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Abstract

Given a pair of images represented using bag-of-visual-

words and a label corresponding to whether the images are

“related”(must-link constraint) or “unrelated” (cannot-

link constraint), we address the problem of selecting a sub-

set of visual words that are salient in explaining the relation

between the image pair. In particular, a subset of features

is selected such that the distance computed using these fea-

tures satisfies the given pairwise constraints. An efficient

online feature selection algorithm is presented based on the

dual-gradient descent approach. Side information in the

form of pair-wise constraints is incorporated into the fea-

ture selection stage, providing the user with flexibility to

use an unsupervised or semi-supervised algorithm at a later

stage. Correlated subsets of visual words, usually result-

ing from hierarchical quantization process (called groups),

are exploited to select a significantly smaller vocabulary.

A group-LASSO regularizer is used to drive as many fea-

ture weights to zero as possible. We evaluate the quality of

the pruned vocabulary by clustering the data using the re-

sulting feature subset. Experiments on PASCAL VOC 2007

dataset using 5000 visual keywords, resulted in around 80%

reduction in the number of keywords, with little or no loss

in performance.

1. Introduction

Large amounts of multimedia data are being generated

every day. An image hosting website such as Flickr re-

ceives around 10 images per second, or nearly 38K images

per hour. It is computationally prohibitive to perform batch

mode learning even on a week’s collection of data, let alone

running the learning algorithm every time new data is avail-

able. Online algorithms provide an efficient way to con-

tinuously learn from examples as and when they become

available. In this paper, we address the problem of feature

selection in an online setting. In particular, we aim to per-

form feature selection on images represented as a bag of

visual words.

Representing images using a bag of visual words [4] has

received significant attention. In this approach, each image

is represented as a distribution over a set of visual vocab-

ulary. The vocabulary itself is a set of prototypes obtained

by clustering the set of key points (e.g., using SIFT oper-

ator) pooled from a collection of training images. Several

applications such as image clustering [1], large scale im-

age [14] and video retrieval [16] have shown this method to

be promising in both performance and scalability.

Recent studies have shown that the choice of vocabu-

lary size can have a significant impact on the performance

of learning algorithms [18]. A small vocabulary size may

result in a feature space not rich enough to capture the vari-

ability in the images, while a large vocabulary may cause

two keypoints that are similar to be mapped to two different

visual words leading to suboptimal performance. Further,

a large number of visual words results in the well known

problems of curse of dimensionality, complex hypothesis

spaces and large computational requirements. Feature se-

lection, or vocabulary pruning, is an important step in text

retrieval that retains only a few important words needed for

subsequent classification or clustering [6].

Visual vocabularies are usually constructed using recur-

sive partitional clustering algorithms such as bisecting K-

means, resulting in a cluster hierarchy [14, 13]. This causes

the visual words at the leaf nodes that are children of a com-

mon parent to be similar to each other. If one of the visual

words is not informative, it is an indication that its siblings

may not be informative as well. One of the basic premises

of this work is to exploit what we call visual synonyms for

feature selection. Visual synonyms are identified as the vi-

sual words sharing a common parent in the cluster hierar-

chy.

We propose to use pairwise constraints to encode the re-

lationship between images. The pairwise constraints are of

two types: must-link and cannot-link. A pairwise constraint

is a natural way to encode a user’s perceived visual sim-

ilarity between a pair of images. It is easier to specify a

constraint between two images than labeling them explicitly

with all the objects present. Figure 1 illustrates the goal of
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Input image pair labeled as must-link (related)

↓ ↓

Extracted SIFT Key-points and their groups.

Keypoints falling in a group (visual synonyms) use

the same color marker in the plot.

↓ ↓

Selected features explaining the must-link constraint.

Note the irrelevant groups missing in the background.

↓ ↓

Figure 1. Illustration of SIFT key points, visual synonyms and fea-

ture selection at a group level. The first row shows a pair of im-

ages input for feature selection. Note that the key points occur in

groups. Same colored marker is used for key points belonging to

a group. Feature selection by proposed algorithm acts at a group

level by removing the entire group of unrelated features.

the proposed approach using an image pair labeled as must-

link. Loosely speaking, the common key points between a

pair of images need to be discarded if it is a cannot-link pair,

and need to be retained if they are a must-link pair.

