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Abstract—Data clustering is an important task and has
found applications in numerous real-world problems. Since
no single clustering algorithm is able to identify all different
types of cluster shapes and structures, ensemble clustering was
proposed to combine different partitions of the same data
generated by multiple clustering algorithms. The key idea of
most ensemble clustering algorithms is to find a partition that
is consistent with most of the available partitions of the input
data. One problem with these algorithms is their inability to
handle uncertain data pairs, i.e. data pairs for which about
half of the partitions put them into the same cluster and the
other half do the opposite. When the number of uncertain
data pairs is large, they can mislead the ensemble clustering
algorithm in generating the final partition. To overcome this
limitation, we propose an ensemble clustering approach based
on the technique of matrix completion. The proposed algorithm
constructs a partially observed similarity matrix based on the
data pairs whose cluster memberships are agreed upon by most
of the clustering algorithms in the ensemble. It then deploys
the matrix completion algorithm to complete the similarity
matrix. The final data partition is computed by applying an
efficient spectral clustering algorithm to the completed matrix.
Our empirical studies with multiple real-world datasets show
that the proposed algorithm performs significantly better than
the state-of-the-art algorithms for ensemble clustering.
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I. INTRODUCTION

Although data clustering techniques have been success-
fully applied to many domains [14], [3], it still remains as
a challenging problem. Different clustering algorithms may
produce different results on the same data set, and no single
clustering algorithm is universally better than others for all
types of data [18]. Each clustering algorithm has its own
merits, as well as its own limitations. It is this observation
that motivated the development of ensemble clustering [34],
[12], also known as consensus clustering.

Many algorithms have been proposed for ensemble clus-
tering ([40] and references therein). Among them, one
popular group of approaches is based on the similarity (or
co-association) matrix. Approaches in this category first
compute a similarity (or co-association) matrix based on
multiple data partitions, where the similarity between any
two data points is measured by the percentage of partitions
in the ensemble that assign the two data points to the same
cluster. A similarity-based clustering algorithm (e.g., single

link and normalized cut) is then applied to the similarity
(or co-association) matrix to obtain the final partition of the
data. One issue that is often overlooked by the similarity-
based approaches is how to handle the uncertain data pairs,
i.e., the pairs of data points which have been assigned to the
same cluster by approximately half of the partitions in the
ensemble and assigned to different clusters by the other half.
When the number of the uncertain data pairs is large, they
can collectively mislead the ensemble clustering algorithm
to output an inappropriate partition of the data.

To address the issue of uncertain data pairs, we propose
a novel ensemble clustering approach based on the theory
of matrix completion [4]. Instead of assigning similarity
values to the uncertain data pairs, we construct a partially
observed similarity matrix that only includes reliable data
pairs whose similarities are agreed upon by most of the
partitions in the ensemble. We then deploy the matrix com-
pletion method to complete the partially observed similarity
matrix, and generate the final data partition by applying a
spectral clustering [5] to the completed similarity matrix. By
filtering out the uncertain data pairs, the proposed algorithm
is resilient to the noise in the data partitions, leading to a
more robust performance. To verify the effectiveness of the
proposed algorithm, we conduct studies on multiple real-
world datasets. Our results show that the proposed algorithm
outperforms both individual clustering algorithms and the
state-of-the-art ensemble clustering algorithms.

II. RELATED WORK

There are two key issues in developing an ensemble
clustering algorithm: (a) how to generate multiple partitions
of the data, and (b) how to combine multiple partition-
s/clusterings into a single data partition (i.e., consensus
partition). According to [13], multiple partitions can be
generated by (i) using different clustering algorithms [8],
[30], (ii) repeatedly sampling data points and creating parti-
tions for each sample [29], [38], and (iii) running the same
clustering algorithm several times with different parameters
or initialization, such as k-means [13], mixture models [36]
and hyper-planes [35], [7].

