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Abstract. Mixture models have been widely used for data clustering.
However, commonly used mixture models are generally of a parametric
form (e.g., mixture of Gaussian distributions or GMM), which signifi-
cantly limits their capacity in fitting diverse multidimensional data dis-
tributions encountered in practice. We propose a non-parametric mixture
model (NMM) for data clustering in order to detect clusters generated
from arbitrary unknown distributions, using non-parametric kernel den-
sity estimates. The proposed model is non-parametric since the genera-
tive distribution of each data point depends only on the rest of the data
points and the chosen kernel. A leave-one-out likelihood maximization is
performed to estimate the parameters of the model. The NMM approach,
when applied to cluster high dimensional text datasets significantly out-
performs the state-of-the-art and classical approaches such as K-means,
Gaussian Mixture Models, spectral clustering and linkage methods.

1 Introduction

Data clustering aims to partition a given set of n objects represented either as
points in a d dimensional space or as an n×n similarity matrix. The lack of a uni-
versal definition of a cluster, and its task or data dependent nature has resulted
in publication of a very large number of clustering algorithms, each with different
assumptions about the cluster structure [1]. Broadly, the proposed approaches
can be classified into parametric vs. non parametric approaches. Parametric ap-
proaches impose a structure on the data, where as non-parametric methods infer
the underlying structure from the data itself.

Probabilistic finite mixture modeling [2,3] is one of the most popular para-
metric clustering methods. Several probabilistic models like Gaussian Mixture
Model (GMM) [3] and Latent Dirichlet Allocation [4] have been shown to be
successful in a wide variety of applications concerning the analysis of continu-
ous and discrete data, respectively. Probabilistic models are advantageous since
they provide principled ways to address issues like the number of clusters, miss-
ing feature values, etc. Parametric mixture models are effective only when the
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underlying distribution of the data is either known, or can be closely approxi-
mated by the distribution assumed by the model. This is a major shortcoming
since it is well known that clusters in real data are not always of the same shape
and rarely follow a “nice” distribution like Gaussian [5]. In a general setting,
each cluster may follow its own unknown distribution, which limits the perfor-
mance of parametric mixture models. Similar shortcomings can be attributed
to squared error based clustering algorithms such as K-means, which is one of
the most popular clustering algorithms due to its ease of implementation and
reasonable empirical performance [1].

The limitations of parametric mixture models can be overcome by the use of
algorithms that exploit non-parametric density estimation methods. Several non-
parametric clustering algorithms, for instance, Jarvis-Patrick [6], DBSCAN [7]
and Mean-shift [8], have been proposed 1. These methods first find a single
kernel-density estimate of the entire data, and then detect clusters by identify-
ing modes or regions of high density in the estimated density [8]. Despite their
success, most of these approaches are not always successful in finding clusters
in high-dimensional datasets, since it is difficult to define the neighborhood of a
data point in a high-dimensional space when the available sample size is small [9].
For this reason, almost all non-parameteric density based algorithms have been
applied only to low-dimensional clustering problems such as image segmenta-
tion [8,10]. Further, it is not possible to a priori specify the desired number of
clusters in these methods.

In this paper, we assume that each cluster is generated by its own density
function that is unknown. The density function of each cluster may be arbitrary
and multimodal and hence it is modeled using a non-parametric kernel density
estimate. The overall data is modeled as a mixture of the individual cluster
density functions. Since the proposed approach, unlike other non-parametric
algorithms (e.g., Spectral clustering), constructs an explicit probabilistic model
for each cluster, it can naturally handle out-of-sample2 clustering by computing
the posterior probabilities for new data points. In summary, we emphasize that:

– The proposed approach is a non-parametric probabilistic model for data clus-
tering, and offers several advantages compared to non-probabilistic models
since (a) it allows for probabilistic assignments of data points to different
clusters, unlike other non-parametric models (b) it can effectively explore
probabilistic tools such as Dirichlet process and Gaussian process for non-
parametric priors, and (c) the model naturally supports out of sample cluster
assignments, unlike other non-parametric models.

– Contrary to most existing mixture models, the proposed approach does not
make any explicit assumption about the parametric form of the underlying
density function, and can model clusters following arbitrary densities.