In this paper, we propose an efficient online algorithm

that takes in a set of images and the associated pairwise

constraints, and selects a subset of visual words. Since each

key point in an image is mapped to one of the visual words,

pruning the vocabulary results in a reduction in the number

of key-points in an image. The feature group information

obtained from the cluster hierarchy is exploited to shrink the

feature weights at a group level. The quality of the selected

features is evaluated using an image clustering application.

2. Related work

Feature or variable selection is a classical problem in

multivariate statistics and pattern recognition. All disci-

plines of learning, i.e. supervised, unsupervised, and semi-

supervised usually perform some sort of feature selection.

An introduction to feature or variable selection can be found

in [3, 6, 8]. Feature extraction, in contrast with feature se-

lection, results in a (non)linear combination of existing fea-

tures. In applications requiring interpretability, feature se-

lection is preferred to feature extraction.

Feature selection methods can be broadly classified into

search based methods (e.g. Floating Search [8]), feature

ranking, and shrinkage methods such as LASSO [17] and

Group LASSO [19]. Feature selection by ranking sorts the

features based on a score, such as correlation coefficient or

mutual information, computed between the feature and the

class labels. While feature ranking is commonly used as

a baseline, features that are correlated with the labels are

possibly correlated among themselves as well, resulting in

the selection of a set of redundant features [6].

Search basedmethods are further classified into filter and

wrapper methods. They operate by incrementally modify-

ing a selected set of features by adding or deleting features

one by one. These approaches are greedy in nature, and are

affected by the order of adding/deleting features to/from the

set. Moreover, they are computationally expensive as the

learning algorithm is run every time the selected feature set

is modified. Branch and bound algorithms tend to be more

accurate, but are limited in their ability to handle only a

small set of features due to computational reasons. Search

based algorithms are batch mode, and require all the labeled

data examples be present before they can be used, and are

not applicable to an online setting.

Shrinkagemethods are widely used for variable selection

in multivariate regression. These tend to be more princi-

pled, and amenable to theoretical analysis with a predictable

behavior. In general, supervised learners such as SVM,

learn the weights of features. Feature selection, however

differs from feature weighting. Shrinkage methods such

as LASSO perform feature selection by driving as many

weights to zero as possible. In a supervised setting, sev-

eral algorithms such as 1-norm SVMs [21], F∞ SVM[22]

and Lasso Boosting [20], ridge regression employ shrink-

age strategy. To the best of our knowledge, there is no

feature selection method proposed in the literature that em-

ploys LASSO shrinkage with pairwise constraints.

Distance metric learning (DML) is another related area

where the features weights are learnt from labeled exam-

ples [15, 7]. DML methods learn a quadratic distance func-

tion parameterized using a d × d weight matrix, where d
is the dimensionality of the data. Online DML algorithms

such as POLA [15] involve a projection step to ensure pos-

itive definiteness of the feature matrices, and are computa-

tionally expensive. Even using a diagonal weight matrix,

they tend to prefer uniform feature weights, contrary to our

goal. The proposed algorithm can be shown to be a general-
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ization of the POLA algorithmwith diagonal weight matrix,

when all visual words are put in a single group.

3. Problem formulation

Let D = {I1, . . . , In} be the given collection of n im-

ages represented as a distribution over the visual vocabulary

V = (v1, . . . , vm) containing m visual words. Since the vi-

sual words are often generated by a recursively bisecting

K-means algorithm, we can derive a group structure for the

visual words. In particular, we assume the visual words are

divided into s groups. Let v
g = (vmg−1+1, . . . , vmg

) be

the collection of visual words belonging to the g-th group,

for g = 1, · · · , s. Note that even when no group structure

is available, our method is still applicable where each fea-

ture forms its own group, and s = m. Given the visual

words, each image Ii is represented by a vector of visual

word histogram, denoted by xi = (xi,1, . . . , xi,m). Fur-

ther, let x
g
i denote the feature sub-vector of image Ii cor-

responding to the vocabulary v
g . Let w = (w1, . . . , wm)

denote the weights for visual words. The squared distance

between two visual word histograms x and x
′ given the fea-

ture weights w, denoted by |x− x
′|2
w
, is computed as

|x− x
′|2
w

=

m
∑

i=1

wi(xi − x′
i)