Many approaches have been developed to combine mul-
tiple partitions into a consensus partition. These approaches
can be classified into two categories [40]: median partition



based approaches and object co-occurrence based approach-
es. In the median partition based approaches, ensemble
clustering is cast into an optimization problem that finds the
best partition by maximizing the within-cluster similarity,
using similarity measures, such as Jaccard coefficient [1],
utility function [37] and normalized mutual information [34].
Since the median partition based approaches rely on the
similarity measure to determine the final partition, they can
be affected significantly by the problem of uncertain data
pairs as fined earlier.

The object co-occurrence ensemble clustering approach-
es can be further divided into three groups. The first
group is the relabeling/voting based methods [6], [10],
[39]. The basic idea is to first find the corresponding
cluster labels between different partitions, and then ob-
tain the consensus partition through a voting process. The
second group of approaches in this category is based on
co-association/similarity matrix [13], [25], [41]. They use
the similarity measure to combine multiple partitions, thus
avoiding the label correspondence problem. The third group
of approaches in this category is the graph based method-
s [34], [9]. They construct a weighted graph to represent
multiple partitions from the ensemble and find the optimal
partition of data by minimizing the graph cut. Similar to
the co-association/similarity matrix based approaches, these
approaches have to assign weights to the edges connecting
the uncertain data pairs, which could mislead the ensemble
clustering algorithms.

III. ENSEMBLE CLUSTERING BY MATRIX COMPLETION
(ECMC)

The key idea of the proposed algorithm is to first construct
a partially observed similarity matrix, where the entries
associated with the uncertain data pairs are marked as
unobserved. We then apply the matrix completion algorithm
to complete the partially observed similarity matrix by filling
in the unobserved entries. Finally, an efficient spectral clus-
tering algorithm is applied to the completed similarity matrix
to obtain the final clustering result. Below, we describe in
detail the two key steps of the proposed algorithm, i.e.,
the filtering step that removes the entries associated with
the uncertain data pairs from the similarity matrix, and the
matrix completion step that completes the partially observed
similarity matrix.

The notations described below will be used throughout the
paper. Let X = {x1,x2, . . . ,xn} be a set of n data points
to be clustered, where each data point xi ∈ Rd, i ∈ [n] is a
vector of d dimensions. Let P = {P1, P2, . . . , Pm} denote
a set of m individual partitions or clusterings (clustering
ensemble) for the dataset X . Each partition Pl, l ∈ [m],
called a component partition, divides X into r disjoint
subsets, where r is the number of clusters. For each Pl,
we define a similarity matrix M l ∈ Rn×n such that
M l

ij = 1 if data points xi and xj are assigned to the

same cluster in Pl, and 0 otherwise. Finally, given a subset
∆ ⊂ {(i, j), i, j = 1, . . . n}, we define a matrix projection
operator P∆ : Rn×n 7→ Rn×n that takes an matrix E as the
input and outputs a new matrix P∆(E) ∈ Rn×n as

[P∆(E)]ij =

{
Eij (i, j) ∈ ∆
0 otherwise (1)

A. Filtering Entries with Uncertain Data Pairs

The purpose of the filtering step is to identify the uncertain
data pairs, i.e., data pairs that are assigned to the same cluster
by close to half of the component partitions and to different
clusters by another half. Thus, the key to the filtering step
is to design an appropriate uncertainty measure. Given the
similarity matrix M l obtained from partition Pl, l ∈ [m],
we compute matrix A = [Aij ] ∈ Rn×n as the average
of {M l}ml=1, i.e., Aij = 1

m

∑m
l=1 M

l
ij . Since Aij ∈ [0, 1]

essentially measures the probability of assigning data points
xi and xj to the same cluster by the ensemble of m partitions
in P, it can be used as the basis for the uncertainty measure.
In particular, we define the set of reliable data pairs whose
labelings are agreed upon by the percentage of the partitions
in the ensemble as ∆ = {(i, j) ∈ [n]× [n] : Aij /∈ (d0, d1)},
where d0 < d1 ∈ [0, 1] are two thresholds that are deter-
mined empirically. We then construct the partially observed
similarity matrix Ã as follows

Ãij =

 1 (i, j) ∈ ∆, Aij ≥ d1

0 (i, j) ∈ ∆, Aij ≤ d0

unobserved (i, j) /∈ ∆.
(2)

By choosing a sufficiently large value for threshold d1

and a sufficiently small value for d0, we ensure that most
of the observed entries in Ã are consistent with the cluster
assignments for the corresponding data pairs.

