statistical models� available about the data and
the decision�maker must make as few assumptions about the data as possible� It is
under these restrictions that clustering methodology is particularly appropriate for
the exploration of interrelationships among the data points to make an assessment
�perhaps preliminary� of their structure�
The term �clustering� is used in several research communities to describe methods

for grouping of unlabeled data� These communities have di�erent terminologies and
assumptions for the components of the clustering process and the contexts in which
clustering is used� Thus� we face a dilemma regarding the scope of this survey� The
production of a truly comprehensive survey would be a monumental task given the
sheer mass of literature in this area� The accessibility of the survey might also be
questionable given the need to reconcile very di�erent vocabularies and assumptions
regarding clustering in the various communities�
The goal of this paper is to survey the core concepts and techniques in the large

subset of cluster analysis with its roots in statistics and decision theory� Where
appropriate� references will be made to key concepts and techniques arising from
clustering methodology in the machine learning and other communities�
The audience of this paper includes practitioners in the pattern recognition and

image analysis communities �who should view it as a summarization of current
practice�� practitioners in the machine learning communities �who should view it
as a snapshot of a closely related �eld with a rich history of well�understood tech�
niques�� and the broader audience of scienti�c professionals �who should view it as
an accessible introduction to a mature �eld that is making important contributions
to computing application areas��

��� Components of a Clustering Task

Typical pattern clustering activity involves the following steps 
����

�	� pattern representation �optionally including feature extraction and�or selec�
tion��

��� de�nition of a pattern proximity measure appropriate to the data domain�

��� clustering or grouping�

��� data abstraction �if needed�� and

��� assessment of output �if needed��

Figure � depicts a typical sequencing of the �rst three of these steps� including a
feedback path where the grouping process output could a�ect subsequent feature
extraction and similarity computations�
Pattern representation refers to the number of classes� the number of available

patterns� and the number� type� and scale of the features available to the clustering
algorithm� Some of this information may not be controllable by the practitioner�
Feature selection is the process of identifying the most e�ective subset of the original
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features to use in clustering� Feature extraction is the use of one or more trans�
formations of the input features to produce new salient features� Either or both
of these techniques can be used to obtain an appropriate set of features to use in
clustering�

Pattern proximity is usually measured by a distance function de�ned on pairs of
patterns� A variety of distance measures are in use in the various communities 
�

��
 �	�� A simple distance measure like the Euclidean distance can often be used
to re�ect dissimilarity between two patterns� whereas other similarity measures can
be used to characterize the conceptual similarity between patterns 
	���� Distance
measures are discussed in Section ��

The grouping step can be performed in a number of ways� The output clustering
�or clusterings� can be hard �a partition of the data into groups� or fuzzy �where
each pattern has a variable degree of membership in each of the output clusters��
Hierarchical clustering algorithms produce a nested series of partitions based on a
criterion for merging or splitting clusters based on similarity� Partitional clustering
algorithms identify the partition that optimizes �usually locally� a clustering cri�
terion� Additional techniques for the grouping operation include probabilistic 
�	�
and graph�theoretic 
	��� clustering methods� The variety of techniques for cluster
formation is described in Section ��

Data abstraction is the process of extracting a simple and compact representation
of a data set� Here� simplicity is either from the perspective of automatic analysis
�so that a machine can perform further processing e�ciently� or it is human�oriented
�so that the representation obtained is easy to comprehend and intuitively appeal�
ing�� In the clustering context� a typical data abstraction is a compact description
of each cluster� usually in terms of cluster prototypes or representative patterns
such as the centroid 
�	��

How is the output of a clustering algorithm evaluated� What characterizes a
�good� clustering result and a �poor� one� All clustering algorithms will� when
presented with data� produce clusters � regardless of whether the data contain
clusters or not� If the data does contain clusters� some clustering algorithms may
obtain �better� clusters than others� The assesssment of a clustering procedure�s
output� then� has several facets� One is actually an assessment of the data domain
rather than the clustering algorithm per se � data which do not contain clusters
should not be processed by a clustering algorithm� The study of cluster tendency�
wherein the input data are examined to see if there is any merit to a cluster analysis
prior to one being performed� is a relatively inactive research area and will not be
considered further in this survey� The interested reader is referred to 
��
 ��� for
information�
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Cluster validity analysis� by contrast� is the assessment of a clustering procedure�s
output� Often this analysis uses a speci�c criterion of optimality
 however� these cri�
teria are usually arrived at subjectively� Hence� little in the way of �gold standards�
exist in clustering except in well�prescribed subdomains� Validity assessments are
objective 
��� and are performed to determine whether the output is meaningful�
A clustering structure is valid if it cannot reasonably have occurred by chance or
as an artifact of a clustering algorithm� When statistical approaches to clustering
are used� validation is accomplished by carefully applying statistical methods and
testing hypotheses� There are three types of validation studies� An external as�
sessment of validity compares the recovered structure to an a priori structure� An
internal examination of validity tries to determine if the structure is intrinsically
appropriate for the data� A relative test compares two structures and measures
their relative merit� Indices used for this comparison are discussed in detail in 
��

���� and are not discussed further in this paper�

��� The User�s Dilemma and the Role of Expertise

The availability of such a vast collection of clustering algorithms in the literature can
easily confound a user attempting to select an algorithm suitable for the problem
at hand� In 
���� a set of admissibility criteria de�ned by 
�	� are used to compare
clustering algorithms� These admissibility criteria are based on� �	� the manner
in which clusters are formed� ��� the structure of the data� and ��� sensitivity of
the clustering technique to changes that do not a�ect the structure of the data�
However� there is no critical analysis of clustering algorithms dealing with the
important questions such as

��How should the data be normalized��

��Which similarity measure is appropriate to use in a given situation��

��How should domain knowledge be utilized in a particular clustering problem��

��How can a vary large data set �say� a million patterns� be clustered e�ciently��

These issues have motivated this survey� and its aim is to provide a perspective
on the state of the art in clustering methodology and algorithms� With such a per�
spective� an informed practitioner should be able to con�dently assess the tradeo�s
of di�erent techniques and ultimately make a competent decision on a technique or
suite of techniques to employ in a particular application�
There is no clustering technique that is universally applicable in uncovering the

variety of structures present in multidimensional data sets� For example� consider
the two�dimensional data set shown in Figure 	�a�� Not all clustering techniques
can uncover all the clusters present here with equal facility� because clustering al�
gorithms often contain implicit assumptions about cluster shape or multiple�cluster
con�gurations based on the similarity measures and grouping criteria used�
Humans perform competitively with automatic clustering procedures in two di�

mensions� but most real problems involve clustering in higher dimensions� It is
di�cult for humans to obtain an intuitive interpretation of data embedded in a
high�dimensional space� In addition� data hardly follow the �ideal� structures �e�g��
hyperspherical� linear� shown in Figure 	� This explains the large number of clus�
tering algorithms which continue to appear in the literature
 each new clustering
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algorithm performs slightly better than the existing ones on a speci�c distribution
of patterns�
It is essential for the user of a clustering algorithm not only to have a thorough

understanding of the particular technique being utilized� but also to know the
details of the data gathering process and to have some domain expertise
 the more
information the user has about the data at hand� the more likely the user would be
to succeed in assessing its true class structure 
���� This domain information can
also be used to improve the quality of feature extraction� similarity computation�
grouping� and cluster representation 
	����
Appropriate constraints on the data source can be incorporated into a clustering

procedure� One example of this is mixture resolving 
	���� wherein it is assumed
that the data are drawn from a mixture of an unknown number of densities �often
assumed to be multivariate Gaussian�� The clustering problem here is to iden�
tify the number of mixture components and the parameters of each component�
The concept of density clustering and a methodology for decomposition of fea�
ture spaces 
	�� has also been incorporated into traditional clustering methodology�
yielding a technique for extracting overlapping clusters�

��� History

Even though there is an increasing interest in the use of clustering methods in
pattern recognition 
��� image processing 
	  � and information retrieval 
	�	
 	����
clustering has a rich history in other disciplines 
��� such as biology� psychiatry�
psychology� archaeology� geology� geography� and marketing� Other terms more
or less synonymous with clustering include unsupervised learning 
���� numerical

taxonomy 
	���� vector quantization 
	���� and learning by observation 
	���� The
�eld of spatial analysis of point patterns 
	��� is also related to cluster analysis�
The importance and interdisciplinary nature of clustering is evident through its
vast literature�
A number of books on clustering have been published 
��
 �
 ��
 	��
 �	
 ��


	��� in addition to some useful and in�uential review papers� A survey of the state
of the art in clustering circa 	��� was reported in 
���� A comparison of various
clustering algorithms for constructing the minimal spanning tree and the short
spanning path was given in 
	���� Cluster analysis was also surveyed in 
	 ��� A
review of image segmentation by clustering was reported in 
	  �� Comparisons
of various combinatorial optimization schemes� based on experiments� have been
reported in 
	��� and 
���

��� Outline

This paper is organized as follows� Section � presents de�nitions of terms to be used
throughout the paper� Section � summarizes pattern representation� feature extrac�
tion� and feature selection� Various approaches to the computation of proximity
between patterns are discussed in Section �� Section � presents a taxonomy of clus�
tering approaches� describes the major techniques in use� and discusses emerging
techniques for clustering incorporating non�numeric constraints and the clustering
of large sets of patterns� Section � discusses applications of clustering methods
to image analysis and data mining problems� Finally� Section � presents some
concluding remarks�
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�� DEFINITIONS AND NOTATION

The following terms and notation will be used throughout this paper�

�A pattern �or feature vector� observation� or datum� x is a single data item used
by the clustering algorithm� It typically consists of a vector of d measurements�
x ! �x�� � � � xd��

�The individual scalar components xi of a pattern x are called features �or at�

tributes��

�d is the dimensionality of the pattern or of the pattern space�

�A pattern set will be denoted X ! fx�� � � �xng� The ith pattern in X will be
denoted xi ! �xi��� � � � xi�d�� In many cases a pattern set to be clustered is viewed
as an n� d pattern matrix�

�A class� in the abstract� refers to a state of nature that governs the pattern
generation process in some cases� More concretely� a class can be viewed as a
source of patterns whose distribution in feature space is governed by a probability
density speci�c to the class� Clustering techniques attempt to group patterns so
that the classes thereby obtained re�ect the di�erent pattern generation processes
represented in the pattern set�

�Hard clustering techniques assign a class label li to each patterns xi� identifying
its class� The set of all labels for a pattern set X is L ! fl�� � � � lng� with li �
f	� � � � � kg� where k is the number of clusters�

�Fuzzy clustering procedures assign to each input pattern xi a fractional degree
of membership fij in each output cluster j�

�A distance measure �a specialization of a proximity measure� is a metric �or
quasi�metric� on the feature space used to quantify the similarity of patterns�

�� PATTERN REPRESENTATION	 FEATURE SELECTION	 AND FEATURE EXTRAC


TION

There are no theoretical guidelines which suggest the appropriate patterns and fea�
tures to use in a speci�c situation� Indeed� the pattern generation process is often
not directly controllable
 the user�s role in the pattern representation process is
to gather facts and conjectures about the data� optionally perform feature selec�
tion and extraction� and design the subsequent elements of the clustering system�
Because of the di�culties surrounding pattern representation� it is conveniently as�
sumed that the pattern representation is available prior to clustering� Nonetheless�
a careful investigation of the available features and any available transformations
�even simple ones� can yield signi�cantly improved clustering results� A good pat�
tern representation can often yield a simple and easily understood clustering
 a
poor pattern representation may yield a complex clustering whose true structure if
di�cult or impossible to discern� Figure � shows a simple example� The points in
this �D feature space are arranged in a curvilinear cluster of approximately constant
distance from the origin� If one chooses Cartesian coordinates to represent the pat�
terns� many clustering algorithms would be likely to fragment the cluster into two
or more clusters since it is not compact� If� however� one uses a polar coordinate
representation for the clusters� the radius coordinate exhibits tight clustering and
a one�cluster solution is likely to be easily obtained�
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Fig� �� A curvilinear cluster whose points are approximately equidistant from the origin� Di�erent

pattern representations �coordinate systems� would cause clustering algorithms to yield di�erent
results for this data �see text��

A pattern can measure either a physical object �e�g�� a chair� or an abstract notion
�e�g�� a style of writing�� As noted above� patterns are represented conventionally
as multidimensional vectors� where each dimension is a single feature 
���� These
features can be either quantitative or qualitative� For example� if weight and color

are the two features used� then �� � black� is the representation of a black object
with � units of weight� The features can be subdivided into the following types 
����

�	� Quantitative features�
�a� Continuous values �e�g�� weight��
�b� Discrete values �e�g�� the number of computers��
�c� Interval values �e�g�� the duration of an event��

��� Qualitative features�
�a� Nominal or unordered� �e�g�� color��
�b� Ordinal �e�g�� military rank or qualitative evaluations of temperature ��cool�

or �hot�� or sound intensity ��quiet� or �loud���

Quantitiative features can be measured on a ratio scale �with a meaningful reference
value� such as temperature�� or on nominal or ordinal scales�
One can also use structured features 
	��� which are represented as trees� where

the parent node represents a generalization of its child nodes� For example� a
parent node �vehicle� may be a generalization of children labeled �cars�� �buses��
�trucks�� and �motorcycles�� Further� the node �cars� could be a generalization
of cars of the type �Toyota�� �Ford�� �Benz�� etc� A generalized representation of
patterns� called symbolic objects was proposed in 
���� Symbolic objects are de�ned
by a logical conjunction of events� These events link values and features in which
the features can take one or more values and all the objects need not be de�ned on
the same set of features�
It is often valuable to isolate only the most descriptive and discriminatory fea�

tures in the input set� and utilize those features exclusively in subsequent analysis�
Feature selection techniques identify a subset of the existing features for subsequent
use� while feature extraction techniques compute new features from the original set�
In either case� the goal is to improve classi�cation performance and�or computa�
tional e�ciency� Feature selection is a well�explored topic in statistical pattern
recognition 
���
 however� in a clustering context �i�e�� lacking class labels for pat�
terns�� the feature selection process is of necessity ad hoc and might involve a
trial�and�error process where various subsets of features are selected� the resulting
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patterns clustered� and the output evaluated using a validity index� In contrast�
some of the popular feature extraction processes �e�g�� principal components analy�
sis 
�	�� do not depend on labeled data and can be used directly� Reduction of the
number of features has an additional bene�t� namely the ability to produce output
that can be visually inspected by a human�

�� SIMILARITY MEASURES

Since similarity is fundamental to the de�nition of a cluster� a measure of the
similarity between two patterns drawn from the same feature space is essential to
most clustering procedures� Because of the variety of feature types and scales� the
distance measure �or measures� must be chosen carefully� It is most common to
calculate the dissimilarity between two patterns using a distance measure de�ned
on the feature space� We will focus on the well�known distance measures used for
patterns whose features are all continuous�
The most popular metric for continuous features is the Euclidean distance

d��xi�xj� !