2. (1)

It is necessary that the weights are positive, wj ≥ 0,
j = 1, . . . , m, for Eq (1) to be a metric. The visual sim-

ilarity between a pair of images is provided in the form

of a pairwise constraint – a must-link constraint indicates

two images are visually similar whereas a cannot-link con-

straint indicates two images are visually different. Let

T = {(xt,x
′
t, yt), t = 1, . . . , T} denote the collection

of pairwise constraints that will be used for learning the

weights, where xt and x
′
t are visual word histograms corre-

sponding to two images, and yt = ±1, where +1 indicates

the two images are visually similar and −1 otherwise.

The goal is to learn weights w for the visual words such

that the following criteria are met:

1. The distance between the two images computed using

Eq (1) reflects the visual similarity between the images.

2. Select a small subset of features by driving as many

entries in the vector w to 0 as possible.

For a given a pairwise constraint (xt,x
′
t, yt), if yt = 1,

the distance between xt and x
′
t must be less than a threshold

b (which can either be learnt, or specified by the user). On

the other hand, if yt = −1, the distance computed using the

selected features must be greater than b. We define a loss

function measuring the error made by a weight vector w on

an example pair xt,x
′
t with true label yt as follows:

ℓ(w;xt,x
′
t, yt) = max

(

0, 1− yt(b− |xt − x
′
t|

2
w

)
)

. (2)

In order to encode the hierarchical structure among vi-

sual words, we introduce a mixed norm for weight vector

w, denoted by ‖w‖1,2, that is defined as follows:

‖w‖1,2 =

s
∑

g=1

√

√

√

√

mg
∑

j=mg−1+1

w2
j (3)

where mg−1 + 1 is the index of the first element in the g-th
group. The above norm is introduced to enforce feature se-

lection at a group level, i.e., if multiple visual words within

a group are assigned small weight, the entire group of visual

words may be deemed irrelevant and can be discarded. This

mixed norm is often referred to as group-lasso or the L1,2

norm and is widely used for feature selection [11].

Using the norm defined in Eq(3) as the regularizer and

the loss defined in Eq (2), the feature weights can be learnt

by minimizing the following objective function:

min
w∈R

m

+

‖w‖21,2 + λ

T
∑

t=1

ℓ(w;xt,x
′
t, yt) (4)

where b > 0 is a predefined constant. The goal of this

work is to present an online algorithm to minimize Eq (4).

Online algorithms are computationally efficient since they

learn with only one example at each time.

4. Online algorithm using projections

Our online feature selection algorithm is presented in

Section 4.1, followed by a theoretical analysis in Sec-

tion 4.2. For conciseness, we define ∆xt = xt − x
′
t and

use the notation ℓt(w) to denote the loss ℓ(w;xt,x
′
t, yt)

at the t-th round of learning. Algorithm 1 summarizes the

general online feature selection framework.

4.1. Algorithm

Step 1. Given a pair of images xt, x
′
t, predict whether

they are in the same cluster using the existing weight

vector wt and Eq (1). Observe the true output yt, and

compute the loss ℓt(w).

Step 2. For convenience, define temporary weights

θt = (θ1
t , θ

2
t , · · · , θ

s
t ), where θ

g is the subvector cor-

responding to group g, as follows:

θ
g
t = ‖wt‖1,2

w
g
t

‖wg
t ‖2

, g = 1, · · · s. (5)

Step 3. Since the gradient of the loss function∇wℓt(w)
indicates the direction for updating weights, the tem-

porary weights are updated using the following rule

θt+1 = θt − λ∇wℓt(wt) = θt − λyt∆xt (6)

where λ a prespecified stepsize or the learning rate.
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Step 4. To perform group level feature selection, each

group is weighted by a factor that depends on the norm

of the feature weights within the group. In particular,

we compute the weight of each group using a soft-max

function. That is, the weight of group g, qg is obtained

as,

qg =
exp(‖θg‖22/2µ)

∑s

k=1
exp(‖θk‖22/2µ)

. (7)

Note that due to normalization, smaller values of

‖θg‖22 result in near zero qg values. The smoothing

parameter µ in the softmax function controls the dis-

tribution of group weights. For a large µ all groups are

weighted equally irrespective of their utility, and as µ
goes to zero, only one group whose weights have the

largest norm is selected.