B. Completing Partially Observed Matrix

After the filtering step, the partially observed similarity
matrix Ã contains three types of entries: 0, 1 and unob-
served. See Eq. 2. The second step of the algorithm is to
reconstruct the full similarity matrix M∗ ∈ Rn×n based on
the partially observed matrix Ã to fill in the unobserved
entries. For the matrix completion step, we need to make
several assumptions about the relationship between Ã and
M∗.

Our first assumption is about the observed entries in Ã.
It may appear to be reasonable to assume Ãi,j = M∗i,j for
every observed entry (i, j) ∈ ∆. However, this assumption
may not be satisfied since Ã is constructed from the cluster-
ing ensemble; due to errors in component partitions in the
ensemble, we expect Ã and M∗ to be different for a small
number of the observed entries in ∆. Thus, a more realistic
assumption to make is that Ãij = M∗ij for most of the
observed entries in ∆. We introduce the matrix N ∈ Rn×n

to capture the noise in Ã, i.e.,

P∆(M∗ + N) = P∆(Ã) (3)



where P∆ is a matrix projection operator defined in (1).
Under this assumption, we expect N to be a sparse matrix
with most of its entries being zero.

The assumption specified in condition (3) is not sufficient
to recover the full similarity M∗ as we can fill the unob-
served entries in M∗ with arbitrary values. An additional
assumption is needed to make it possible to recover the full
matrix from a partially observed one. To this end, we follow
the theory of matrix completion [4] by assuming the full
similarity matrix M∗ to be of low rank. Since, according
to [19], the rank of similarity matrix M∗ is the same as the
number of clusters, this is a natural assumption provided the
number of clusters is not too large.

Under these two assumptions, to recover the full similarity
matrix M∗ from the partially observed matrix Ã, we need
to decompose Ã into the sum of matrices N and M∗, where
N is a sparse matrix that captures the noise in Ã and M∗ is
a low rank matrix that gives the similarity between any two
data points. Thus, we can recover the true similarity matrix
M∗ by solving the following optimization problem

min
M,N

|M |∗ + C‖N‖1 (4)

s. t. P∆(M + N) = P∆(Ã).

where | · |∗ is trace norm and | · |1 is element-wise `1 norm.
We use inexact augmented Lagrangian algorithm [26] for
solving above optimization problem.

C. Parameter Selection

Two sets of parameters are used by the proposed algo-
rithm: thresholds d0 and d1 for constructing the partially
observed similarity matrix, and parameter C used in (5) to
complete the partially observed similarity matrix.

Two criteria are used in determining the values for d0

and d1 in (2). First, d0 (d1) should be small (large) enough
to ensure that most of the retained pairwise similarities are
consistent with the cluster assignments. Second, d0 (d1)
should be reasonably large (small) to obtain a sufficient
number of observed entries in the partially observed matrix
Ã. For all the data sets used in our empirical study, we set
d0 to 0.2 and d1 to 0.8.

Parameter C in (4) plays an important role in deciding the
final similarity matrix. Unlike supervised learning, where
parameters can be determined by cross-validation, no su-
pervised information is available for tuning the parameter
C, making it a challenging problem. Here, we present a
heuristic for determining C.