1 Although spectral clustering and linkage methods can be viewed as non-parametric
methods, they are not discussed since they are not probabilistic models.

2 A clustering algorithm can perform out-of-sample clustering if it can assign a cluster
label to a data point unseen during the learning phase.



We show the performance of the proposed clustering algorithm on high-dimensional
text datasets. Experiments demonstrate that, compared to several widely used
clustering algorithms such as K-means and Spectral clustering, the proposed al-
gorithm performs significantly better when data is of high dimensionality and is
embedded in a low dimensional manifold.

2 Non-parametric mixture model

2.1 Model description

Let D = {x1, . . . , xn} be a collection of n data points to be clustered, where
each xi ∈ R

d is a vector of d dimensions. Let G be the number of clusters.
We aim to fit the data points in D by a non-parametric mixture model. Let
κ(·, ·) : R

d × R
d → R be the kernel function for density estimation. We further

assume that the kernel function is stationary, i.e., κ(xi, xj) = κs(xi −xj), where
∫

κs(x)dx = 1. We denote by the matrix K = [κ(xi, xj)]n×n ∈ R
n×n
+ the pairwise

kernel similarity for data points in D.
Let {cg}, g = 1, . . . , G be the set of G clusters that forms a partition of D.

We specify the conditional density function pg(x|cg,D) for each cluster cg as
follows:

pg(x|cg,D) =
1

|cg|

∑

xi∈cg

κ(x, xi) (1)

where |cg| is the number of samples in cluster cg, and
∑

g |cg| = n. The uncon-
ditional (on clusters) density p(x|D) is then written as

p(x|D) =

G
∑

g=1

πgpg(x|cg,D) (2)

where πg = P (cg) is the mixture coefficient for cluster cg. We generalize the
cluster conditional density p(x|cg,D) in (1) by considering soft cluster participa-
tion, i.e each data point xi contributes qg

i ∈ [0, 1] to the kernel density estimate
of the cluster cg.

pg(x|cg,D) =

n
∑

i=1

qg
i κ(xi, x),where

n
∑

i=1

qg
i = 1. (3)

We refer to qg = (qg
1 , . . . , qg

n) as the profile vector for cluster cg, and Q =
(q1, . . . , qG) as the profile matrix. The objective of our clustering model is to
learn the profile matrix Q for data set D. We emphasize that due to the normal-
ization step, i.e.,

∑n

j=1 qg
j = 1, qg

j can no longer be interpreted as the probability
of assigning xj to cluster cg. Instead, it only indicates the relative importance
of xj to the density function for cluster cg. The density function in (3) is also
referred to as the density estimate in “dual form” [11].



Algorithm 1 [Q,Γ ] = NonParametricMixtureFit(D, G, λ, σ)

Input: Dataset D, no. of clusters G, parameters λ and σ

Output: Cluster labels Γ and the profile matrix Q

1: Compute the kernel matrix K for the points in D with bandwidth σ. Normalize K

such that
P

j
Kij = 1.

2: Set the iteration t← 0.

3: Initialize Q(t) ← Q0, such that Q0 < 0, QT
0 1n = 1G.

4: repeat

5: t← t + 1;
6: Compute the γ

g
i using Eq (9)

7: By fixing the values of γ
g
i , obtain Q(t) by minimizing Eq (7).

8: ∆Q← Q(t) −Q(t−1).
9: until ||∆Q||22 ≤ ǫ, (ǫ is pre-set to a desired precision)

10: return Q, Γ

2.2 Estimation of profile matrix Q

To estimate the profile matrix Q, we follow the idea of maximum likelihood, i.e.,
find the matrix Q by solving the optimization problem maxQ

∑n

i=1 log p(xi|D).
One major problem with this approach is that, when estimating p(xi|D), xi

is already an observed data point in D that is used to construct the density
function P (xi|D). As a result, simply maximizing the likelihood of data may
lead to an overestimation of the parameter Q, a problem that is often referred
to as overfitting in machine learning [12]. We resolve this problem by replacing
p(xi|D) with its leave-one-out (LOO) estimate [13].