Step 5. Since the weights for the features must be pos-

itive, replace all the negative elements in θ with 0.
Compute the weight vector wt+1from the temporary

weights θ as follows:

w
g
t+1 = qg θ

g
t

‖θg
t ‖

2
2

, g = 1, · · · , s. (8)

where w
g
t+1 is the g-th subvector of w corresponding

to the vocabulary of g-th group, vg .

Eq (8) gives the solution for the weight vector wt+1 for the

next iteration. Steps 1-5 are repeated as each example pair

becomes available. The features corresponding to non-zero

weights in w are considered relevant, and form the selected

subset of features.

4.2. Theoretical analysis

Potential based gradient descent [2, Chapters 2,11] is an

online learning framework that generalizes several classi-

cal algorithms like Widrow-Hoff, Winnow and the recent

Exponentiated Gradient (EG) algorithm [2]. However, clas-

sical analysis presented in [2] is applicable only to potential

functions that are strictly convex. The potential generat-

ing the L1,2 norm considered in the proposed approach is

not strictly convex. In this section, we propose a smooth

approximation to the mixed norm ‖ ·‖21,2 for weight estima-

tion. We begin with the following lemma that allows us to

rewrite ‖w‖21,2 as a variational minimization problem.

Lemma 1. The group-LASSO norm can be shown to be the

exact minimizer of the variational problem

1

2
‖w‖21,2 =

1

2
min
p∈R

s

+

{

s
∑

g=1

‖wg‖22
pg

:

s
∑

g=1

pg = 1

}

(9)

Proof. See [10].

A smoothing term is now introduced to ensure that the

norm ‖ · ‖21,2 is strictly convex. The smooth norm Φ(x, µ)
is defined as follows:

Φ(w; µ) = min
p∈R

s

+

{

s
∑

g=1

‖wg‖22
2pg

− µH(p) :

s
∑

g=1

pg = 1

}

(10)

where H(p) is the Shannon entropy defined as H(p) =
−
∑s

g=1
pg ln pg, and µ is the smoothness parameter. Also,

we have 1

2
‖w‖21,2 − µ ln s ≤ Φ(w; µ) ≤ 1

2
‖w‖21,2.

Lemma 2. The approximate potential function Φ(w, µ) is
a strictly convex function.

Proof. See [10].

The following lemma shows the convex conjugate of the

smooth norm, which is shown to be strictly convex in the

subsequent lemma.

Lemma 3. The convex conjugate of the smooth norm

Φ(w, µ), denoted by Φ∗(w, µ) is computed as

Φ∗(w, µ) = µ ln

(

s
∑

g=1

exp

[

‖wg‖22
2µ

]

)

Proof. See [10].

Note that as µ goes to zero, Φ∗(w, µ) becomes

max1≤g≤s |w
g|22, which is the square of the mixture of the

L∞ and L2 norm. This is interesting since L∞ norm is the

dual of L1 norm. Lemma 4 below shows that Φ∗(w, µ) is a
strict convex function

Lemma 4. The Hessian matrix of Φ∗(w, µ), denoted by

H∗(w, µ), is positive definite i.e.,H∗(w, µ) ≻ 0. Further-
more, if ‖w‖2 ≤ R, we have H∗(w, µ) � (1 + R2/µ)I

Proof. See [10].

Given that both potential Φ(w, µ), and its convex con-

jugate Φ∗(w, µ) are strictly convex functions, the potential

based gradient descent algorithm presented in [2, Chapter

11] can be used. The algorithm is described in Algorithm 2,

where Ω = {w ∈ R
m
+ : |w|2 ≤ R} is the domain for fea-

ture weights and R ∈ R is a predefined constant. Step 4

involves a projection of an estimate of weight vector w′
t+1

into Ω, such that the Bregman divergence generated by the

potential function Φ, denoted by DΦ(wt+1,wt) is mini-

mized.