We assume that for most clustering problems, the data
points are roughly evenly distributed across clusters. Note
that a similar assumption was made in the normalized cut
algorithm [32]. Based on this assumption, we propose to
choose C that leads to a balanced distribution of data
points over different clusters. To this end, we measure the

imbalance of data distribution over clusters by computing
n∑

i,j=1

Mi,j = 1>M1,

where 1 is a vector of all ones. Our heuristic is to choose C
that minimizes 1>M1. The rationale behind the imbalance
measurement 1>M1 is the following: Let n1, · · · , nr be the
number of data points in the r clusters, where

∑r
k=1 nk = n.

Since 1>M1 =
∑r

k=1 n
2
k, without any further constraint,

the optimal solution that minimizes 1>M1 is ni = n/r, i =
1, . . . , r, the most balanced data distribution. Hence, 1>M1,
to a degree, measures the imbalance of data distribution over
clusters.

IV. EXPERIMENTS

In this section, we present an empirical evaluation of
the proposed ensemble clustering algorithm, i.e., Ensemble
Clustering by Matrix Completion (ECMC for short) on
several different data sets. In particular, we demonstrate
that our method performs consistently better than individual
clustering algorithms and it outperforms the state of the art
ensemble clustering algorithms.

A. Experimental Setup

Construction of the ensemble Our ensemble clustering
algorithm does not place requirements on how to generate
multiple partitions. However, to compare the performance
of our method with individual clustering algorithms, we use
the following seven well known clustering algorithms, to
generate component partitions (ensembles): K-means algo-
rithm (KM) [17], K-medoids algorithm (KMD) [21], Single
Link Hierarchical Clustering (SL) [33], Complete Link Hi-
erarchical Clustering (CL) [22], Average Link Hierarchical
Clustering (AL) [31], Fuzzy C-means algorithm (FCM) [2],
and Normalized Cut algorithm (NC) [32],
Datasets In order to examine the effectiveness of the pro-
posed ensemble clustering algorithm, six public domain
datasets are used in our evaluation. Details of these datasets
are given in Table I. Due to the high computational cost
of some of the component clustering algorithms, for several
large datasets (i.e. RCV1 and MNIST), only their subsets are
used in our study. Below, we briefly describe these datasets:
• USPS M5 We extract subsets of images from the USPS

handwritten dataset [15] to form the subset “USPS
M5”, which consists of the first five categories of USPS
dataset and has a total of 5, 427 images

• RCV1 M2. We extract a subset of text documents
from the RCV1 corpus [24] to form a subset “RCV1
M2”. It consists of 4, 923 instances which belongs to 2
categories “C15” and “GCAT”.

• MNIST4k. It contains 4, 000 images randomly selected
from the MNIST handwritten digits data set [23]. Each
image is a 784-dimensional vector that belongs to one
of 10 digit classes.



• Breast-Cancer, Segment, and Yeast datasets come from
the UCI data repository [11]. Among them, Breast-
Cancer is a two-class dataset consisting of 683 in-
stances. Segment contains 2, 310 instances that belong
to seven classes. Yeast has 1, 484 examples that are
grouped into ten classes.

Table I
DESCRIPTION OF DATASETS

Name #Instances #Features #Clusters
USPS M5 5,427 256 5
RCV1 M2 4,923 29,992 2
MNIST4k 4,000 784 10
Breast-Cancer 683 10 2
Segment 2,310 19 7
Yeast 1,484 8 10

Evaluation metrics Two well known metrics are used
to evaluate the clustering performance, namely normalized
mutual information (NMI) and pairwise F-measure. See [42]
for details about these two metrics.

All the experiments were conducted on a computer with
Intel Xeon 2.4 GHz processor and 8.0 GB of main memory,
running on Linux Ubuntu Operating System.

B. Comparison with Component Clustering Algorithms

We applied the proposed ECMC algorithm to construct
the consensus partition based on the partitions generated
by the seven clustering algorithms listed in Section IV-A.
Since some of the individual clustering algorithms (eg., K-
means, K-medoids, and Fuzzy C-means) involve random
initializations, we repeat the clustering algorithm five times.
The clustering performance averaged over these five trials
are reported in Table II.