Let pi(xi|cg,D−i) be the LOO conditional probability for each held out sam-
ple xi, conditioned on the clusters and the rest of the data:

pi(xi|cg,D−i) =
1

∑n

j=1(1 − δj,i)q
g
j

n
∑

j=1

(1 − δj,i)q
g
j Ki,j , (4)

where D−i = D\{xi} denotes the subset of D that excludes sample xi. Using the
LOO cluster conditional probability pi(xi|cg,D−i), we further define the LOO
unconditional (on cluster) density for each held out sample xi as follows:

pi(xi|D−i) =

G
∑

g=1

γg
i pi(xi|cg,D−i). (5)

where γg
i = P (cg|D−i), and

∑

g γg
i = 1,∀i = 1, . . . , n. Note that unlike the mix-

ture model in (2) where the same set of mixture coefficients {πg}
G
g=1 is used for

any xi, the mixture coefficients {γg
i }

G
g=1 depend on sample xi, due to the leave-

one-out estimation. We denote by γi = (γ1
i , · · · , γG

i ) and Γ = (γ1, . . . , γn)⊤ ∈
R

n×G
+ .



To improve the robustness of estimation, we introduce a Gaussian prior for
profile matrix Q, i.e.,

p(Q) ∝ exp

(

−λ
∑

i

∑

g

[qg
i ]2

)

, (6)

where λ is a hyperparameter that will be determined empirically. For notational
convenience, we set Ki,i = 0 in Eq (4). Now, using the condition

∑n

i=1 qg
i = 1,

the LOO log-likelihood of data, denoted by ℓLOO(D;Q,Γ ), can be expressed as
follows

ℓLOO(D;Q,Γ ) = log p(Q) +

n
∑

i=1

log pi(xi|D−i)

= −λ
n
∑

i=1

G
∑

g=1

(qg
i )

2
+

n
∑

i=1

log

(

∑

g

γg
i

∑n

j=1 Ki,jq
g
j

1 − qg
i

)

. (7)

The parameters in the above simplified model are γg
i and qg

i , for i = 1, · · · , n
and g = 1, · · · , G. They are estimated by maximizing the LOO log-likelihood
ℓLOO(D;Q,Γ ). The optimal values of Q and Γ can be obtained by solving the
following optimization problem:

{Q∗, Γ ∗} = arg max
Q,Γ

ℓLOO(D;Q,Γ ) (8)

The optimization procedure is described in the following section.

2.3 Optimization methodology

To determine the optimal values of Γ and Q that maximize the log-likelihood in
Eq (8), we apply an alternating optimization strategy [14]. At each iteration, we
first optimize Γ with fixed Q, and then optimize Q with fixed Γ , as summarized
below. For a fixed Q, the LOO log-likelihood of a sample xi is maximized when

γg
i = δ(g, arg max

g′

pi(xi|cg′ ,D−i)). (9)

The variable γg
i is closely related to the posterior distribution Pr(cg|xi), and

therefore can be interpreted as the cluster label of the i-th sample, i.e., γg
i = 1

if xi ∈ cg and 0, otherwise.
It is difficult to directly optimize the log-likelihood in Eq (7) with respect

to Q. Therefore, we minimize a convex variational upper bound on the negative
log-likelihood for efficient inference. At each iteration, we maintain a touch point
between the bound and the negative log-likelihood function, which guarantees
convergence to at least a local minima [15]. The procedure for finding Q and Γ
that maximize the log-likelihood in Eq (7) is summarized in Algorithm 1. Upon
convergence, the value of γi determines the cluster label for xi.
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Fig. 1. Illustration of the non-parametric mixture approach and Gaussian mix-
ture model (GMM) on the “two-moon” dataset. (a) Input data with two clusters.
(b) Gaussian mixture model with two components. (c) and (d) the iso-contour
plot of non-parameteric estimates of the class conditional densities for each clus-
ter. The warmer the color, the higher the probability.