An online learning algorithm performs a weight update

whenever it makes a mistake in its prediction. Online learn-

ing algorithms are characterized by mistake bounds [2],

which bound the number of mistakes made by an algo-

rithm compared to those made by the knowledge of optimal

weight vector in retrospect. The following theorem shows

the mistake bound for the above online algorithm.
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Algorithm 1 OnlineFeatureSelection

Initialize w← 0, t← 0
for each round t = 1, 2, · · · do
Observe (xt,x

′
t) and Predict dt ← |xt − x

′
t|w

if yt(b− dt) ≤ 0 then

wt ← DualGradientDescentStep(xt,x
′
t,wt−1)

end if

t← t + 1
end for

Algorithm 2 DualGradientDescentStep(wt)

1. θt ← ∇Φ(wt, µ)
2. θ′t+1 ← θt − λ∇ℓt(wt)
3. w′

t+1 ← ∇Φ∗(θ′t+1, µ)
4. wt+1 ← πΩ(w′

t+1, Φ) = arg min
w∈Ω DΦ(w,w′

t+1)

Theorem 1. For any convex loss function ℓ, learning rate

λ, and X∞ = maxt ‖∆xt‖ where ∆xt = xt − x
′
t, let

κ = (1 + R2/µ), and λ = ǫ/(κX2
∞). For all u ∈ Ω, the

number of mistakes M made by the proposed algorithm is

bounded as follows:

M ≤
1

1− ǫ

(

κX2
∞

(

‖u‖2 + µ ln s
)

2ǫ
+

T
∑

t=1

ℓt(u)

)

(11)

Proof. See [10].

For ǫ = 0.5, the above theorem shows that the number

of mistakes M made by w is no more than twice that of the

optimal weight vector u, and a constant depending on u, the

smoothing parameter µ and the logarithm of the number of

groups s.

4.3. Implementation details

For the potential function defined in Eq (10), steps 3 and

4 of Algorithm 2 are computationally complex. In particu-

lar, the computation of ∇Φ(wt, µ) involves solving a non-

linear optimization problem defined in Eq (10). To avoid

this, we use the original L1,2 norm instead of the smooth

norm. Further, the projection step 4 in Algorithm 2 is dif-

ficult. The projection in L1,2 is performed approximately

by projecting weights in each group ‖wg‖ into a unit ball

using an L2 norm. This results in significant computational

gains, with negligible difference in the empirical evaluation.

This choice results in a normalized weight vector, fixing the

value of R = 1. The solution is given in Eq (8), and the

detailed derivations of the solution are presented in [10].

5. Experimental evaluation and results

Datasets: The proposed algorithm is evaluated using the

PASCAL VOC challenge 2007 dataset [5]. This dataset has

9,963 images labeled using 20 classes of objects. The train-

ing and validation set contains 5,011 images. A detailed

description of the data including the number of images per

class is provided in [5]. The images in the dataset have

multiple labels, and hence it is not directly suitable for eval-

uating clustering. We ignore infrequent objects and con-

sider only the images containing one of the 6 most popu-

lar classes in the dataset, namely, bicycle (243), bird

(330), car (713), cat (337), chair (445), and person

(2008). The number of samples in each class is shown in

brackets. For objects with multiple labels, one of the labels

is chosen randomly.

5.1. Feature extraction

SIFT (Version 4) key points [9] are extracted from

each image. Each key-point is represented using a 128-

dimensional feature vector. The key-points extracted from

images in the training set are pooled together resulting in

around 4.5 million key points. These key-points are clus-

tered into 5,000 clusters using approximate hierarchical K-

means algorithm from the FLANN library [12], with a

branching factor of 20, resulting in a visual vocabulary of

size 5000. Key point histograms are computed for each im-

age in the training set. The group information of the visual

vocabulary is obtained during the clustering phase by iden-

tifying all the visual words with common parents.

Experimental setup: Group-LASSO is a general norm

which can be specialized to both L2 or L1 using appropri-

ate group definition. If the number of groups is equal to

the number of features, then Group-LASSO is equivalent to

performing feature selection using an L1 norm. If all the

features are put in a single group, the proposed algorithm

is equivalent to the online distance metric learning algo-

rithm POLA [15], which uses an L2 norm as a regularizer.

The performance of proposed algorithm with and without

group structure (L1,2 and L1) is evaluated. The proposed

algorithm is compared with the L2 distance metric learn-

ing algorithm POLA. To compare the performance of the

online algorithm with the batch mode algorithms, the clas-

sical Best First Search algorithm is used. However, note that

batch mode algorithms assume that all examples are avail-

able a priori, and therefore usually have better performance.