�
dX

k��

�xi�k � xj�k�
�

����

! kxi � xjk��

which is a special case �p!�� of the Minkowski metric

dp�xi�xj� !

�
dX

k��

jxi�k � xj�kj
p

���p

! kxi � xjkp�

The Euclidean distance has an intuitive appeal as it is commonly used to evaluate
the proximity of objects in two or three�dimensional space� It works well when a
data set has �compact� or �isolated� clusters 
	���� The drawback to direct use of
the Minkowski metrics is the tendency of the largest�scaled feature to dominate the
others� Solutions to this problem include normalization of the continuous features
�to a common range or variance� or other weighting schemes� Linear correlation
among features can also distort distance measures
 this distortion can be allevi�
ated by applying a whitening transformation to the data or by using the squared
Mahalanobis distance

dM �xi�xj� ! �xi � xj�"
���xi � xj�

T �

where the patterns xi and xj are assumed to be row vectors� and " is the sample
covariance matrix of the patterns or the known covariance matrix of the pattern gen�
eration process
 dM ��� �� assigns di�erent weights to di�erent features based on their
variances and pairwise linear correlations� Here� it is implicitly assumed that class
conditional densities are unimodal and characterized by multidimensional spread�
i�e� that the densities are multivariate Gaussian� The regularized Mahalanobis
distance was used in 
	��� to extract hyperellipsoidal clusters� Recently� several re�
searchers 
� 
 ��� have used the Hausdor� distance in a point set matching context�
Some clustering algorithms work on a matrix of proximity values instead of on

the original pattern set� It is useful in such situations to precompute all the n�n���
�

pairwise distance values for the n patterns and store them in a �symmetric� matrix�
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Computation of distances between patterns with some or all features being non�
continuous is problematic since the di�erent types of features are not comparable
and �as an extreme example� the notion of proximity is e�ectively binary�valued
for nominal�scaled features� Nonetheless� practitioners �especially those in machine
learning� where mixed�type patterns are common� have developed proximity mea�
sures for heterogeneous type patterns� A recent example is 
	���� which proposes a
combination of a modi�ed Minkowski metric for continuous features and a distance
based on counts �population� for nominal attributes� A variety of other metrics have
been reported in 
�	
 �	� for computing the similarity between patterns represented
using quantitative as well as qualitative features�
Patterns can also be represented using string or tree structures 
		��� Strings

are used in syntactic clustering 
���� Several measures of similarity between strings
are described in 
	��� A good summary of similarity measures between trees is
given by 
�  �� A comparison of syntactic and statistical approaches for pattern
recognition using several criteria was presented in 
	�	� and the conclusion was
that syntactic methods are inferior in every aspect� Therefore� we do not consider
syntactic methods further in this paper�
There are some distance measures reported in the literature 
��
 	 �� that take

into account the e�ect of surrounding or neighboring points� These surrounding
points are called context in 
	���� The similarity between two points xi and xj �
given this context� is given by

s�xi�xj� ! f�xi�xj � E��

where E is the context �the set of surrounding points�� One metric de�ned using
context is the mutual neighbor distance �MND�� proposed in 
���� which is given by

MND�xi�xj� ! NN�xi�xj� #NN�xj �xi��

where NN�xi�xj� is the neighbor number of xj with respect to xi� Figures � and �
give an example� In Figure �� the nearest neighbor of A is B� and B�s nearest
neighbor is A� So� NN�A�B� ! NN�B�A� ! 	 and the MND between A and B is
�� However� NN�B�C� ! 	 but NN�C�B� ! �� and therefore MND�B�C� ! ��
Figure � was obtained from Figure � by adding three new points D� E� and F� Now
MND�B�C� ! � �as before�� but MND�A�B� ! �� The MND between A and
B has increased by introducing additional points� even though A and B have not
moved� The MND is not a metric �it does not satisfy the triangle inequality 
�  ���
In spite of this� MND has been successfully applied in several clustering applica�
tions 
���� This observation supports the viewpoint that the dissimilarity does not
need to be a metric�
Watanabe�s theorem of the ugly duckling 
	��� states�

Insofar as we use a �nite set of predicates that are capable of distinguish�
ing any two objects considered� the number of predicates shared by any
two such objects is constant� independent of the choice of objects�

This implies that it is possible to make any two arbitrary patterns equally similar
by encoding them with a su�ciently large number of features� As a consequence�
any two arbitrary patterns are equally similar� unless we use some additional domain
information� For example� in the case of conceptual clustering 
	���� the similarity
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between xi and xj is de�ned as

s�xi�xj� ! f�xi�xj � C� E��

where C is a set of pre�de�ned concepts� This notion is illustrated with the help
of Figure �� Here� the Euclidean distance between points A and B is less than
that between B and C� However� B and C can be viewed as �more similar� than
A and B because B and C belong to the same concept �ellipse� and A belongs
to a di�erent concept �rectangle�� The conceptual similarity measure is the most
general similarity measure� We discuss several pragmatic issues associated with its
use in Section ��		�

�� CLUSTERING TECHNIQUES

Di�erent approaches to clustering data can be described with the help of the hier�
archy shown in Figure � �other taxonometric representations of clustering method�
ology are possible
 ours is based on the discussion in 
����� At the top level� there
is a distinction between hierarchical and partitional approaches �hierarchical meth�
ods produce a nested series of partitions� while partitional methods produce only
one�� The taxonomy shown in Figure � must be supplemented by a discussion of
cross�cutting issues that may �in principle� a�ect all of the di�erent approaches
regardless of their placement in the taxonomy�

�Agglomerative vs� divisive� This aspect relates to algorithmic structure and
operation� An agglomerative approach begins with each pattern in a distinct
�singleton� cluster and successively merges clusters together until a stopping cri�
terion is satis�ed� A divisive method begins with all patterns in a single cluster
and performs splitting until a stopping criterion is met�

�Monothetic vs� polythetic� This aspect relates to the sequential or simultaneous
use of features in the clustering process� Most algorithms are polythetic
 that
is� all features enter into the computation of distances between patterns� and
decisions are based on those distances� A simple monothetic algorithm reported
in 
�� considers features sequentially to divide the given collection of patterns�
This is illustrated in Figure �� Here� the collection is divided into two groups
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using feature x�
 the vertical broken line V is the separating line� Each of these
clusters is further divided independently using feature x�� as depicted by the
broken lines H� and H�� The major problem with this algorithm is that it
generates �d clusters where d is the dimensionality of the patterns� For large
values of d �d � 	  is typical in information retrieval applications 
	����� the
number of clusters generated by this algorithm is so large that the data set is
divided into uninterestingly small and fragmented clusters�

�Hard vs� fuzzy� A hard clustering algorithm allocates each pattern to a single
cluster during its operation and in its output� A fuzzy clustering method assigns
degrees of membership in several clusters to each input pattern� A fuzzy cluster�
ing can be converted to a hard clustering by assigning each pattern to the cluster
with the largest measure of membership�

�Deterministic vs� stochastic� This issue is most relevant to partitional approaches
designed to optimize a squared error function� This optimization can be accom�
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plished using traditional techniques or through a random search of the state space
consisting of all possible labelings�

�Incremental vs� non�incremental� This issue arises when the pattern set to be
clustered is large� and constraints on execution time or memory space a�ect
the architecture of the algorithm� The early history of clustering methodology
does not contain many examples of clustering algorithms designed to work with
large data sets� but the advent of data mining has fostered the development of
clustering algorithms that minimize the number of scans through the pattern set�
reduce the number of patterns examined during execution� or reduce the size of
data structures used in the algorithm�s operations�

A cogent observation in 
��� is that the speci�cation of an algorithm for clustering
usually leaves considerable �exibilty in implementation�

��� Hierarchical Clustering Algorithms

The operation of a hierarchical clustering algorithm is illustrated using the two�
dimensional data set in Figure �� This �gure depicts seven patterns labeled A� B�
C� D� E� F� and G in three clusters� A hierarchical algorithm yields a dendrogram

representing the nested grouping of patterns and similarity levels at which groupings
change� A dendrogram corresponding to the seven points in Figure � �obtained from
the single�link algorithm 
���� is shown in Figure 	 � The dendrogram can be broken
at di�erent levels to yield di�erent clusterings of the data�
Most hierarchical clustering algorithms are variants of the single�link 
	���� com�

plete�link 
	 ��� and minimum�variance 
	�	
 	��� algorithms� Of these� the single�
link and complete�link algorithms are most popular� These two algorithms di�er in
the way they characterize the similarity between a pair of clusters� In the single�
link method� the distance between two clusters is the minimum of the distances
between all pairs of patterns drawn from the two clusters �one pattern from the �rst
cluster� and the other from the second�� In the complete�link algorithm� the distance
between two clusters is the maximum of all pairwise distances between patterns in
the two clusters� In either case� two clusters are merged to form a larger cluster
based on minimum distance criteria� The complete�link algorithm produces tightly
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bound or compact clusters 
	��� The single�link algorithm� by contrast� su�ers from
a chaining e�ect 
	� �� It has a tendency to produce clusters that are straggly or
elongated� There are two clusters in Figures 	� and 	� separated by a �bridge� of
noisy patterns� The single�link algorithm produces the clusters shown in Figure 	��
whereas the complete�link algorithm obtains the clustering shown in Figure 	��
The clusters obtained by the complete�link algorithm are more compact than those
obtained by the single�link algorithm
 the cluster labeled 	 obtained using the
single�link algorithm is elongated because of the noisy patterns labeled �$�� The
single�link algorithm is more versatile than the complete�link algorithm� otherwise�
For example� the single�link algorithm can extract the concentric clusters shown
in Figure 		 but the complete�link algorithm cannot� However� from a pragmatic
viewpoint� it has been observed that the complete�link algorithm produces more
useful hierarchies in many applications than the single�link algorithm 
����

Agglomerative Single�Link Clustering Algorithm

�	� Place each pattern in its own cluster� Construct a list of interpattern distances
for all distinct unordered pairs of patterns� and sort this list in ascending order�

��� Step through the sorted list of distances� forming for each distinct dissimilarity
value dk a graph on the patterns where pairs of patterns closer than dk are
connected by a graph edge� If all the patterns are members of a connected
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graph� stop� Otherwise� repeat this step�

��� The output of the algorithm is a nested hierarchy of graphs which can be cut at
a desired dissimilarity level forming a partition �clustering� identi�ed by simply
connected components in the corresponding graph�

Agglomerative Complete�Link Clustering Algorithm

�	� Place each pattern in its own cluster� Construct a list of interpattern distances
for all distinct unordered pairs of patterns� and sort this list in ascending order�

��� Step through the sorted list of distances� forming for each distinct dissimilarity
value dk a graph on the patterns where pairs of patterns closer than dk are
connected by a graph edge� If all the patterns are members of a completely
connected graph� stop�

��� The output of the algorithm is a nested hierarchy of graphs which can be cut
at a desired dissimilarity level forming a partition �clustering� identi�ed by
completely connected components in the corresponding graph�

Hierarchical algorithms are more versatile than partitional algorithms� For ex�
ample� the single�link clustering algorithm works well on data sets containing non�
isotropic clusters including well�separated� chain�like� and concentric clusters� whereas
a typical partitional algorithm such as the k�means algorithm works well only on
data sets having isotropic clusters 
	� �� On the other hand� the time and space
complexities 
��� of the partitional algorithms are typically lower than those of
the hierarchical algorithms� It is possible to develop hybrid algorithms 
	��� that
exploit the good features of both categories�

Hierarchical Agglomerative Clustering Algorithm

�	� Compute the proximity matrix containing the distance between each pair of
patterns� Treat each pattern as a cluster�

��� Find the most similar pair of clusters using the proximity matrix� Merge these
two clusters into one cluster� Update the proximity matrix to re�ect this merge
operation�
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��� If all objects are in one cluster� stop� Else� go to step ��

Based on the way the proximity matrix is updated in step �� a variety of agglom�
erative algorithms can be designed� Hierarchical divisive algorithms start with a
single cluster of all the given objects and keep splitting the clusters based on some
criterion to obtain a partition of singleton clusters�

��� Partitional Algorithms

A partitional clustering algorithm obtains a single partition of the data instead of a
clustering structure� such as the dendrogram produced by a hierarchical technique�
Partitional methods have advantages in applications involving large data sets for
which the construction of a dendrogram is computationally prohibitive� A prob�
lem accompanying the use of a partitional algorithm is the choice of the number
of desired output clusters� A seminal paper 
��� provides guidance on this key de�
sign decision� The partitional techniques usually produce clusters by optimizing
a criterion function de�ned either locally �on a subset of the patterns� or globally
�de�ned over all of the patterns�� Combinatorial search of the set of possible la�
belings for an optimum value of a criterion is clearly computationally prohibitive�
In practice� therefore� the algorithm is typically run multiple times with di�erent
starting states and the best con�guration obtained from all of the runs is used as
the output clustering�

����	 Squared Error Algorithms� The most intuitive and frequently used criterion
function in partitional clustering techniques is the squared error criterion� which
tends to work well with isolated and compact clusters� The squared error for a
clustering L of a pattern set X �containing K clusters� is

e��X �L� !