2.4 Implementation details

Normalization is one of the key issues in kernel density estimation. Conven-
tionally, the kernel function is normalized over the entire domain of the data,
κσ(x) = (πσ)−d exp

(

−||x||2/2σ2
)

. However, the σ−d term may be close to 0
(σ < 1) or be very large (σ > 1). This may cause serious numerical problems
in density estimation for high-dimensional data (large values of d) with small
sample size. To overcome this problem, we normalize the kernel matrix such that
each row sums to 1, i.e.

∑

j Ki,j = 1. This nullifies the effect of dimension on
the estimation process, and therefore is useful in handling sparse datasets.

The heuristic used in spectral clustering [16] to select the value for σ is also
effective in estimating kernel width. Empirical results show that the clustering
performance is not very sensitive to the choice of the kernel width σ. The pa-
rameter λ also is not very critical and is chosen to be sufficiently small; in all
of our experiments we choose λ = 10−4, which results in mild smoothing of
the qg

i values, and avoids any numerical instability in the algorithm due to the
logarithm. The number of variables to be solved for is of O(nG), similar to that
of spectral clustering. On the other hand, Gaussian mixture models solve for
O(d2) number of variables which is large, especially for high-dimensional sparse

datasets (specifically when (n + 1)G <
(

dG + d(d+1)
2

)

, as shown in Table 1).

3 Results and discussion

The proposed non-parametric mixture fitting algorithm is evaluated on text
datasets derived from the 20-newsgroups3 dataset [17].

3.1 Baseline methods

The proposed non-parametric mixture algorithm is compared with three classes
of well known clustering algorithms: (a) K-means and Gaussian mixture model

3 http://people.csail.mit.edu/jrennie/20Newsgroups/
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(a) NMM (b) K-means (c) Spectral
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Fig. 2. Illustration of the non-parametric mixture approach, K-means and spec-
tral clustering on the example dataset from [18]. Input data contains 100 points
each from three spherical two-dimensional Gaussian clusters with means (0,0),
(6,0) and (8,0) and variances 4I2,0.4I2 and 0.4I2 respectively. Spectral clustering
and NMM use σ = 0.95. (a) NMM (b) K-means (c) Spectral clustering. Plots
(d)-(f) show the cluster-conditional densities estimated by the proposed NMM.

(GMM) with diagonal and full covariance matrices, (b) one kernel-based algo-
rithm: NJW spectral clustering [19], and (c) three non-parametric hierarchical
clustering algorithms: Single Link, Complete Link and Average Link. For (a) and
(c), we use the implementations from the Matlab’s Statistics Toolbox. For the
linkage based methods, the number of clusters is externally specified. We chose
the state-of-the-art spectral clustering algorithm implementation based on [19].
Each algorithm is run 10 times and the mean performance value is reported in
Table 1, with the best performance shown in bold face. Comparison with Mean-
shift, or related algorithms is difficult as the datasets are high-dimensional and
further, it is not possible to specify the number of clusters in these algorithms.
Since the number of dimensions is greater than the number of data points, GMM
is not succesful for this data.

At each run, the proposed algorithm, K-means and Spectral clustering were
initialized with 5 different starting points; only the best performance is reported.
Due to the space limitation, we only show the best performance among the
three hierarchical linkage based algorithms, without specifying which algorithm
achieved it.

3.2 Synthetic Datasets

The proposed algorithm aims at identifying clusters of arbitrary shapes, while es-
timating their conditional density. Figure 1 illustrates the performance of NMM



Table 1. Mean pairwise F1 value for different clustering algorithms over 10 runs
of each algorithm on eight high-dimensional text datasets. The kernel width is
chosen as the 5th percentile of the pairwise Euclidean distances for Kernel based
algorithms. The best performance for each dataset is shown in bold. The name
of the dataset, number of samples (n), dimensions (d), and the number of target
clusters (G) are shown in the first 4 columns, respectively. The last column shows
the best F1 value achieved by Single (S), Complete (C) and Average (A) link
algorithms.