For each pair of classes from the PASCAL VOC dataset,

300 randomly selected pairwise constraints are specified.

The online learning algorithm is run for 10 epochs with

the same 300 constraints shuffled each time. The num-

ber of constraints considered in our algorithm are orders

of magnitude smaller than those considered by other ap-

proaches [15, 7], which use around 10,000 constraints.

K-means algorithm is used to cluster the images with

the selected features. Different sub-tasks from the PAS-

CAL VOC dataset are chosen based on their class labels.
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Task Classes Proposed Online Baseline Batch Baseline

# c1 c2 K-means L1,2 L1 POLA(L2) BestFirst

1 bird cat 34.25 54.77+ 51.18+ 41.89− 56.40+
2 bird bicycle 46.88 45.79− 49.30+ 46.55 48.83+
3 bird chair 57.51 57.97 60.22+ 50.55− 61.10+
4 bird car 55.74 63.24+ 66.99+ 58.32+ 66.01+
5 bird person 79.34 78.78 76.54− 75.34− 73.47−
6 cat bicycle 42.55 53.81+ 61.73+ 53.00+ 59.73+
7 cat chair 41.85 46.16+ 48.04+ 47.18+ 55.24+
8 cat car 55.37 55.10 55.72 55.50 55.15

9 cat person 78.98 78.45 73.48− 74.92− 66.47−
10 bicycle chair 62.83 64.18+ 64.58+ 60.73− 56.85−
11 bicycle car 66.25 67.78+ 68.97+ 65.69− 66.76

12 bicycle person 84.09 83.76 78.44− 79.96− 84.10

13 chair car 50.35 51.03 52.02+ 53.51+ 55.73+
14 chair person 73.67 76.68+ 68.84− 71.87− 64.91−
15 car person 62.65 62.73 59.97− 63.74+ 57.03−

Summary 8+/1− 9+/5− 5+/8− 7+/5−

Table 1. Performance of the proposed algorithm measured using pairwise-F1 measure. The first two columns show the target clusters,

subsequent columns show the mean pairwise F1 measure, expressed as percentage. Significant differences (paired t-test at 95% confidence)

compared to the K-means algorithm are indicated by a + or a −.

The pairwise constraints provided to the proposed feature

selection algorithm are derived from the true labels of the

examples. To alleviate the variability due to local minima

in the K-means algorithm, it is run with ten different initial-

izations. The cluster labels corresponding to the run with

lowest value of objective function are used for evaluation.

Pairwise-F measure is used as the evaluation metric.

Parameters: The proposed algorithm has two parameters

– the learning rate (or step size in the sequential gradient

descent) λ and the norm-smoothness parameter µ. We set

λ = s
2
where s is the number of groups in the visual words.

The value of µ is set to 1. The value of b is chosen empir-

ically to be 4. Ideally, if w is unconstrained, the value of

b does not matter since it compensates for a scale factor in

w. The approximation used for Step 4 of Algorithm 2 (see

Section 4.3) results in R = 1 constraining the domain of w

to the unit L1,2 ball. In this case, for b > X∞, there is no w

that satisfies any of the cannot link constraints. Therefore a

choice of b must satisfy 0 < b < X∞. The domain size R
is not a parameter, and need not be specified.

The values of the parameter are selected using cross vali-

dation on one of the clustering tasks (bird vs cat), which

are then used for all the tasks. The range of values for these

parameters to perform cross validation was motivated by

Theorem 1. It may appear that selecting µ close to 0 would

reduce the µ ln s term in the mistake bound in Eq (11).

However, setting µ to be small results in a small λ small,

rendering the updates insignificant. Moreover, too small or

too large a value for λ increases the the bound significantly

resulting in poor learning, and hence is not recommended.

5.2. Results and discussion

Figure 2 illustrates the features selected by the pro-

posed algorithm on six example images from the VOC 2007

dataset. The left image in each pair shows the original set of

key points extracted by the SIFT algorithm with its default

settings. The right image in the pair shows the key points

corresponding to the visual words, selected by the proposed

algorithm. Note that in almost all the images, the key points

in the background are drastically reduced . However, in the

examples containing bird in Figure 2, the key points cor-

responding to the tree branches are also retained by the fea-

ture selection algorithm. In a large fraction of bird images

in the dataset, branches co-occur with a bird. Unless a suf-

ficient number of cannot-link constraints are given between

images containing birds and tree-branches, correspond-

ing key points would not be eliminated. Such cases did not

occur frequently in the dataset considered.