KX
j��

njX
i��

kx
�j�
i � cjk

��

where x
�j�
i is the ith pattern belonging to the jth cluster and cj is the centroid of

the jth cluster�
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The k�means algorithm is the simplest and most commonly used algorithm em�
ploying a squared error criterion 
	���� It starts with a random initial partition and
keeps on reassigning the patterns to clusters based on the similarity between the
pattern and the cluster centers until a convergence criterion is met �e�g�� there is no
reassignment of any pattern from one cluster to another� or the squared error ceases
to decrease signi�cantly after some number of iterations�� The k�means algorithm
is popular because it is easy to implement and its time complexity is O�n�� where n
is the number of patterns� A major problem with this algorithm is that it is sensi�
tive to the selection of the initial partition and may converge to a local minimum of
the criterion function value if the initial partition is not properly chosen� Figure 	�
shows seven two�dimensional patterns� If we start with patterns A� B� and C as
the initial means around which the � clusters are built� then we end up with the
partition ffAg� fB� Cg� fD� E� F� Ggg shown by ellipses� The squared error crite�
rion value is much larger for this partition than for the best partition ffA� B� Cg�
fD� Eg� fF� Ggg shown by rectangles� which yields the global minimum value of
the squared error criterion function for a clustering containing three clusters� The
correct three�cluster solution is obtained by choosing� for example� A� D� and F as
the initial cluster means�

Squared Error Clustering Method

�	� Select an initial partition of the patterns with a �xed number of clusters and
cluster centers�

��� Assign each pattern to its closest cluster center and compute the new cluster
centers as the centroids of the clusters� Repeat this step until convergence is
achieved� i�e�� until the cluster membership is stable�

��� Merge and split clusters based on some heuristic information� optionally re�
peating step ��

k�Means Clustering Algorithm

�	� Choose k cluster centers to coincide with k randomly�chosen patterns or k
randomly de�ned points inside the hypervolume containing the pattern set�

��� Assign each pattern to the closest cluster center�

��� Recompute the cluster centers using the current cluster memberships�

��� If a convergence criterion is not met� go to step �� Typical convergence criteria
are� no �or minimal� reassignment of patterns to new cluster centers� or minimal
decrease in squared error�

Several variants 
�� of the k�means algorithm have been reported in the literature�
Some of them attempt to select a good initial partition so that the algorithm is
more likely to �nd the global minimum value� Another variation is to permit
splitting and merging of the resulting clusters� Typically� a cluster is split when its
variance is above a pre�speci�ed threshold and two clusters are merged when the
distance between their centroids is below another pre�speci�ed threshold� Using this
variant� it is possible to obtain the optimal partition starting from any arbitrary
initial partition� provided proper threshold values are speci�ed� The well�known
ISODATA 
	�� algorithm employs this technique of merging and splitting clusters�
If ISODATA is given the �ellipse� partitioning shown in Figure 	� as an initial
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partitioning� it will produce the optimal three�cluster partitioning� ISODATA will
�rst merge the clusters fAg and fB�Cg into one cluster because the distance between
their centroids is small and then split the cluster fD�E�F�Gg �which has a large
variance�� into two clusters fD�Eg and fF�Gg�
Another variation of the k�means algorithm involves selecting a di�erent criterion

function altogether� The dynamic clustering algorithm �which permits representa�
tions other than the centroid cl for each cluster� was proposed in 
� �� and 
	� �
describes a dynamic clustering approach obtained by formulating the clustering
problem in the framework of maximum�likelihood estimation� The regularized Ma�
halanobis distance was used in 
	��� to obtain hyperellipsoidal clusters�

����� Graph�Theoretic Clustering� The most well�known graph�theoretic divisive
clustering algorithm is based on the construction of the minimal spanning tree

�MST� of the data 
	��� and then deleting the MST edges with the largest lengths
to generate more clusters� Figure 	� depicts the MST obtained from nine two�
dimensional points� By breaking the link labeled CD with a length of � units �the
edge with the maximum Euclidean length�� two clusters �fA� B� Cg and fD� E� F�
G� H� Ig� are obtained� The second cluster can be further divided into two clusters
by breaking the edge EF which has a length of ��� units�
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The hierarchical approaches are also related to graph�theoretic clustering� Single�
link clusters are subgraphs of the minimum spanning tree of the data 
��� which are
also the connected components 
���� Complete�link clusters are maximal complete
subgraphs 
��� and are related to the node colorability of graphs 
	��� The max�
imal complete subgraph was considered the strictest de�nition of a cluster in 
��
and 
	� �� A graph�oriented approach for non�hierarchical structures and over�
lapping clusters is presented in 
	���� The Delaunay graph �DG� is obtained by
connecting all the pairs of points that are Voronoi neighbors� The DG contains all
the neighborhood information contained in the MST and the relative neighborhood
graph �RNG� 
	����

��� Mixture Resolving and Mode
Seeking Algorithms

The mixture resolving approach to cluster analysis has been addressed in a number
of ways� The underlying assumption is that the patterns to be clustered are drawn
from one of several distributions� and the goal is to identify the parameters of
each and �perhaps� their number� Most of the work in this area has assumed that
the individual components of the mixture density are Gaussian� and in this case
the parameters of the individual Gaussians are to be estimated by the procedure�
Traditional approaches to this problem involve obtaining �iteratively� a maximum
likelihood estimate of the parameter vectors of the component densities 
����
More recently� the Expectation Maximization �EM� algorithm �a general�purpose

maximum likelihood algorithm 
��� for missing�data problems� has been applied to
the problem of parameter estimation� A recent book 
	��� provides an accessible
description of the technique� In the EM framework� the parameters of the compo�
nent densities are unknown� as are the mixing parameters� and these are estimated
from the patterns� The EM procedure begins with an initial estimate of the pa�
rameter vector and iteratively rescores the patterns against the mixture density
produced by the parameter vector� The rescored patterns are then used to update
the parameter estimates� In a clustering context� the scores of the patterns �which
essentially measure their likelihood of being drawn from particular components of
the mixture� can be viewed as hints at the class of the pattern� Those patterns�
placed �by their scores� in a particular component� would therefore be viewed as
belonging to the same cluster�
Nonparametric techniques for density�based clustering have also been devel�

oped 
���� Inspired by the Parzen window approach to nonparametric density esti�
mation� the corresponding clustering procedure searches for bins with large counts
in a multidimensional histogram of the input pattern set� Other approaches include
the application of another partitional or hierarchical clustering algorithm using a
distance measure based on a nonparametric density estimate�

��� Nearest Neighbor Clustering

Since proximity plays a key role in our intuitive notion of a cluster� nearest�neighbor
distances can serve as the basis of clustering procedures� An iterative procedure
was proposed in 
	���
 it assigns each unlabeled pattern to the cluster of its nearest
labeled neighbor pattern� provided the distance to that labeled neighbor is below
a threshold� The process continues until all patterns are labeled or no additional
labelings occur� The mutual neighborhood value �described earlier in the context
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of distance computation� can also be used to grow clusters from near neighbors�

��� Fuzzy Clustering

Traditional clustering approaches generate partitions
 in a partition� each pattern
belongs to one and only one cluster� Hence� the clusters in a hard clustering are
disjoint� Fuzzy clustering extends this notion to associate each pattern with every
cluster using a membership function 
	���� The output of such algorithms is a
clustering� but not a partition� We give a high�level partitional fuzzy clustering
algorithm below�

Fuzzy Clustering Algorithm

�	� Select an initial fuzzy partition of the N objects into K clusters by selecting
the N �K membership matrix U� An element uij of this matrix represents the
grade of membership of object xi in cluster cj � Typically� uij � 
 � 	��

��� Using U� �nd the value of a fuzzy criterion function� e�g� a weighted squared
error criterion function� associated with the corresponding partition� One pos�
sible fuzzy criterion function is

E��X �U� !

NX
i��

KX
k��

uijkxi � ckk
��

where ck !
PN

i�� uikxi is the k
th fuzzy cluster center�

Reassign patterns to clusters to reduce this criterion function value and recom�
pute U�

��� Repeat step � until entries in U do not change signi�cantly�

In fuzzy clustering� each cluster is a fuzzy set of all the patterns� Figure 	�
illustrates the idea� The rectangles enclose two �hard� clusters in the data� H� !
f	� �� �� �� �g and H� ! f�� �� �� �g� A fuzzy clustering algorithm might produce
the two fuzzy clusters F� and F� depicted by ellipses� The patterns will have
membership values in 
 �	� for each cluster� For example� fuzzy cluster F� could be
compactly described as

f�	�  ���� ���  ���� ���  ���� ���  ���� ���  ����� ���  ���� ���  ���� ���  � �� ���  � �g

and F� could be described as

f�	�  � �� ���  � �� ���  � �� ���  �	�� ���  �	��� ���  ���� ���  ����� ��� 	� �� ���  ���g

The ordered pairs �i� �i� in each cluster represent the ith pattern and its member�
ship value to the cluster �i� Larger membership values indicate higher con�dence
in the assignment of the pattern to the cluster� A hard clustering can be obtained
from a fuzzy partition by thresholding the membership value�
Fuzzy set theory was initially applied to clustering in 
	���� The book by

Bezdek 
	�� is a good source for material on fuzzy clustering� The most popu�
lar fuzzy clustering algorithm is the fuzzy c�means �FCM� algorithm 
	��� Even
though it is better than the hard k�means algorithm in avoiding local minima�
FCM can still converge to local minima of the squared error criterion� The design
of membership functions is the most important problem in fuzzy clustering
 di�er�
ent choices include those based on similarity decomposition 
	�� and centroids of
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clusters� A generalization of the FCM algorithm was proposed by 
	�� through a
family of objective functions� A fuzzy c�shell algorithm and an adaptive variant for
detecting circular and elliptical boundaries was presented in 
����

��� Representation of Clusters

In applications where the number of classes or clusters in a data set must be discov�
ered� a partition of the data set is the end product� Here� a partition gives an idea
about the separability of the data points into clusters and whether it is meaningful
to employ a supervised classi�er that assumes a given number of classes in the
data set� However� in many other applications that involve decision making� the
resulting clusters have to be represented or described in a compact form to achieve
data abstraction� Even though the construction of a cluster representation is an
important step in decision making� it has not been examined closely by researchers�
The notion of cluster representation was introduced in 
�	� and was subsequently
studied in 
�	� and 
	�	�� They suggested the following representation schemes�

�	� Represent a cluster of points by their centroid or by a set of distant points in
the cluster� Figure 	� depicts these two ideas�

��� Represent clusters using nodes in a classi�cation tree� This is illustrated in
Figure 	��

��� Represent clusters by using conjunctive logical expressions� For example� the
expression 
X� � ��
X� � �� in Figure 	� stands for the logical statement �X�

is greater than �� and �X� is less than ���

Use of the centroid to represent a cluster is the most popular scheme� It works
well when the clusters are compact or isotropic� However� when the clusters are
elongated or non�isotropic� then this scheme fails to represent them properly� In
such a case� the use of a collection of boundary points in a cluster captures its
shape well� The number of points used to represent a cluster should increase as
the complexity of its shape increases� The two di�erent representations illustrated
in Figure 	� are equivalent� Every path in a classi�cation tree from the root node
to a leaf node corresponds to a conjunctive statement� An important limitation of
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the typical use of the simple conjunctive concept representations is that they can
describe only rectangular or isotropic clusters in the feature space�
Data abstraction is useful in decision making because of the following�

�	� It gives a simple and intuitive description of clusters which is easy for human
comprehension 
	���� In both conceptual clustering 
	��� and symbolic cluster�
ing 
��� this representation is obtained without using an additional step� These
algorithms generate the clusters as well as their descriptions� A set of fuzzy
rules can be obtained from fuzzy clusters of a data set� These rules can be used
to build fuzzy classi�ers and fuzzy controllers�

��� It helps in achieving data compression that can be exploited further by a com�
puter 
	���� Figure 	��a� shows samples belonging to two chain�like clusters
labeled 	 and �� A partitional clustering like the k�means algorithm cannot
separate these two structures properly� The single�link algorithm works well
on this data� but is computationally expensive� So� a hybrid approach may be
used to exploit the desirable properties of both these algorithms� We obtain �
subclusters of the data by using the �computationally e�cient� k�means algo�
rithm� Each of these subclusters can be represented by their centroids as shown
in Figure 	��a�� Now the single�link algorithm can be applied on these cen�
troids alone to cluster them into � groups� The resulting groups are shown in
Figure 	��b�� Here� a data reduction is achieved by representing the subclusters
by their centroids�
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��� It increases the e�ciency of the decision making task� In a cluster�based doc�
ument retrieval technique 
	���� a large collection of documents is clustered
and each of the clusters is represented using its centroid� In order to retrieve
documents relevant to a query� the query is matched with the cluster centroids
rather than with all the documents� This helps in retrieving relevant documents
e�ciently� Also in several applications involving large data sets� clustering is
used to perform indexing� which helps in e�cient decision making 
����

��� Arti
cial Neural Networks for Clustering

Arti�cial neural networks �ANNs� 
��� are motivated by biological neural networks�
ANNs have been used extensively over the past three decades for both classi�cation
and clustering 
	��
 ���� Some of the features of the ANNs that are important in
pattern clustering are�

�	� ANNs process numerical vectors and so require patterns to be represented using
quantitative features only�

��� ANNs are inherently parallel and distributed processing architectures�

��� ANNs may learn their interconnection weights adaptively 
	 	
 	���� More
speci�cally� they can act as pattern normalizers and feature selectors by appro�
priate selection of weights�

Competitive �or winner�take�all� neural networks 
	 	� are often used to cluster
input data� In competitive learning� similar patterns are grouped by the network
and represented by a single unit �neuron�� This grouping is done automatically
based on data correlations� Well�known examples of ANNs used for clustering
include Kohonen�s learning vector quantization �LVQ� and self�organizing map
�SOM� 
		��� and adaptive resonance theory models 
���� The architectures of
these ANNs are simple� they are single�layered� Patterns are presented at the
input and are associated with the output nodes� The weights between the input
nodes and the output nodes are iteratively changed �this is called learning� until
a termination criterion is satis�ed� Competitive learning has been found to exist
in biological neural networks� However� the learning or weight update procedures
are quite similar to those in some classical clustering approaches� For example� the
relationship between the k�means algorithm and LVQ is addressed in 
	���� The
learning algorithm in ART models is similar to the leader clustering algorithm 
	����
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The SOM gives an intuitively appealing two�dimensional map of the multidimen�
sional data set� and it has been successfully used for vector quantization and speech
recognition 
		��� However� like its sequential counterpart� the SOM generates a
sub�optimal partition if the initial weights are not chosen properly� Further� its
convergence is controlled by various parameters such as the learning rate and a
neighborhood of the winning node in which learning takes place� It is possible that
a particular input pattern can �re di�erent output units at di�erent iterations
 this
brings up the stability issue of learning systems� The system is said to be stable if
no pattern in the training data changes its category after a �nite number of learning
iterations� This problem is closely associated with the problem of plasticity� which
is the ability of the algorithm to adapt to new data� For stability� the learning rate
should be decreased to zero as iterations progress and this a�ects the plasticity�
The ART models are supposed to be stable and plastic 
���� However� ART nets
are order�dependent
 that is� di�erent partitions are obtained for di�erent orders in
which the data is presented to the net� Also the size and number of clusters gener�
ated by an ART net depend on the value chosen for the vigilance threshold� which
is used to decide whether a pattern is to be assigned to one of the existing clusters
or start a new cluster� Further� both SOM and ART are suitable for detecting only
hyper�spherical clusters 
���� A two�layer network that employs regularized Ma�
halanobis distance to extract hyperellipsoidal clusters was proposed in 
	���� All
these ANNs use a �xed number of output nodes which limit the number of clusters
that can be produced�

��� Evolutionary Approaches for Clustering

Evolutionary approaches� motivated by natural evolution� make use of evolutionary
operators and a population of solutions to obtain the globally optimal partition of
the data� Candidate solutions to the clustering problem are encoded as chromo�
somes� The most commonly used evolutionary operators are� selection� recombi�
nation� and mutation� Each transforms one or more input chromosomes into one
or more output chromosomes� A �tness function evaluated on a chromosome de�
termines a chromosome�s likelihood of surviving into the next generation� We give
below a high�level description of an evolutionary algorithm applied to clustering�

An Evolutionary Algorithm for Clustering

�	� Choose a random population of solutions� Each solution here corresponds to
a valid k�partition of the data� Associate a �tness value with each solution�
Typically� �tness is inversely proportional to the squared error value� A solution
with a small squared error will have a larger �tness value�

��� Use the evolutionary operators selection� recombination and mutation to gen�
erate the next population of solutions� Evaluate the �tness values of these
solutions�

��� Repeat step � until some termination condition is satis�ed�

The best known evolutionary techniques are genetic algorithms �GAs� 
��
 ����
evolution strategies �ESs� 
	���� and evolutionary programming �EP� 
���� Out of
these three approaches� GAs have been most frequently used in clustering� Typi�
cally� solutions are binary strings in GAs� In GAs� a selection operator propagates
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parent1

parent2

child1

child2

1      0       1      1      0       1     0       1

1       0       1      1      1      1       1      0

1       1      0       0      0      1      0     1

1       1       0      0      1       1      1      0

crossover point

Fig� ��� Crossover operation�

solutions from the current generation to the next generation based on their �tness�
Selection employs a probabilistic scheme so that solutions with higher �tness have
a higher probability of getting reproduced�
There are a variety of recombination operators in use
 crossover is the most pop�

ular� Crossover takes as input a pair of chromosomes �called parents� and outputs a
new pair of chromosomes �called children or o�spring� as depicted in Figure � � In
Figure � � a single point crossover operation is depicted� It exchanges the segments
of the parents across a crossover point� For example� in Figure � � the parents are
the binary strings �	 		 	 	� and �		  			 �� The segments in the two parents after
the crossover point �between the fourth and �fth locations� are exchanged to pro�
duce the child chromosomes� Mutation takes as input a chromosome and outputs
a chromosome by complementing the bit value at a randomly selected location in
the input chromosome� For example� the string �							 � is generated by applying
the mutation operator to the second bit location in the string �	 					 � �start�
ing at the left�� Both crossover and mutation are applied with some pre�speci�ed
probabilities which depend on the �tness values�
GAs represent points in the search space as binary strings and rely on the cross�

over operator to explore the search space� Mutation is used in GAs for the sake
of completeness� that is� to make sure that no part of the search space is left
unexplored� ESs and EP di�er from the GAs in solution representation and type of
the mutation operator used
 EP does not use a recombination operator� but only
selection and mutation� Each of these three approaches have been used to solve the
clustering problem by viewing it as a minimization of the squared error criterion�
Some of the theoretical issues such as the convergence of these approaches were
studied in 
����
GAs perform a globalized search for solutions whereas most other clustering pro�

cedures perform a localized search� In a localized search� the solution obtained
at the �next iteration� of the procedure is in the vicinity of the current solution�
In this sense� the k�means algorithm� fuzzy clustering algorithms� ANNs used for
clustering� various annealing schemes �see below�� and tabu search are all localized
search techniques� In the case of GAs� the crossover and mutation operators can
produce new solutions that are completely di�erent from the current ones� We
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Fig� ��� GAs perform globalized search�

illustrate this fact in Figure �	� Let us assume that the scalar X is coded using a
��bit binary representation� and let S� and S� be two points in the one�dimensional
search space� The decimal values of S� and S� are � and �	 respectively� Their
binary representations are S� !  	   and S� ! 					� Let us apply the single�
point crossover to these strings with the crossover site falling between the second
and third most signi�cant bits as shown below�

 	%   
		%			

This will produce a new pair of points or chromosomes S� and S� as shown in
Figure �	� Here� S� !  				 and S� ! 		   � The corresponding decimal values
are 	� and ��� respectively� Similarly� by mutating the most signi�cant bit in the
binary string  				 �decimal 	��� the binary string 					 �decimal �	� is generated�
These jumps or gaps between points in successive generations are much larger than
those produced by other approaches�
Perhaps the earliest paper on the use of GAs for clustering is 
	���� where a

GA was used to minimize the squared error of a clustering� Here� each point or
chromosome represents a partition of N objects into K clusters and is represented
by a K�ary string of length N � For example� consider six patterns A� B� C� D� E�
and F and the string 	 	  	� This six�bit binary �K ! �� string corresponds to
placing the six patterns into two clusters� This string represents a two�partition�
where one cluster has the �rst� third� and sixth patterns and the second cluster has
the remaining patterns� In other words� the two clusters are fA�C�Fg and fB�D�Eg
�the six�bit binary string  	 		 represents the same clustering of the six patterns��
When there are K clusters� there are K% di�erent chromosomes corresponding to
each K�partition of the data� This increases the e�ective search space size by
a factor of K%� Further� if crossover is applied on two good chromosomes� the
resulting o�spring may be inferior in this representation� For example� let fA�B�Cg
and fD�E�Fg be the clusters in the optimal ��partition of the six patterns considered
above� The corresponding chromosomes are 			   and    			� By applying single�
point crossover at the location between the third and fourth bit positions on these
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two strings� we get 						 and       as o�spring and both correspond to an
inferior partition� These problems have motivated researchers to design better
representation schemes and crossover operators�
In 
	��� an improved representation scheme is proposed� where an additional sep�

arator symbol is used along with the pattern labels to represent a partition� Let
the separator symbol be represented by $� Then the chromosome ACF$BDE cor�
responds to a ��partition fA�C�Fg and fB�D�Eg� Using this representation permits
them to map the clustering problem into a permutation problem such as the trav�
eling salesman problem which can be solved by using the permutation crossover
operators 
���� This solution also su�ers from permutation redundancy� There are
�� equivalent chromosomes �permutations� corresponding to the same partition of
the data into the two clusters fA�C�Fg and fB�D�Eg�
More recently� 
	 �� investigated the use of edge�based crossover 
	��� to solve the

clustering problem� Here� all patterns in a cluster are assumed to form a complete
graph by connecting them with edges� O�spring are generated from the parents
so that they inherit the edges from their parents� It is observed that this cross�
over operator takes O�K� # N� time for N patterns and K clusters ruling out
its applicability on practical data sets having more than 	 clusters� In a hybrid
approach proposed in 
��� the GA is used only to �nd good initial cluster centers and
the k�means algorithm is applied to �nd the �nal partition� This hybrid approach
performed better than the GA�
A major problem with GAs is their sensitivity to the selection of various param�

eters such as population size� crossover and mutation probabilities� etc� Grefen�
stette 
� � has studied this problem and suggested guidelines for selecting these
control parameters� However� these guidelines may not yield good results on spe�
ci�c problems like pattern clustering� It was reported in 
	 �� that hybrid genetic
algorithms incorporating problem�speci�c heuristics are good for clustering� A sim�
ilar claim is made in 
��� about the applicability of GAs to other practical problems�
Another issue with GAs is the selection of an appropriate representation which is
low in order and short in de�ning length�
It is possible to view the clustering problem as an optimization problem that

locates the optimal centroids of the clusters directly rather than �nding an optimal
partition using a GA� This view permits the use of ESs and EP because centroids can
be coded easily in both these approaches as they support the direct representation
of a solution as a real�valued vector� In 
	 �� ESs were used on both hard and fuzzy
clustering problems and EP has been used to evolve fuzzy min�max clusters 
���� It
has been observed that they perform better than their classical counterparts� the k�
means algorithm and the fuzzy c�means algorithm� However� all of these approaches
su�er �as do GAs and ANNs� from sensitivity to control parameter selection� For
each speci�c problem� one has to tune the parameter values to suit the application�

��� Search
Based Approaches

Search techniques used to obtain the optimum value of the criterion function are
divided into deterministic and stochastic search techniques� Deterministic search
techniques guarantee an optimal partition by performing exhaustive enumeration�
On the other hand� the stochastic search techniques generate a near�optimal par�
tition reasonably quickly and guarantee convergence to optimal partition asymp�
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totically� Among the techniques considered so far� evolutionary approaches are
stochastic and the remainder are deterministic� Other deterministic approaches to
clustering include the branch and bound technique adopted in 
		�� and 
��� for
generating optimal partitions� This approach generates the optimal partition of
the data at the cost of excessive computational requirements� In 
	���� a deter�
ministic annealing approach was proposed for clustering� This approach employs
an annealing technique in which the error surface is smoothed� but convergence
to the global optimum is not guaranteed� The use of deterministic annealing in
proximity�mode clustering �where the patterns are speci�ed in terms of pairwise
proximities rather than multidimensional points� was explored in 
���
 later work
applied the deterministic annealing approach to texture segmentation 
����
The deterministic approaches are typically greedy descent approaches� whereas

the stochastic approaches permit perturbations to the solutions in non�locally�
optimal directions also with nonzero probabilities� The stochastic search techniques
are either sequential or parallel� while evolutionary approaches are inherently par�
allel� The simulated annealing approach �SA� 
		 � is a sequential stochastic search
technique� whose applicability to clustering is discussed in 
			�� Simulated anneal�
ing procedures are designed to avoid �or recover from� solutions which correspond
to local optima of the objective functions� This is accomplished by accepting with
some probability a new solution for the next iteration of lower quality �as measured
by the criterion function�� The probability of acceptance is governed by a criti�
cal parameter called the temperature �by analogy with annealing in metals� which
is typically speci�ed in terms of a starting ��rst iteration� and �nal temperature
value� Selim and Al�Sultan 
	��� studied the e�ects of control parameters on the
performance of the algorithm� and 
	�� used SA to obtain near�optimal partition of
the data� SA is statistically guaranteed to �nd the global optimal solution 
	�� A
high�level outline of a SA based algorithm for clustering is given below�

Clustering Based on Simulated Annealing

�	� Randomly select an initial partition and P	� and compute the squared error
value� EP� � Select values for the control parameters� initial and �nal tempera�
tures T	 and Tf �

��� Select a neighbor P� of P	 and compute its squared error value� EP� � If EP� is
larger than EP� � then assign P� to P	 with a temperature�dependent probability�
Else assign P� to P	� Repeat this step for a �xed number of iterations�

��� Reduce the value of T	� i�e� T	 ! cT	� where c is a predetermined constant� If
T	 is greater than Tf � then go to step �� Else stop�

The SA algorithm can be slow in reaching the optimal solution because opti�
mal results require the temperature to be decreased very slowly from iteration to
iteration�
Tabu search 
���� like SA� is a method designed to cross boundaries of feasibility

or local optimality and to systematically impose and release constraints to permit
exploration of otherwise forbidden regions� Tabu search was used to solve the
clustering problem in 
���
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���� A Comparison of Techniques

In this section we have examined various deterministic and stochastic search tech�
niques to approach the clustering problem as an optimization problem� A majority
of these methods use the squared error criterion function� Hence� the partitions
generated by these approaches are not as versatile as those generated by hierar�
chical algorithms� The clusters generated are typically hyper�spherical in shape�
Evolutionary approaches are globalized search techniques� whereas the rest of the
approaches are localized search technique� ANNs and GAs are inherently parallel
and so they can be implemented using parallel hardware to improve their speed�
Evolutionary approaches are population�based
 that is� they search using more than
one solution at a time and the rest are based on using a single solution at a time�
ANNs� GAs� SA� and Tabu search �TS� are all sensitive to the selection of various
learning�control parameters� In theory� all these four methods are weak meth�
ods 
	��� in that they do not use explicit domain knowledge� An important feature
of the evolutionary approaches is that they can �nd the optimal solution even when
the criterion function is discontinuous�

An empirical study of the performance of the following heuristics for clustering
was presented in 
	���
 SA� GA� TS� randomized branch and bound �RBA� 
	����
and hybrid search �HS� strategies 
��� were evaluated� The conclusion was that GA
performs well in the case of one�dimensional data� while its performance on high
dimensional data sets is not impressive� The performance of SA is not attractive
because it is very slow� RBA and TS performed best� HS is good for high dimen�
sional data� However� none of the methods was found to be superior to others by a
signi�cant margin� An empirical study of k�means� SA� TS� and GA was presented
in 
��� TS� GA and SA were judged comparable in terms of solution quality and all
were better than k�means� However� the k�means method is the most e�cient in
terms of execution time
 other schemes took more time �by a factor of �  to ��  �
to partition a data set of size � into � clusters� Further� GA encountered the best
solution faster than TS and SA
 SA took more time than TS to encounter the best
solution� However� GA took the maximum time for convergence� that is to obtain a
population of only the best solutions� followed by TS and SA� An important obser�
vation is that in both 
	��� and 
�� the sizes of the data sets considered are small�
that is� fewer than �  patterns�

A two�layer network was employed in 
	���� with the �rst layer including a number
of principal component analysis subnets� and the second layer using a competitive
net� This network performs partitional clustering using the regularizedMahalanobis
distance� This net was trained using a set of 	   randomly selected pixels from
a large image and then used to classify every pixel in the image� Reference 
		�
proposed a stochastic connectionist approach �SCA� and compared its performance
on standard data sets with both the SA and k�means algorithms� It was observed
that SCA is superior to both SA and k�means in terms of solution quality� Evolu�
tionary approaches are good only when the data size is less than 	   and for low
dimensional data�

In summary� only the k�means algorithm and its ANN equivalent� the Kohonen
net 
	���� have been applied on large data sets
 other approaches have been tested�
typically� on small data sets� This is because obtaining suitable learning�control
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parameters for ANNs� GAs� TS� and SA is di�cult and their execution times are
very high for large data sets� However� it has been shown 
	��� that the k�means
method converges to a locally optimal solution� This behavior is linked with the
initial seed selection in the k�means algorithm� So� if a good initial partition can be
obtained quickly using any of the other techniques� then k�means would work well
even on problems with large data sets� Even though various methods discussed in
this section are weak� it was revealed through experimental studies that combining
domain knowledge would improve their performance� For example� ANNs work
better in classifying images represented using extracted features than with raw
images and hybrid classi�ers work better than ANNs 
	���� Similarly� using domain
knowledge to hybridize a GA improves its performance 
	 ��� So� it may be useful
in general to use domain knowledge along with approaches like GA� SA� ANN� and
TS� However� these approaches �speci�cally� the criteria functions used in them�
have a tendency to generate a partition of hyperspherical clusters and this could be
a limitation� For example� in cluster�based document retrieval� it was observed that
the hierarchical algorithms performed better than the partitional algorithms 
	�	��

���� Incorporating Domain Constraints in Clustering

As a task� clustering is subjective in nature� The same data set may need to be
partitioned di�erently for di�erent purposes� For example� consider a whale� an
elephant� and a tuna �sh 
	���� Whales and elephants form a cluster of mammals�
However� if the user is interested in partitioning them based on the concept of
living in water� then whale and tuna �sh are clustered together� Typically� this
subjectivity is incorporated into the clustering criterion by incorporating domain
knowledge in one or more phases of clustering�
Every clustering algorithm uses some type of knowledge either implicitly or ex�

plicitly� Implicit knowledge plays a role in �	� selecting a pattern representation
scheme �e�g�� using one�s prior experience to select and encode features�� ��� choos�
ing a similarity measure �e�g�� using the Mahalanobis distance instead of the Eu�
clidean distance to obtain hyperellipsoidal clusters�� and ��� selecting a grouping
scheme �e�g�� specifying the k�means algorithm when it is known that clusters are
hyperspherical�� Domain knowledge is used implicitly in ANNs� GAs� TS� and SA
to select the control�learning parameter values that a�ect the performance of these
algorithms�
It is also possible to use explicitly available domain knowledge to constrain or

guide the clustering process� Such specialized clustering algorithms have been used
in several applications� Domain concepts can play several roles in the clustering
process� and a variety of choices are available to the practitioner� At one extreme�
the available domain concepts might easily serve as an additional feature �or sev�
eral�� and the remainder of the procedure might be otherwise una�ected� At the
other extreme� domain concepts might be used to con�rm or veto a decision ar�
rived at independently by a traditional clustering algorithm� or used to a�ect the
computation of distance in a clustering algorithm employing proximity� The incor�
poration of domain knowledge into clustering consists mainly of ad hoc approaches
with little in common
 accordingly� our discussion of the idea will consist mainly of
motivational material and a brief survey of past work� Machine learning research
and pattern recognition research intersect in this topical area� and the interested
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reader is referred to the prominent journals in machine learning �e�g�� Machine