Proposed K-means NJW-Spec Linkage

Dataset n d G max(S,C,A)

cmu-different-1000 2975 7657 3 95.86 87.74 94.37 40.31
cmu-similar-1000 2789 6665 3 67.04 49.86 45.16 37.28

cmu-same-1000 2906 4248 3 73.79 49.40 48.04 30.01
cmu-different-100 300 3251 3 95.27 79.22 87.47 75.74
cmu-similar-100 288 3225 3 50.89 40.10 38.35 43.82

cmu-same-100 295 1864 3 48.97 44.85 46.99 41.79
cmu-classic300 300 2372 3 85.32 86.32 86.02 80.61
cmu-classic400 400 2897 3 61.26 60.13 51.01 53.31

on a dataset not suitable for GMM. Figure 1(a) shows the input data. Figure 1(b)
is shown to contrast the proposed non-parametric mixture approach against the
parametric Gaussian mixture model (GMM) with the number of mixture com-
ponents set to two. Figures 1(c) and (d) show the class conditional densities for
each of the two clusters. The proposed algorithm is able to recover the under-
lying clusters, as well as estimate the associated conditional densities, which is
not possible for GMM as shown in Figure 1(b).

Figure 2 illustrates the performance of the proposed algorithm on a dataset
that is known to be difficult for spectral clustering [18]. Both K-means and
spectral clustering fail to recover the clusters due to the difference in the variance
of the spherical clusters. The proposed algorithm however, is purely local, in that
the cluster label of a point is affected only by the cluster labels of neighboring
points. The clusters, therefore, are recovered nearly perfectly by the proposed
algorithm as shown in Figure 2(a) and the cluster conditional densities are shown
in Figures 2(d)-(f).

3.3 Text Datasets

We use eight high dimensional text datasets to show the efficacy of the algorithm.
These datasets are popularly used in document clustering [20].

Table 1 shows that the proposed non-parametric mixture (NMM) algorithm
performs significantly better (paired t-test, 95% confidence) than the other clus-
tering methods on all the high dimensional text datasets, except for cmu-classic-300,
where its performance is slightly inferior to K-means. Since the datasets are high-
dimensional, and non-spherical, the proposed approach outperforms K-means on
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Fig. 3. Performance of the non-parametric mixture model on three text datasets,
with varying value of the percentile (ρ) for choosing the kernel bandwidth (σ).
The proposed algorithm is compared with NJW (Spectral clustering), K-means
and the best of three linkage based methods.

most of the datasets. Spectral clustering considers only the top G − 1 eigenvec-
tors for clustering a dataset into G clusters; the superior performance of the
proposed NMM can be attributed to its utilization of the complete kernel ma-
trix without discarding any portion of it. These datasets could not be clustered
by GMM (Gaussian mixture models) since they are prone to numerical esti-
mation problems when the number of dimensions is larger than the number of
samples.

3.4 Sensitivity to parameters:

There are two parameters in the non-parametric mixture clustering algorithm:
the regularizer weight λ and the kernel width σ. The parameter σ is set to the
ρth percentile of the pairwise Euclidean distances among the data points. A use-
ful range for ρ is 5-10%, as suggested in [16]. Figure 3 shows the performance
of the proposed algorithm in comparison to K-means, spectral clustering and
hierarchical clustering on three text datasets. These plots show that there exists
a wide range of kernel bandwidth values for which the proposed algorithm per-
forms significantly better than the competing methods. For some datasets (e.g.,
Different-100 and Classic-400), the algorithm is more stable compared to that of
other datasets. We observed that the algorithm is not sensitive to the value of
λ, over the range (10−4, 104). While the performance is the same for almost all
the values of λ, the parameter λ does play a role in determining the sparsity of
the profile matrix. As λ increases, the profile of data points between the clusters
tends to get smoother. The key role of λ is to provide numerical stability to the
algorithm.

4 Conclusions and future work

We have proposed a non-parametric mixture model for data clustering. It is a
probablistic model that clusters the data by fitting a kernel density estimate to
each cluster. Experimental results show that the non-parametric mixture model



based clustering outperforms some of the well known clustering algorithms on
the task of document clustering, which can be characterized as high dimensional
sparse data. The non-parametric mixture model opens up a wide range of possi-
ble theoretical analysis related to clustering, which is a part of our ongoing work.
Automatic kernel bandwidth selection, scalability of the algorithm and applica-
tion to other sparse data domains (e.g., bioinformatics) are possible extensions.
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