Table 1 shows the performance of the K-means cluster-

ing algorithm on 15 clustering tasks created from the VOC

dataset. Table 2 shows the mean and standard deviation of

the visual words selected by the proposed algorithm and

baselines. Group-LASSObased feature selection always re-

sulted in the least number of features, followed by LASSO.

The variance of Group-LASSO is higher since the features

are discarded in groups of large size. In most cases, the per-

formance drop is not significant (using paired t-test at 95%

confidence). The cases where there is a significant differ-
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#kp = 821 (217 groups) #kp = 75 (55 groups) #kp = 401 (128 groups) #kp = 29 (27 groups)

#kp = 507 (44 groups) #kp = 193 (36 groups) #kp = 337 (166 groups) #kp = 20 (21 groups)

#kp = 532 (189 groups) #kp = 20 (21 groups) #kp = 351 (161 groups) #kp = 32 (21 groups)
Figure 2. Feature selection using group-LASSO. In each pair of images, the left image shows the key points extracted from the original

image and the right image shows the selected key points using the proposed algorithm. The number below each image indicates the number

of key points (kp), and the number of groups are shown in brackets.

ence in performance are marked by + or − accordingly.

In three out of the five clustering tasks involving the

person class, the performance after feature selection is

lower than that of K-means. This is attributed to the large

difference in the number of samples in each class in the

dataset. The degradation of the proposed method however,

is less severe compared to the baselines. The class person

is not only most frequent bust also frequently co-occurs

with the other classes in the dataset. This imbalance in the

number of samples results in a large bias towards positive

or negative constraints, resulting in relatively poor feature

selection. This can be alleviated by balancing the number

of positive and negative constraints.

Overall, the proposed feature selection method, using

both group-LASSO and LASSO, results in a vocabulary

pruning of about 75-80%, on average for two-class prob-

lems. Larger number of classes may retain larger fraction of

key-points. Since the key-points are clustered using a larger

number of images than those considered for each clustering

task, one might observe that there are naturally irrelevant

key points for each task. However, that is not the case. In

almost all the clustering tasks, most of all the visual key-

words are observed.

6. Summary and conclusions

An online algorithm is presented for pruning the vocab-

ulary in image analysis tasks that use bag of words repre-

sentation. Online algorithms are computationally efficient

since they learn incrementally. Vocabulary pruning aids in

representing images using smaller feature vectors, which

naturally reduces the computation time required for sub-
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Task Proposed Baseline

# Group LASSO LASSO(L1) POLA(L2)

1 1148 509 1263 91 4929 187

2 986 449 1082 113 4982 30

3 1133 602 1204 310 4995 2

4 816 372 1170 82 4994 2

5 682 536 943 64 4834 473

6 1134 363 1156 124 4991 4

7 1283 537 1268 102 4996 2

8 1050 446 1213 124 4799 616

9 682 377 971 100 4943 163

10 1118 435 1092 45 4994 2

11 790 336 1025 92 4985 23

12 495 198 847 245 4921 215

13 999 377 1180 92 4978 34

14 729 391 940 55 4992 9

15 665 347 969 84 4982 37

Table 2. Mean and standard deviation of the number of visual

words (from a total of 5,000) selected by the proposed LASSO

and Group-LASSO method vs the L2 DML algorithm. POLA is

not a feature selection technique, and hence learns the weights for

all the features. The batch mode forward search algorithm always

selected 150 features, and hence is not reported in the table. The

tasks are defined in Table 1

.

sequent clustering, classification or retrieval. The quality

of pruned vocabulary is evaluated using a clustering task,

and is comparable to that of batch learning algorithms. A

controlled study was performed to evaluate the merits of

the proposed algorithm. Although the proposed algorithm

is evaluated on visual vocabulary pruning task, it is appli-

cable to other feature selection tasks as well. Real world

applications may derive the pairwise constraints automati-

cally from auxiliary information (e.g. text in web pages),

where one may also be able to exploit the degree of relation

between images.
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