Learning� J� of AI Research� or Arti�cial Intelligence� for a fuller treatment of this
topic�
As documented in 
���� rules in an expert system may be clustered to reduce the

size of the knowledge base� This modi�cation of clustering was also explored in the
domains of universities� congressional voting records� and terrorist events by 
		���

��		�	 Similarity Computation� Conceptual knowledge was used explicitly in the
similarity computation phase in 
	���� It was assumed that the pattern representa�
tions were available and the dynamic clustering algorithm 
� � was used to group
patterns� The clusters formed were described using conjunctive statements in predi�
cate logic� It was stated in 
	��
 	��� that the groupings obtained by the conceptual
clustering are superior to those obtained by the numerical methods for clustering�
A critical analysis of that work appears in 
��� and it was observed that monothetic
divisive clustering algorithms generate clusters that can be described by conjunc�
tive statements� For example� consider Figure �� Four clusters in this �gure� that
are obtained using a monothetic algorithm� can be described by using conjunctive
concepts as shown below�

Cluster	� 
X � a� � 
Y � b�
Cluster�� 
X � a� � 
Y � b�
Cluster�� 
X � a� � 
Y � c�
Cluster�� 
X � a� � 
Y � c��

where � is the Boolean conjunction ��and�� operator� and a� b and c are constants�

��		�� Pattern Representation� It was shown in 
	��� that by using knowledge
in the pattern representation phase� as is implicitly done in numerical taxonomy
approaches� it is possible to obtain the same partitions as those generated by con�
ceptual clustering� In this sense� conceptual clustering and numerical taxonomy
are not diametrically opposite� but are equivalent� In the case of conceptual clus�
tering� domain knowledge is explicitly used in interpattern similarity computation�
whereas in numerical taxonomy it is implicitly assumed that pattern representations
are obtained using the domain knowledge�

��		�� Cluster Descriptions� Typically� in knowledge�based clustering� both the
clusters and their descriptions or characterizations 
��� are generated� There are
some exceptions 
��� where only clustering is performed and no descriptions are
generated explicitly� In conceptual clustering 
	���� a cluster of objects is described
by a conjunctive logical expression� Even though a conjunctive statement is one of
the most common descriptive forms used by humans� it is a limited form� In 
	����
functional knowledge of objects was used to generate more intuitively appealing
cluster descriptions that employ the Boolean implication operator� A system that
represents clusters probabilistically was described in 
���
 these descriptions are
more general than conjunctive concepts� and are well�suited to hierarchical clas�
si�cation domains �e�g� the animal species hierarchy�� A conceptual clustering
system in which clustering is done �rst is described in 
���� These clusters are then
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cooking

heating liquid holding

electric        ...                             water ... metallic ... 

Fig� ��� Functional knowledge�

described using probabilities� A similar scheme was described in 
	���� but the
descriptions are logical expressions that employ both conjunction and disjunction�
An important characteristic of conceptual clustering is that it is possible to group

objects represented by both qualitative and quantitative features if the clustering
leads to a conjunctive concept� For example� the concept cricket ball might be
represented as


color ! red� � 
shape ! sphere� � 
make ! leather� � 
radius ! 	�� inches��

where radius is a quantitative feature and the rest are all qualitative features�
This description is used to describe a cluster of cricket balls� In 
	���� a graph
�the goal dependency network� was used to group structured objects� In 
	���
functional knowledge was used to group man�made objects� Functional knowledge
was represented using and�or trees 
	���� For example� the function cooking� shown
in Figure ��� can be decomposed into functions like holding and heating the material
in a liquid medium� Each man�made object has a primary function for which it is
produced� Further� based on its features it may serve additional functions� For
example� a book is meant for reading� but if it is heavy then it can also be used as
a paper weight� In 
	��� object functions were used to construct generic recognition
systems�

��		�� Pragmatic Issues� Any implementation of a system that explicitly incor�
porates domain concepts into a clustering technique has to address the following
important pragmatic issues�

�	� Representation� availability and completeness of domain concepts�

��� Construction of inferences using the knowledge�

��� Accommodation of changing or dynamic knowledge�

In some domains� complete knowledge is available explicitly� For example� the
ACM Computing Reviews classi�cation tree used in 
	��� is complete and is ex�
plicitly available for use� In several domains� knowledge is incomplete and is not
available explicitly� Typically� machine learning techniques are used to automat�
ically extract knowledge� which is a di�cult and challenging problem� The most
prominently used learning method is �learning from examples� 
	���� This is an
inductive learning scheme used to acquire knowledge from examples of each of the
classes in di�erent domains� Even if the knowledge is available explicitly� it is di��
cult to �nd out whether it is complete and sound� Further� it is extremely di�cult
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to verify soundness and completeness of knowledge extracted from practical data
sets because such knowledge cannot be represented in propositional logic� It is
possible that both the data and knowledge keep changing with time� For example�
in a library� new books might get added and some old books might be deleted from
the collection with time� Also� the classi�cation system �knowledge� employed by
the library is updated periodically�
A major problem with knowledge�based clustering is that it has not been applied

to large data sets or in domains with large knowledge bases� Typically� the number
of objects grouped was less than 	   and number of rules used as a part of the
knowledge was less than 	  � The most di�cult problem is to use a very large
knowledge base for clustering objects in several practical problems including data
mining� image segmentation� and document retrieval�

���� Clustering Large Data Sets

There are several applications where it is necessary to cluster a large collection
of patterns� The de�nition of �large� has varied �and will continue to do so� with
changes in technology �e�g�� memory and processing time�� In the 	�� s� �large�
meant several thousand patterns 
	���
 now� there are applications where millions
of patterns of high dimensionality have to be clustered� For example� to segment
an image of size �  � �  pixels� the number of pixels to be clustered is �� �   �
In document retrieval and information �ltering� millions of patterns with a dimen�
sionality of more than 	  have to be clustered to achieve data abstraction� A
majority of the approaches and algorithms proposed in the literature cannot han�
dle such large data sets� Approaches based on genetic algorithms� tabu search and
simulated annealing are optimization techniques and are restricted to reasonably
small data sets� Implementations of conceptual clustering optimize some criterion
functions and are typically computationally expensive�
The convergent k�means algorithm and its ANN equivalent� the Kohonen net�

have been used to cluster large data sets 
	���� The reasons behind the popularity
of the k�means algorithm are�

�	� Its time complexity is O�nkl�� where n is the number of patterns� k is the
number of clusters� and l is the number of iterations taken by the algorithm
to converge� Typically� k and l are �xed in advance and so the algorithm has
linear time complexity in the size of the data set 
����

��� Its space complexity is O�k# n�� It requires additional space to store the data
matrix� It is possible to store the data matrix in a secondary memory and access
each pattern based on need� However� this scheme requires a huge access time
because of the iterative nature of the algorithm and as a consequence processing
time increases enormously�

��� It is order�independent
 for a given initial seed set of cluster centers� it generates
the same partition of the data irrespective of the order in which the patterns
are presented to the algorithm�

However� the k�means algorithm is sensitive to initial seed selection and even in the
best case� it can produce only hyperspherical clusters�
Hierarchical algorithms are more versatile� But they have the following disad�

vantages�
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Table �� Complexity of Clustering Algorithms
Clustering Time Complexity Space Complexity
Algorithm

leader O�kn� O�k�
k�means O�nkl� O�k�
ISODATA O�nkl� O�k�
shortest spanning path O�n�� O�n�
single�link O�n� log n� O�n��
complete�link O�n� log n� O�n��

�	� The time complexity of hierarchical agglomerative algorithms isO�n� logn� 
		���
It is possible to obtain single�link clusters using an MST of the data� which can
be constructed in O�n log� n� time for two�dimensional data 
� ��

��� The space complexity of agglomerative algorithms is O�n��� This is because
a similarity matrix of size n � n has to be stored� To cluster every pixel in a
	  � 	  image� approximately �  megabytes of storage would be required
�assuning single�precision storage of similarities�� It is possible to compute the
entries of this matrix based on need instead of storing them �but this would
increase the algorithm�s time complexity 
����

Table 	 lists the time and space complexities of several well�known algorithms�
Here� n is the number of patterns to be clustered� k is the number of clusters� and
l is the number of iterations�
A possible solution to the problem of clustering large data sets while only marginally

sacri�cing the versatility of clusters is to implement more e�cient variants of clus�
tering algorithms� A hybrid approach was used in 
	���� where a set of reference
points is chosen as in the k�means algorithm and each of the remaining data points
is assigned to one or more reference points or clusters� Minimal spanning trees
�MST� are obtained for each group of points separately� These MSTs are merged
to form an approximate global MST� This approach computes similarities between
only a fraction of all possible pairs of points� It was shown that the number of
similarities computed for 	 �   patterns using this approach is the same as the
total number of pairs of points in a collection of ��   points� Reference 
	�� con�
tains an algorithm that can compute an approximate MST in O�n log n� time� A
scheme to generate an approximate dendrogram incrementally in O�n logn� time
was presented in 
� ��� while 
	��� proposes an algorithm to speed up the ISODATA
clustering algorithm� A study of the approximate single�linkage cluster analysis of
large data sets was reported in 
���� In that work� an approximate MST was used
to form single�link clusters of a data set of size � �   �
The emerging discipline of data mining �discussed as an application in Sec�

tion ���� has spurred the development of new algorithms for clustering large data
sets� Two algorithms of note are the CLARANS algorithm developed by Ng and
Han 
	�	� and the BIRCH algorithm proposed by Zhang et al� 
� ��� CLARANS
�Clustering Large Applications based on RANdom Search� identi�es candidate clus�
ter centroids through analysis of repeated random samples from the original data�
Because of the use of random sampling� the time complexity is O�n� for a pat�
tern set of n elements� The BIRCH algorithm �Balanced Iterative Reducing and
Clustering� stores summary information about candidate clusters in a dynamic tree
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Table �� Number of Distance Computations �n� for the single�link clustering algorithm and a
two�level divide and conquer algorithm�

n single�link p two�level

��� ���
� 
 ����

�� �����
� �� ����
�
���� ����
�� �� ���
��
������ �����
���� ��� �������
�

data structure� This tree hierarchically organizes the clusterings represented at the
leaf nodes� The tree can be rebuilt when a threshold specifying cluster size is up�
dated manually� or when memory constraints force a change in this threshold� This
algorithm� like CLARANS� has a time complexity linear in the number of patterns�
The algorithms discussed above work on large data sets� where it is possible

to accommodate the entire pattern set in the main memory� However� there are
applications where the entire data set cannot be stored in the main memory because
of its size� For example� to store a million patterns� each with 	  features� a main
memory size of 	  megabytes is required which is not available on most of the
existing computers� There are currently three possible approaches to solve this
problem�

�	� The pattern set can be stored in a secondary memory and subsets of this data
clustered independently� followed by a merging step to yield a clustering of the
entire pattern set� We call this approach the divide and conquer approach�

��� An incremental clustering algorithm can be employed� Here� the entire data
matrix is stored in a secondary memory and data items are transferred to the
main memory one at a time for clustering� Only the cluster representations are
stored in the main memory to alleviate the space limitations�

��� A parallel implementation of a clustering algorithm may be used� We discuss
these approaches in the next three subsections�

��	��	 Divide and Conquer Approach� Here� we store the entire pattern matrix
of size n � d in a secondary storage space �e�g�� a disk �le�� We divide this data
into p blocks� where an optimum value of p can be chosen based on the clustering
algorithm used 
	���� Let us assume that we have n�p patterns in each of the blocks�
We transfer each of these blocks to the main memory and cluster it into k clusters
using a standard algorithm� One or more representative samples from each of these
clusters are stored separately
 we have pk of these representative patterns if we
choose one representative per cluster� These pk representative are further clustered
into k clusters and the cluster labels of these representative patterns are used to
relabel the original pattern matrix� We depict this two�level algorithm in Figure ���
It is possible to extend this algorithm to any number of levels
 more levels are
required if the data set is very large and the main memory size is very small 
	����
If the single�link algorithm is used for obtaining � clusters� then there is a substantial
savings in the number of computations as shown in Table � for optimally chosen p
when the number of clusters is �xed at �� However� this algorithm works well only
when the points in each block are reasonably homogeneous which is often satis�ed
by image data�
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Fig� ��� Divide and conquer approach to clustering�

A two�level strategy for clustering a data set containing ��   patterns was de�
scribed in 
	���� In the �rst level� the data set is loosely clustered into a large
number of clusters using the leader algorithm� Representatives from these clusters�
one per cluster� are the input to the second level clustering� which is obtained using
Ward�s hierarchical method�

��	��� Incremental Clustering� Incremental clustering is based on the assump�
tion that it is possible to consider patterns one at a time and assign them to
existing clusters� Here� a new data item is assigned to a cluster without a�ecting
the existing clusters signi�cantly� A high level description of a typical incremental
clustering algorithm is given below�

An Incremental Clustering Algorithm

�	� Assign the �rst data item to a cluster�

��� Consider the next data item� Either assign this item to one of the existing
clusters or assign it to a new cluster� This assignment is done based on some
criterion� e�g� the distance between the new item and the existing cluster
centroids�

��� Repeat step � till all the data items are clustered�

The major advantage with the incremental clustering algorithms is that it is
not necessary to store the entire pattern matrix in the memory� So� the space
requirements of incremental algorithms are very small� Typically� they are non�
iterative� So� their time requirements are also small� There are several incremental
clustering algorithms�

�	� The leader clustering algorithm 
��� is the simplest in terms of time complexity
which is O�nk�� It has gained popularity because of its neural network imple�
mentation� the ART network 
���� It is very easy to implement as it requires
only O�k� space�

��� The shortest spanning path �SSP� algorithm 
	��� was originally proposed
for data reorganization and was successfully used in automatic auditing of
records 
	�	�� Here� SSP algorithm was used to cluster �   patterns using
	� features� These clusters are used to estimate missing feature values in data
items and to identify erroneous feature values�

��� The cobweb system 
��� is an incremental conceptual clustering algorithm� It
has been successfully used in engineering applications 
� ��
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Fig� ��� The leader algorithm is order dependent�

��� An incremental clustering algorithm for dynamic information processing was
presented in 
���� The motivation behind this work is that� in dynamic databases�
items might get added and deleted over time� These changes should be re�ected
in the partition generated without signi�cantly a�ecting the current clusters�
This algorithm was used to cluster incrementally an INSPEC database of 	�����
documents corresponding to computer science and electrical engineering�

Order�independence is an important property of clustering algorithms� An algo�
rithm is order�independent if it generates the same partition for any order in which
the data is presented� Otherwise� it is order�dependent� Most of the incremental al�
gorithms presented above are order�dependent� We illustrate this order�dependent
property in Figure �� where there are � two�dimensional objects labeled 	 to �� If
we present these patterns to the leader algorithm in the order ��	�������� then the
two clusters obtained are shown by ellipses� If the order is 	����������� then we get
a two�partition as shown by the triangles� The SSP algorithm� cobweb� and the
algorithm in 
��� are all order�dependent�

��	��� Parallel Implementation� Recent work 
	 �� demonstrates that a combi�
nation of algorithmic enhancements to a clustering algorithm and distribution of
the computations over a network of workstations can allow an entire �	� � �	�
image to be clustered in a few minutes� Depending on the clustering algorithm in
use� parallelization of the code and replication of data for e�ciency may yield large
bene�ts� However� a global shared data structure� namely the cluster membership
table� remains and must be managed centrally or replicated and synchronized peri�
odically� The presence or absence of robust� e�cient parallel clustering techniques
will determine the success or failure of cluster analysis in large�scale data mining
applications in the future�

�� APPLICATIONS

Clustering algorithms have been used in a large variety of applications 
��
 	�	

	��
 � �� In this section� we describe several applications where clustering has been
employed as an essential step� These areas are� �	� image segmentation� ��� object
and character recognition� ��� document retrieval� and ��� data mining�
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Fig� �
� Feature representation for clustering� Image measurements and positions are trans�
formed to features� Clusters in feature space correspond to image segments�

��� Image Segmentation Using Clustering

Image segmentation is a fundamental component in many computer vision applica�
tions� and can be addressed as a clustering problem 
	���� The segmentation of the
image�s� presented to an image analysis system is critically dependent on the scene
to be sensed� the imaging geometry� con�guration� and sensor used to transduce the
scene into a digital image� and ultimately the desired output �goal� of the system�
The applicability of clustering methodology to the image segmentation problem

was recognized over three decades ago� and the paradigms underlying the initial
pioneering e�orts are still in use today� A recurring theme is to de�ne feature vectors
at every image location �pixel� composed of both functions of image intensity and
functions of the pixel location itself� This basic idea� depicted in Figure ��� has
been successfully used for intensity images �with or without texture�� range �depth�
images and multispectral images�

��	�	 Segmentation� An image segmentation is typically de�ned as an exhaustive
partitioning of an input image into regions� each of which is considered to be ho�
mogeneous with respect to some image property of interest �e�g�� intensity� color�
or texture� 
	 ��� If

I ! fxij � i ! 	 � � �Nr� j ! 	 � � �Ncg

is the input image with Nr rows and Nc columns and measurement value xij at
pixel �i� j�� then the segmentation can be expressed as S ! fS�� � � � Skg� with the
lth segment

Sl ! f�il� � jl��� � � � �ilNl � jlNl �g

consisting of a connected subset of the pixel coordinates� No two segments share
any pixel locations �Si � Sj ! 	 
i �! j�� and the union of all segments covers
the entire image ��ki��Si ! f	 � � �Nrg � f	 � � �Ncg�� Jain and Dubes 
��� after Fu
and Mui 
� �� identi�ed three techniques for producing segmentations from input
imagery� region�based� edge�based� or cluster�based�
Consider the use of simple gray level thresholding to segment a high�contrast

intensity image� Figure ���a� shows a grayscale image of a textbook�s bar code
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Fig� ��� Binarization via thresholding� �a�� Original grayscale image� �b�� Gray�level histogram�
�c�� Results of thresholding�

scanned on a �atbed scanner� Part �b� shows the results of a simple thresholding
operation designed to separate the dark and light regions in the bar code area�
Binarization steps like this are often performed in character recognition systems�
Thresholding in e�ect �clusters� the image pixels into two groups based on the one�
dimensional intensity measurement 
	��
 � �� A postprocessing step separates the
classes into connected regions� While simple gray level thresholding is adequate in
some carefully controlled image acquisition environments and much research has
been devoted to appropriate methods for thresholding 
	��
 	���� complex images
require more elaborate segmentation techniques�
Many segmenters use measurements which are both spectral �e�g�� the multispec�

tral scanner used in remote sensing� and spatial �based on the pixel�s location in
the image plane�� The measurement at each pixel hence corresponds directly to
our concept of a pattern�

��	�� Image Segmentation Via Clustering� The application of local feature clus�
tering to segment gray�scale images was documented in 
	���� This paper empha�
sized the appropriate selection of features at each pixel rather than the clustering
methodology� and proposed the use of image plane coordinates �spatial informa�
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tion� as additional features to be employed in clustering�based segmentation� The
goal of clustering was to obtain a sequence of hyperellipsoidal clusters starting with
cluster centers positioned at maximum density locations in the pattern space� and
growing clusters about these centers until a �� test for goodness of �t was vio�
lated� A variety of features were discussed and applied to both grayscale and color
imagery�
An agglomerative clustering algorithm was applied in 
	� � to the problem of

unsupervised learning of clusters of coe�cient vectors for two image models that
correspond to image segments� The �rst image model is polynomial for the observed
image measurements
 the assumption here is that the image is a collection of several
adjoining graph surfaces� each a polynomial function of the image plane coordinates�
which are sampled on the raster grid to produce the observed image� The algorithm
proceeds by obtaining vectors of coe�cients of least�squares �ts to the data in M
disjoint image windows� An agglomerative clustering algorithm merges �at each
step� the two clusters which yield a minimum global between�cluster Mahalanobis
distance� The same framework was applied to segmentation of textured images�
but for such images the polynomial model was inappropriate and a parameterized
Markov Random Field model was assumed instead�

Reference 
	��� describes the application of the principles of network �ow to
unsupervised classi�cation� yielding a novel hierarchical algorithm for clustering�
In essence� the technique views the unlabeled patterns as nodes in a graph� where
the weight of an edge �i�e�� its capacity� is a measure of similarity between the
corresponding nodes� Clusters are identi�ed by removing edges from the graph
to produce connected disjoint subgraphs� In image segmentation� pixels which
are ��neighbors or ��neighbors in the image plane share edges in the constructed
adjacency graph� and the weight of a graph edge is based on the strength of a
hypothesized image edge between the pixels involved �this strength is calculated
using simple derivative masks�� Hence� this segmenter works by �nding closed
contours in the image and is best labeled edge�based rather than region�based�

In 
	���� two neural networks are designed to perform pattern clustering when
combined� A two�layer network operates on a multidimensional histogram of the
data to identify �prototypes� which are used to classify the input patterns into
clusters� These prototypes are fed to the classi�cation network� another two�layer
network operating on the histogram of the input data� but trained to have di�ering
weights from the prototype selection network� In both networks� the histogram
of the image is used to weight the contributions of patterns neighboring the one
under consideration to the location of prototypes or the ultimate classi�cation
 as
such� it is likely to be more robust when compared to techniques which assume an
underlying parametric density function for the pattern classes� This architecture
was tested on gray�scale and color segmentation problems�

Reference 
	 �� describes a process for extracting clusters sequentially from the
input pattern set by identifying hyperellipsoidal regions �bounded by loci of con�
stant Mahalanobis distance� which contain a speci�ed fraction of the unclassi�ed
points in the set� The extracted regions are compared against the best��tting mul�
tivariate Gaussian density through a Kolmogorov�Smirnov test� and the �t quality
is used as a �gure of merit for selecting the �best� region at each iteration� The
process continues until a stopping criterion is satis�ed� This procedure was applied
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to the problems of threshold selection for multithreshold segmentation of intensity
imagery and segmentation of range imagery�
Clustering techniques have also been successfully used for the segmentation of

range images� which are a popular source of input data for three�dimensional ob�
ject recognition systems 
���� Range sensors typically return raster images with the
measured value at each pixel being the coordinates of a �D location in space� De�
pending on the sensor�s con�guration� these �D positions can be understood as the
locations where rays emerging from the image plane locations in either a parallel
bundle or a perspective cone intersect the objects in front of the sensor�
The local feature clustering concept is particularly attractive for range image seg�

mentation since �unlike intensity measurements� the measurements at each pixel
have the same units �length�
 this would make ad hoc transformations or normal�
izations of the image features unnecessary if their goal is to impose equal scaling
on those features� However� range image segmenters often add additional measure�
ments to the feature space� removing this advantage�
A range image segmentation system described in 
��� employs squared error clus�

tering in a six�dimensional feature space as a source of an �initial� segmentation
which is re�ned �typically by merging segments� into the output segmentation�
The technique was enhanced in 
��� and used in a recent systematic comparison of
range image segmenters 
���
 as such� it is probably one of the longest�lived range
segmenters which has performed well on a large variety of range images�
This segmenter works as follows� At each pixel �i� j� in the input range image�

the corresponding �D measurement is denoted �xij � yij � zij�� where typically xij is
a linear function of j �the column number� and yij is a linear function of i �the row
number�� A k� k neighborhood of �i� j� is used to estimate the �D surface normal
nij ! �nxij � n

y
ij � n

z
ij� at �i� j�� typically by �nding the least�squares planar �t to the

�D points in the neighborhood� The feature vector for the pixel at �i� j� is the six�
dimensional measurement �xij � yij � zij � n

x
ij � n

y
ij � n

z
ij�� and a candidate segmentation

is found by clustering these feature vectors� For practical reasons� not every pixel�s
feature vector is used in the clustering procedure
 typically 	   feature vectors are
chosen by subsampling�
The CLUSTER algorithm 
��� was used to obtain segment labels for each pixel�

CLUSTER is an enhancement of the k�means algorithm
 it has the ability to identify
several clusterings of a data set� each with a di�erent number of clusters� Ho�man
and Jain also experimented with other clustering techniques �e�g�� complete�link�
single�link� graph�theoretic� and other squared error algorithms� and found CLUS�
TER to provide the best combination of performance and accuracy� An additional
advantage of CLUSTER is that it produces a sequence of output clusterings �i�e��
a ��cluster solution up through a Kmax�cluster solution where Kmax is speci�ed by
the user and is typically � or so�
 each clustering in this sequence yields a cluster�
ing statistic which combines between�cluster separation and within�cluster scatter�
The clustering that optimizes this statistic is chosen as the best one� Each pixel in
the range image is assigned the segment label of the nearest cluster center� This
minimum distance classi�cation step is not guaranteed to produce segments which
are connected in the image plane
 therefore� a connected components labeling algo�
rithm allocates new labels for disjoint regions that were placed in the same cluster�
Subsequent operations include surface type tests� merging of adjacent patches us�
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(a) (b)

(c) (d)

Fig� ��� Range image segmentation using clustering� �a�� Input range image� �b�� Surface
normals for selected image pixels� �c�� Initial segmentation ��� cluster solution� returned by
CLUSTER using ���� six�dimensional samples from the image as a pattern set� �d�� Final
segmentation �� segments� produced by postprocessing�

ing a test for the presence of crease or jump edges between adjacent segments� and
surface parameter estimation�
Figure �� shows this processing applied to a range image� Part �a� of the �gure

shows the input range image
 part �b� shows the distribution of surface normals� In
part �c�� the initial segmentation returned by CLUSTER and modi�ed to guarantee
connected segments is shown� Part �d� shows the �nal segmentation produced by
merging adjacent patches which do not have a signi�cant crease edge between them�
The �nal clusters reasonably represent distinct surfaces present in this complex
object�

The analysis of textured images has been of interest to researchers for several
years� Texture segmentation techniques have been developed using a variety of
texture models and image operations� In 
	���� texture image segmentation was
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(a) (b)

Fig� ��� Texture image segmentation results� �a�� Four�class texture mosaic� �b�� Four�cluster
solution produced by CLUSTER with pixel coordinates included in the feature set�

addressed by modeling the image as a hierarchy of two Markov Random Fields�
obtaining some simple statistics from each image block to form a feature vector� and
clustering these blocks using a fuzzy K�means clustering method� The clustering
procedure here is modi�ed to jointly estimate the number of clusters as well as the
fuzzy membership of each feature vector to the various clusters�
A system for segmenting texture images was described in 
���
 there� Gabor �lters

were used to obtain a set of �� orientation� and scale�selective features that charac�
terize the texture in the neighborhood of each pixel� These �� features are reduced
to a smaller number through a feature selection procedure� and the resulting fea�
tures are preprocessed and then clustered using the CLUSTER program� An index
statistic 
��� is used to select the best clustering� Minimum distance classi�cation is
used to label each of the original image pixels� This technique was tested on several
texture mosaics including the natural Brodatz textures and synthetic images� Fig�
ure ���a� shows an input texture mosaic consisting of four of the popular Brodatz
textures 
���� Part �b� shows the segmentation produced when the Gabor �lter
features are augmented to contain spatial information �pixel coordinates�� This
Gabor �lter based technique has proven very powerful and has been extended to
the automatic segmentation of text in documents 
��� and segmentation of objects
in complex backgrounds 
	 ���
Clustering can be used as a preprocessing stage to identify pattern classes for

subsequent supervised classi�cation� References 
	��
 	��� describe a partitional
clustering algorithm and a manual labeling technique to identify material classes
�e�g�� cerebrospinal �uid� white matter� striated muscle� tumor� in registered images
of a human head obtained at �ve di�erent magnetic resonance imaging channels
�yielding a �ve�dimensional feature vector at each pixel�� A number of clusterings
were obtained and combined with domain knowledge �human expertise� to identify
the di�erent classes� Decision rules for supervised classi�cation were based on these
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(a) (b)

Fig� ��� Multispectral Medical Image Segmentation� �a�� A single channel of the input image�
�b�� ��cluster segmentation�

(a) (b)

Fig� ��� LANDSAT image segmentation� �a�� Original image � c�ESA�EURIMAGE�Sattelit�
bild�� �b�� Clustered scene�

obtained classes� Figure ���a� shows one channel of an input multispectral image

part �b� shows the ��cluster result�
The k�means algorithm was applied to the segmentation of LANDSAT imagery

in 
	���� Initial cluster centers were chosen interactively by a trained operator�
and correspond to land�use classes such as urban areas� soil �vegetation�free� ar�
eas� forest� grassland� and water� Figure � �a� shows the input image rendered as
grayscale
 part �b� shows the result of the clustering procedure�

��	�� Summary� In this section� the application of clustering methodology to im�
age segmentation problems has been motivated and surveyed� The historical record
shows that clustering is a powerful tool for obtaining classi�cations of image pixels�
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Key issues in the design of any clustering�based segmenter are the choice of pixel
measurements �features� and dimensionality of the feature vector �i�e�� should the
feature vector contain intensities� pixel positions� model parameters� �lter outputs�
etc��� a measure of similarity which is appropriate for the selected features and the
application domain� the identi�cation of a clustering algorithm� the development
of strategies for feature and data reduction �to avoid the �curse of dimensional�
ity� and the computational burden of classifying large numbers of patterns and�or
features�� and the identi�cation of necessary pre� and post�processing techniques
�e�g�� image smoothing and minimum distance classi�cation�� The use of clustering
for segmentation dates back to the 	�� s and new variations continue to emerge in
the literature� Challenges to the more successful use of clustering include the high
computational complexity of many clustering algorithms and their incorporation of
strong assumptions �often multivariate Gaussian� about the multidimensional shape
of clusters to be obtained� The ability of new clustering procedures to handle con�
cepts and semantics in classi�cation �in addition to numerical measurements� will
be important for certain applications 
	��
 	����

��� Object and Character Recognition

����	 Object Recognition� The use of clustering to group views of �D objects for
the purposes of object recognition in range data was described in 
���� The term
view refers to a range image of an unoccluded object obtained from any arbitrary
viewpoint� The system under consideration employed a viewpoint dependent �or
view�centered� approach to the object recognition problem
 each object to be rec�
ognized was represented in terms of a library of range images of that object�

There are many possible views of a �D object and one goal of that work was to
avoid matching an unknown input view against each image of each object� A com�
mon theme in the object recognition literature is indexing� wherein the unknown
view is used to select a subset of views of a subset of the objects in the database for
further comparison� and rejects all other views of objects� One of the approaches
to indexing employs the notion of view classes
 a view class is the set of qualita�
tively similar views of an object� In that work� the view classes were identi�ed by
clustering and the rest of this subsection outlines the technique�

Object views were grouped into classes based on the similarity of shape spectral
features� Each input image of an object viewed in isolation yields a feature vector
which characterizes that view� The feature vector contains the �rst ten central
moments of a normalized shape spectral distribution� &H�h�� of an object view� The
shape spectrum of an object view is obtained from its range data by constructing
a histogram of shape index values �which are related to surface curvature values�
and accumulating all the object pixels that fall into each bin� By normalizing the
spectrum with respect to the total object area� the scale �size� di�erences that may
exist between di�erent objects are removed� The �rst moment m� is computed as
the weighted mean of &H�h��

m� !
X
h

�h� &H�h�� �	�
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The other central moments� mp� � � p � 	 are de�ned as�

mp !
X
h

�h�m��
p &H�h�� ���

Then� the feature vector is denoted as R ! �m��m�� � � � �m�	�� with the range of
each of these moments being 
�	� 	��
Let O ! fO�� O�� � � � � Ong be a collection of n �D objects whose views are present

in the model database� MD� The ith view of the jth object� Oi
j in the database is

represented by hLij � R
i
ji� where L

i
j is the object label and Ri

j is the feature vector�

Given a set of object representations Ri ! fhLi�� R
i
�i� � � � � hL

i
m� R

i
mig that describes

m views of the ith object� the goal is to derive a partition of the views� P i !
fCi

�� C
i
�� � � � � C

i
ki
g� Each cluster in P i contains those views of the ith object that
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����� Clustering Views� A database containing ���  range images of 	 di�erent
sculpted objects with �� views per object is used 
���� The range images from
�� possible viewpoints �determined by the tessellation of the view�sphere using
the icosahedron� of the objects were synthesized� Figure �	 shows a subset of
the collection of views of Cobra used in the experiment� The shape spectrum
of each view is computed and then its feature vector is determined� The views
of each object are clustered based on the dissimilarity measure D between their
moment vectors using the complete�link hierarchical clustering scheme 
���� The
hierarchical grouping obtained with �� views of the Cobra object is shown in
Figure ��� The view grouping hierarchies of the other nine objects are similar to
the dendrogram in Figure ��� This dendrogram is cut at a dissimilarity level of  �	 or
less to obtain compact and well�separated clusters� The clusterings obtained in this
manner demonstrate that the views of each object fall into several distinguishable
clusters� The centroid of each of these clusters was determined by computing the
mean of the moment vectors of the views falling into the cluster� Dorai and Jain
demonstrated that this clustering�based view grouping procedure facilitates object
matching in terms of classi�cation accuracy and the number of matches necessary
for correct classi�cation of test views� Object views are grouped into compact
and homogeneous view clusters� thus demonstrating the power of the cluster�based
scheme for view organization and e�cient object matching�

����� Character Recognition� Clustering was employed in 
��� to identify lexemes

in handwritten text for the purposes of writer�independent handwriting recogni�
tion� The success of a handwriting recognition system is vitally dependent on its
acceptance by potential users� Writer�dependent systems provide a higher level of
recognition accuracy than writer�independent systems� but require a large amount
of training data� A writer�independent system� on the other hand� must be able
to recognize a wide variety of writing styles in order to satisfy an individual user�
As the variability of the writing styles that must be captured by a system increase�
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Fig� ��� A subset of views of Cobra chosen from a set of ��� views�
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it becomes more and more di�cult to discriminate between di�erent classes due
to the amount of overlap in the feature space� One solution to this problem is to
separate the data from these disparate writing styles for each class into di�erent
subclasses� known as lexemes� These lexemes represent portions of the data which
are more easily separated from the data of classes other than that to which the
lexeme belongs�
In this system� handwriting is captured by digitizing the �x� y� position of the

pen and the state of the pen point �up or down� at a constant sampling rate�
Following some resampling� normalization� and smoothing� each stroke of the pen is
represented as a variable�length string of points� A metric based on elastic template
matching and dynamic programming is de�ned to allow the distance between two
strokes to be calculated�
Using the distances calculated in this manner� a proximity matrix is constructed

for each class of digits �i�e��  through ��� Each matrix measures the intra�class
distances for a particular digit class� Digits in a particular class are clustered in
an attempt to �nd a small number of prototypes� Clustering is done using the
CLUSTER program described above 
���� in which the feature vector for a digit is
its N proximities to the digits of the same class� CLUSTER attempts to produce
the best clustering for each value of K over some range� where K is the number of
clusters into which the data is to be partitioned� As expected� the mean squared
error �MSE� decreases monotonically as a function of K� The �optimal� value of
K is chosen by identifying a �knee� in the plot of MSE versus K�
When representing a cluster of digits by a single prototype� the best on�line

recognition results were obtained by using the digit that is closest to that cluster�s
center� Using this scheme� a correct recognition rate of �����' was obtained�

��� Information Retrieval

Information retrieval �IR� is concerned with automatic storage and retrieval of doc�
uments 
	�	�� Many university libraries use IR systems to provide access to books�
journals� and other documents� Libraries use the Library of Congress Classi�cation
�LCC� scheme for e�cient storage and retrieval of books� The LCC scheme consists
of classes labeled A to Z 
		�� which are used to characterize books belonging to
di�erent subjects� For example� label Q corresponds to books in the area of science
and the subclass QA is assigned to mathematics� Labels QA�� to QA���� are used
for classifying books related to computers and other areas of computer science�
There are several problems associated with the classi�cation of books using the

LCC scheme� Some of these are listed below�
�	� When a user is searching for books in a library which deal with a topic of
interest to him� the LCC number alone may not be able to retrieve all the relevant
books� This is because the classi�cation number assigned to the books or the
subject categories that are typically entered in the database do not contain su�cient
information regarding all the topics covered in a book� To illustrate this point� let
us consider the book �Algorithms for Clustering Data� by Jain and Dubes 
����
Its LCC number is �QA ����J���� In this LCC number� QA ��� corresponds to
the topic �cluster analysis�� J corresponds to the �rst author�s name and �� is the
serial number assigned by the Library of Congress� The subject categories for
this book provided by the publisher �which are typically entered in a database to
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facilitate search� are cluster analysis� data processing and algorithms� There is a
chapter in this book 
��� that deals with computer vision� image processing� and
image segmentation� So� a user looking for literature on computer vision and� in
particular� image segmentation will not be able to access this book by searching the
database with the help of either the LCC number or the subject categories provided
in the database� The LCC number for computer vision books is TA 	��� 
		�� which
is very di�erent from the number QA ����J�� assigned to this book�
��� There is an inherent problem in assigning LCC numbers to books in a rapidly

developing area� For example� let us consider the area of neural networks� Initially�
category �QP� in LCC scheme was used to label books and conference proceedings
in this area� For example� Proceedings of the International Joint Conference on
Neural Networks 
IJCNN ��	� 
��� was assigned the number �QP ������� But� most
of the recent books on neural networks are given a number using the category
label �QA�
 Proceedings of the IJCNN ��� 
��� is assigned the number �QA �������
Multiple labels for books dealing with the same topic will force them to be placed
on di�erent stacks in a library� Hence� there is a need to update the classi�cation
labels from time to time in an emerging discipline�
��� Assigning a number to a new book is a di�cult problem� A book may deal

with topics corresponding to two or more LCC numbers and� therefore� assigning
a unique number to such a book is di�cult�
Reference 
	��� describes a knowledge�based clustering scheme to group represen�

tations of books which are obtained using the ACM CR �Association for Computing
Machinery Computing Reviews� classi�cation tree 
��� This tree is used by the au�
thors contributing to various ACM publications to provide keywords in the form of
ACM CR category labels� This tree consists of 		 nodes at the �rst level� These
nodes are labeled A to K� Each node in this tree has a label that is a string of one
or more symbols� These symbols are alphanumeric characters� For example� I�	�
is the label of a fourth�level node in the tree�

����	 Pattern Representation� Each book is represented as a generalized list 
	���
of these strings using ACM CR classi�cation tree 
��� The fourth�level nodes in the
ACM CR classi�cation tree are labeled using numerals 	 to � and characters A to
Z� for the sake of brevity in representation� For example� the children nodes of I���	
�models� are labeled I���	�	 to I���	��� Here� I���	�	 corresponds to the node labeled
deterministic and I���	�� stands for the node labeled structural� In a similar fashion�
all the fourth�level nodes in the tree can be labeled as necessary� From now on� the
dots in between successive symbols will be omitted to simplify the representation�
For example� I���	�	 will be denoted as I�		�
We illustrate this process of representation with the help of the book by Jain

and Dubes 
���� There are �ve chapters in this book� For simplicity of processing�
we consider only the information in the chapter contents� There is a single entry
in the table of contents for chapter 	� �Introduction�� and so we do not extract any
keywords from this� Chapter �� labeled �Data Representation�� has section titles
that correspond to the labels of the nodes in the ACM CR classi�cation tree 
��
which are given below�

�	� �a� I��� �feature evaluation and selection��

��� �b� I��� �similarity measures�� and
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��� �c� I�	� �statistical��

Based on the above analysis� Chapter � of Jain and Dubes book can be characterized
by the weighted disjunction �� I��� 
 I��� 
 I�	���	����� The weights �	��� denote
that it is one of the four chapters which plays a role in the representation of the
book� Based on the table of contents� we can use one or more of the strings I����
I���� and I�	� to represent chapter �� In a similar manner� we can represent other
chapters in this book as weighted disjunctions based on the table of contents and the
ACM CR classi�cation tree� The representation of the entire book� the conjunction
of all these chapter representations� is given by

���I��� 
 I��� 
 I�	���	���� � �� I�	� 
 I��	������� � ��I��	 
 I�� 
 I�����	������

Currently� these representations are generated manually by scanning the table of
contents of books in computer science area as ACM CR classi�cation tree provides
knowledge of computer science books only� The details of the collection of books
used in this study are available in 
	����

����� Similarity Measure� The similarity between two books is based on the simi�
larity between the corresponding strings� Two of the well�known distance functions
between a pair of strings are 
	�� the Hamming distance and the edit distance�
Neither of these two distance functions can be meaningfully used in this applica�
tion� The following example illustrates the point� Consider three strings I���� I����
and H���� These strings are labels �predicate logic for knowledge representation�

logic programming� and distributed database systems� of three fourth�level nodes
in the ACM CR classi�cation tree� Nodes I��� and I��� are the grandchildren of
the node labeled I� �arti�cial intelligence� and H��� is a grandchild of the node
labeled H� �database management�� So� the distance between I��� and I��� should
be smaller than that between I��� and H���� However� Hamming distance and
edit distance 
	�� both have a value � between I��� and I��� and a value of 	 be�
tween I��� and H���� This limitation motivates the de�nition of a new similarity
measure that correctly captures the similarity between the above strings� The simi�
larity between two strings is de�ned as the ratio of the length of the largest common
pre�x 
	��� between the two strings to the length of the �rst string� For example�
the similarity between strings I��� and I�	 is  ��� The proposed similarity measure
is not symmetric because the similarity between I�	 and I��� is  ���� The mini�
mum and maximum values of this similarity measure are  � and 	� � respectively�
The knowledge of the relationship between nodes in the ACM CR classi�cation
tree is captured by the representation in the form of strings� For example� node
labeled pattern recognition is represented by the string I�� whereas the string I��
corresponds to the node labeled clustering� The similarity between these two nodes
�I� and I��� is 	� � A symmetric measure of similarity 
	��� is used to construct a
similarity matrix of size 	  x	  corresponding to 	  books used in experiments�

����� An Algorithm for Clustering Books� The clustering problem can be stated
as follows� Given a collection� B� of books� we need to obtain a set� C� of clusters�
A proximity dendrogram 
��� using the complete�link agglomerative clustering al�
gorithm for the collection of 	  books is shown in Figure ��� Seven clusters are
obtained by choosing a threshold �	� value of  �	�� It is well�known that di�erent
values for 	 might give di�erent clusterings 
���� This threshold value is chosen
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because the �gap� in the dendrogram between the levels at which six and seven
clusters are formed is the largest� An examination of the subject areas of the
books 
	��� in these clusters revealed that the clusters obtained are indeed mean�
ingful� Each of these clusters is represented using a list of string� s� and frequency�
sf � pairs� where sf is the number of books in the cluster in which s is present� For
example� cluster c� contains �� books belonging to pattern recognition� neural net�
works� arti�cial intelligence� and computer vision and a part of its representation
R�C�� is given below�

R�C�� !��B�	�� 	�� �C	�� 	�� �D � ��� �D�		� 	�� �D�	�� ��� �D��� ��� �D��	� 	�� �D����
	�� �D���� 	�� � � � �I��� ��� �I��	� ��� �I���� 	�� �I���� ��� � � � �J��� 	�� �J�� 	��
�J�	� ��� �J�	�	��

These clusters of books and the corresponding cluster descriptions can be used as
follows� If a user is searching for books� say� on image segmentation �I���� then we
select cluster C� because its representation alone contains the string I��� Note that
books B� �Neurocomputing� and B�
 �Sensory Neural Networks� Lateral Inhibition�
are both members of cluster C� even though their LCC numbers are quite di�erent
�B� is QA�����H����� B�
 is QP������N����
Four additional books labeled B�	�� B�	�� B�	�� and B�	� have been used to

study the problem of assigning classi�cation numbers to new books� The LCC
numbers of these books are� �B�	�� Q����T��� �B�	�� QA������P���C��� �B�	��
QA�����B��C��� and �B�	�� QA�����D�W��� These books are assigned to clusters
based on nearest neighbor classi�cation� The nearest neighbor of B�	�� a book on
arti�cial intelligence� is B�� and so B�	� is assigned to cluster C�� It is observed that
the assignment of these four books to the respective clusters is meaningful� demon�
strating that knowledge�based clustering is useful in solving problems associated
with document retrieval�

��� Data Mining

Recent years have seen ever increasing volumes of collected data of all sorts� With so
much data available� it is necessary to develop algorithms which can extract mean�

ingful information from the vast stores� Searching for useful nuggets of information
among huge amounts of data has become the �eld of data mining�
Data mining can be applied to relational� transaction� and spatial databases� as

well as large stores of unstructured data such as the World Wide Web� There are
many data mining systems in use today� and applications include the U�S� Trea�
sury detecting money laundering� National Basketball Association coaches detect�
ing trends and patterns of play for individual players and teams� and categorizing
patterns of children in the foster care system 
���� Several journals have had recent
special issues on data mining 
�	�� 
���� 
	� ��

����	 Data Mining Approaches� Data mining� like clustering� is an exploratory
activity� so clustering methods are well suited for data mining� Clustering is often
an important initial step of several in the data mining process 
���� Some of the
data mining approaches which use clustering are database segmentation� predictive
modeling� and visualization of large databases�
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Segmentation� Clustering methods are used in data mining to segment databases
into homogeneous groups� This can serve purposes of data compression �working
with the clusters rather than individual items�� or to identify characteristics of
subpopulations which can be targeted for speci�c purposes �eg� marketing aimed
at senior citizens��
A continuous k�means clustering algorithm 
��� has been used to cluster pixels

in Landsat images 
���� Each pixel originally has � values from di�erent satellite
bands� including infra�red� These � values are di�cult for humans to assimilate
and analyze without assistance� Pixels with the � feature values are clustered into
��� groups� then each pixel is assigned the value of the cluster centroid� The image
can then be displayed with the spatial information intact� Human viewers can look
at a single picture and identify a region of interest� �e�g�� highway or forest� and
label it as a concept� The system then identi�es other pixels in the same cluster as
an instance of that concept�

Predictive Modeling� Statistical methods of data analysis usually involve hypoth�
esis testing of a model the analyst already has in mind� Data mining can aid the
user in discovering potential hypotheses prior to using statistical tools� Predictive
modeling uses clustering to group items� then infer rules to characterize the groups
and suggest models� For example� magazine subscribers can be clustered based on a
number of factors �age� sex� income� etc��� then the resulting groups characterized
in an attempt to �nd a model which will distinguish those subscribers that will
renew their subscriptions from those that will not 
	�	��

Visualization� Clusters in large databases can be used for visualization� in or�
der to aid human analysts in identifying groups and subgroups that have similar
characteristics� WinViz 
	� � is a data mining visualization tool in which derived
clusters can be exported as new attributes which can then be characterized by the
system� For example� breakfast cereals are clustered according to calories� protein�
fat� sodium� �ber� carbohydrate� sugar� potassium� and vitamin content per serv�
ing� Upon seeing the resulting clusters� the user can export the clusters to WinViz
as attributes� The system shows that one of the clusters is characterized by high
potassium content� and the human analyst recognizes the individuals in the cluster
as belonging to the �bran� cereal family� leading to a generalization that �bran
cereals are high in potassium��

����� Mining large unstructured databases� Data mining has often been performed
on transaction and relational databases which have well�de�ned �elds which can be
used as features� but there has been recent research on large unstructured databases
such as the World Wide Web 
����
Examples of recent attempts to classify Web documents using words or functions

of words as features include 
	��� and 
���� However� relatively small sets of la�
beled training samples and very large dimensionality limit the ultimate success of
automatic Web document categorization based on words as features�
Rather than grouping documents in a word feature space� 
	��� clusters the words

from a small collection of World Wide Web documents in the document space�
The sample data set consisted of �� documents from the manufacturing domain
in � di�erent user�de�ned categories �labor� legal� government� design�� These ��
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documents contained �	� distinct word stems after common words �the� and� of�
were removed� Since the words are certainly not uncorrelated� they should fall into
clusters where words used in a consistent way across the document set have similar
values of frequency in each document�
K�means clustering was used to group the �	� words into 	 groups� One

surprising result was that an average of ��' of the words fell into a single cluster�
which could then be discarded for data mining purposes� The smallest clusters
contained terms which to a human seem semantically related� The � smallest
clusters from a typical run are shown in Figure ���

Cluster � Cluster � Cluster � Cluster � Cluster 
 Cluster � Cluster �

employe applic action cadmaz cfr amend anim
fmla claim a
rm consult contain bankruptci commod
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regul secur ppm
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veget

Fig� ��� The seven smallest clusters found in the document set� These are stemmed words�

Terms which are used in ordinary contexts� or unique terms which do not occur
often across the training document set will tend to cluster into the large �   mem�
ber group� This takes care of spelling errors� proper names which are infrequent�
and terms which are used in the same manner throughout the entire document set�
Terms used in speci�c contexts �such as �le in the context of �ling a patent� rather
than a computer �le� will appear in the documents consistently with other terms
appropriate to that context �patent� invent� and thus will tend to cluster together�
Among the groups of words� unique contexts stand out from the crowd�
After discarding the largest cluster� the smaller set of features can be used to con�

struct queries for seeking out other relevant documents on the Web using standard
Web searching tools �e�g�� Lycos 
� ��� AltaVista 
� ��� OpenText 
� ����
Searching the Web with terms taken from the word clusters allows discovery of

�ner grained topics �e�g�� family medical leave� within the broadly de�ned categories
�e�g�� labor��

����� Data Mining in Geological Databases� Database mining is a critical re�
source in oil exploration and production� It is common knowledge in the oil industry
that the typical cost of drilling a new o�shore well is in the range of (� �� million�
but the chance of that site being an economic success is 	 in 	 � More informed
and systematic drilling decisions can signi�cantly reduce overall production costs�
Advances in drilling technology and data collection methods have led to oil com�

panies and their ancillaries collecting large amounts of geophysical�geological data
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from production wells and exploration sites� and then organizing them into large
databases� Data mining techniques has recently been used to derive precise analytic
relations between observed phenomena and parameters These relations can then be
used to quantify oil and gas reserves�
In qualitative terms� good recoverable reserves have high hydrocarbon saturation

that are trapped by highly porous sediments �reservoir porosity� and surrounded
by hard bulk rocks that prevent the hydrocarbon from leaking away� A large
volume of porous sediments is crucial to �nding good recoverable reserves� therefore�
developing reliable and accurate methods for estimation of sediment porosities from
the collected data is key to estimating hydrocarbon potential�
The general rule of thumb experts use for porosity computation is that it is a

quasi�exponential function of depth�

Porosity ! K � e�F �x��x������xm��Depth� ���

A number of factors� such as rock types� structure� and cementation� as param�
eters of function F confound this relationship� This necessitates the de�nition of
proper contexts in which to attempt discovery of porosity formulae� Geological con�
texts are expressed in terms of geological phenomena� such as geometry� lithology�
compaction� and subsidence� associated with a region� It is well known that the
geological context changes from basin to basin �di�erent geographical areas in the
world� and also from region to region within a basin
�
 � �� Furthermore� the un�
derlying features of contexts may vary greatly� Simple model matching techniques�
which work in engineering domains where behavior is constrained by man�made
systems and well�established laws of physics� may not apply in the hydrocarbon
exploration domain� To address this� data clustering was used to identify the rel�
evant contexts� and then equation discovery was carried out within each context�
The goal was to derive the subset x�� x�� ���� xm from a larger set of geological fea�
tures� and the functional relationship F that best de�ned the porosity function in
a region�
The overall methodology illustrated in Fig� ��� consists of two primary steps�

�i� Context de�nition using unsupervised clustering techniques� and �ii� Equation
discovery by regression analysis 
	��� �� Real exploration data collected from a re�
gion in the Alaska basin was analyzed using the methodology developed� The data
objects �patterns� are described in terms of �� geological features� such as porosity�
permeability� grain size� density� and sorting� amount of di�erent mineral fragments
�e�g�� quartz� chert� feldspar� present� nature of the rock fragments� pore character�
istics� and cementation� All these feature�values are numeric measurements made
on samples obtained from well�logs during exploratory drilling processes�
The k�means clustering algorithm was used to identify a set of homogeneous

primitive geological structures �g�� g�� ���� gm�� These primitives were then mapped
onto the unit code versus stratigraphic unit map� Figure �� depicts a partial map�
ping for a set of wells and four primitive structures� The next step in the discovery
process identi�ed sections of wells regions that were made up of the same sequence
of geological primitives� Every such sequence de�ned a context Ci� From the par�
tial mapping of Figure ��� the context C� ! g� � g� � g� � g� was identi�ed in
two well regions �the �  and �  series�� After the contexts were de�ned� data
points belonging to each context were grouped together for equation derivation�



�
 � A�K� Jain� M�N� Murty and P�J� Flynn

��� Context De�nition

��� discover primitive structures �g�� g�� ���� gm� by clustering�
��� de�ne context in terms of the relevant sequences of primitive structures� i�e�� Ci �

gi� � gi��� �����gik�
��� group data according to the context de�nition to form homogeneous data groups�
��� for each relevant data group� determine the set of relevant variables �x�� x�� ���� xk� for

porosity�

��� Equation Derivation

��� select possible base models �equations� using domain theory�
��� use the least squares method to generate coe
cient values for each base model�
��� use the component plus residual plot �cprp� heuristic to dynamically modify the equation

model to better �t the data�

Fig� �
� Description of the Knowledge�based Scienti�c Discovery Process�
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Fig� ��� Area Code versus Stratigraphic Unit Map for Part of the Studied Region

The derivation procedure employed multiple regression analysis 
	����

This method was applied to a data set of about ��  objects corresponding
to sample measurements collected from wells is the Alaskan Basin� The k�means
clustered this data set into seven groups� As an illustration� we selected a set of 	��
objects representing a context for further analysis� The features that best de�ned
this cluster were selected� and experts surmised that the context represented a low
porosity region� which was modeled using the regression procedure�



Data Clustering� A Review � ��

�� SUMMARY

There are several applications where decision making and exploratory pattern anal�
ysis have to be performed on large data sets� For example� in document retrieval�
a set of relevant documents has to be found among several millions of documents
of dimensionality more than 	   � It is possible to handle these problems if some
useful abstraction of the data is obtained and is used in decision making rather
than directly using the entire data set� By data abstraction� we mean a simple and
compact representation of the data� This simplicity helps the machine in e�cient
processing or a human in comprehending the structure in data easily� Clustering
algorithms are ideally suited for achieving data abstraction�

In this paper� we have examined various steps in clustering� �	� pattern repre�
sentation� ��� similarity computation� ��� grouping process� and ��� cluster rep�
resentation� Also we have discussed statistical� fuzzy� neural� evolutionary� and
knowledge�based approaches to clustering� We have described four applications of
clustering� �	� image segmentation� ��� object recognition� ��� document retrieval�
and ��� data mining�

Clustering is a process of grouping data items based on a measure of similarity�
Clustering is a subjective process
 the same set of data items often needs to be par�
titioned di�erently for di�erent applications� This subjectivity makes the process of
clustering hard� This is because a single algorithm or approach is not adequate to
solve every clustering problem� A possible solution lies in re�ecting this subjectiv�
ity in the form of knowledge� This knowledge is used either implicitly or explicitly
in one or more phases of clustering� Knowledge�based clustering algorithms use
domain knowledge explicitly�

The most challenging step in clustering is feature extraction or pattern represen�
tation� Pattern recognition researchers conveniently avoid this step by assuming
that the pattern representations are available as input to the clustering algorithm�
In small size data sets� pattern representations can be obtained based on previous
experience of the user with the problem� However� in the case of large data sets� it
is di�cult for the user to keep track of the importance of each feature in clustering�
A solution is to make as many measurements on the patterns as possible and use
them in pattern representation� But it is not possible to use a large collection of
measurements directly in clustering because of computational costs� So� several
feature selection�extraction approaches have been designed to obtain linear or non�
linear combinations of these measurements which can be used to represent patterns�
Most of the schemes proposed for feature extraction�selection are typically iterative
in nature and cannot be used on large data sets due to prohibitive computational
costs�

The second step in clustering is similarity computation� A variety of schemes
have been used to compute similarity between two patterns� They use knowledge
either implicitly or explicitly� Most of the knowledge�based clustering algorithms
use explicit knowledge in similarity computation� However� if patterns are not rep�
resented using proper features� then it is not possible to get a meaningful partition
irrespective of the quality and quantity of knowledge used in similarity computa�
tion� There is no universally acceptable scheme for computing similarity between
patterns represented using a mixture of both qualitative and quantitative features�
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Dissimilarity between a pair of patterns is represented using a distance measure
that may or may not be a metric�
The next step in clustering is the grouping step� There are broadly two grouping

schemes� hierarchical and partitional schemes� The hierarchical schemes are more
versatile and the partitional schemes are less expensive� The partitional algorithms
aim at maximizing the squared error criterion function� Motivated by the failure of
the squared error partitional clustering algorithms in �nding the optimal solution
to this problem� a large collection of approaches have been proposed and used to
obtain the global optimal solution to this problem� However� these schemes are
computationally prohibitive on large data sets� ANN based clustering schemes are
neural implementations of the clustering algorithms and they share the undesired
properties of these algorithms� However� ANNs have the capability to automatically
normalize the data and extract features� An important observation is that even if a
scheme can �nd the optimal solution to the squared error partitioning problem� it
may still fall short of the requirements because of the possible non�isotropic nature
of the clusters�
In some applications� for example in document retrieval� it may be useful to have

a clustering that is not a partition� This means clusters are overlapping� Fuzzy
clustering and functional clustering are ideally suited for this purpose� Also fuzzy
clustering algorithms can handle mixed data types� However� a major problem
with fuzzy clustering is that it is di�cult to obtain the membership values� A
general approach may not work because of the subjective nature of clustering� It
is required to represent clusters obtained in a suitable form to help the decision
maker� Knowledge�based clustering schemes generate intuitively appealing descrip�
tions of clusters� They can be used even when the patterns are represented using
a combination of qualitative and quantitative features� provided knowledge linking
a concept and the mixed features is available� However� implementations of the
conceptual clustering schemes are computationally expensive and are not suitable
for grouping large data sets�
The k�means algorithm and its neural implementation� the Kohonen net� are most

successfully used on large data sets� This is because k�means algorithm is simple
to implement and computationally attractive because of its linear time complexity�
However� it is not feasible to use even this linear time algorithm on large data sets�
Incremental algorithms like leader and its neural implementation� the ART network�
can be used to cluster large data sets� But they tend to be order�dependent� Divide
and conquer is a heuristic that has been rightly exploited by computer algorithm
designers to reduce computational costs� However� it should be judiciously used in
clustering to achieve meaningful results�
In summary� clustering is an interesting� useful and challenging problem� It has

great potential in applications like object recognition� image segmentation� and
information �ltering and retrieval� However� it is possible to exploit this potential
only after making several design choices carefully�
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