The proposed ECMC algorithm outperforms every com-
ponent clustering algorithms on at least five of the six
datasets in Table 1. Further, the proposed ensemble method
performs significantly better than six of the seven component
clustering algorithms, including the K-means (KM), K-
medoids (KMD), single link (SL) clustering, complete link
(CL) clustering, average link (AL) clustering, and Fuzzy C-
means (FCM) algorithm on all the test datasets. For the data
set RCV1 M2, the normalized cut (NC) performs slightly
better than the proposed clustering algorithm. We believe
that this is because most of the clustering algorithms in the
ensemble perform poorly for this dataset. Since the objective
of ensemble clustering algorithm is to produce a consensus
partition that is consistent with most of the partitions,
the ensemble clustering algorithm performs poorly on this
dataset. Still, the performance of the proposed ensemble
clustering algorithm is only second to the best individual
clustering algorithm, namely NC, for the RCV1 M2 dataset,
indicating the robustness of the proposed algorithm in the
presence of poor data partitions in the ensemble.

C. Comparison with Other Ensemble Clustering Algorithms

Seven ensemble clustering algorithms are used as the
baseline in our study. They are:
• MCLA, CSPA and HPGA [34]. These algorithms

first transform multiple clusterings into a hypergraph
representation, and then apply a METIS [20] algorithm
to find the consensus partition.

• EAC-SL and EAC-AL [13]. These two algorithms first
construct a similarity matrix, and then apply single link
(SL) and average link (AL) algorithm , respectively, to
the similarity matrix to obtain the consensus partition.

• Ensemble Clustering based on Quadratic Mutual Infor-
mation (QMI) [35]. It searches for the consensus par-
tition by maximizing the mutual information between
the consensus partition and the ensemble partitions via
an EM algorithm.

• Divisive Clustering Ensemble with Automatic Cluster
Number (DiCLENS) [27]. It first computes the rela-
tionship between data partitions in the ensemble and
then derives the consensus partition by a minimum
spanning tree. The study in [27] showed that DiCLENS
delivers state-of-the-art performance in comparison to
several ensemble clustering algorithms, including sever-
al recently developed algorithms (e.g., link-based clus-
ter ensemble method (LCE) [16] and combining multi-
ple clusterings via similarity graph (COMUSA) [28]).

The code for all the baseline ensemble clustering algorithms
were provided by their respective authors and the reported
results are the average over five runs.

Table III summarizes the performance of the proposed
algorithm and the baseline algorithms for ensemble cluster-
ing. Compared to all the baseline algorithms, the proposed
algorithm yields the best performance on all the test datasets,
indicating that the proposed ensemble clustering algorithm
delivers state-of-the-art performance. Finally, by comparing
the results in Tables II and III, we observe that for every
baseline ensemble clustering algorithm, there exists at least
one dataset on which it performs dramatically worse than
the component clustering algorithms. For example, although
DiCLENS works well on several datasets, its clustering
accuracy for the Yeast dataset is worse than five out of seven
component clustering algorithms. This observation indicates
that the proposed algorithm is more robust compared to state
of the art ensemble clustering algorithms.

V. CONCLUSIONS

We have proposed a robust ensemble clustering algorithm.
The key idea is to filter out the data pairs whose co-
cluster memberships computed based on the component
partitions are not reliable. We only use the reliable data
pairs in constructing a partially observed similarity matrix.
A matrix completion algorithm is employed to complete the
partially observed similarity matrix, and a spectral clustering



Table II
AVERAGE CLUSTERING PERFORMANCE OF THE PROPOSED ENSEMBLE CLUSTERING ALGORITHM (ECMC) AND THE COMPONENT CLUSTERING

ALGORITHMS K-MEANS (KM), K-MEDOIDS (KMD), SINGLE-LINK (SL), COMPLETE-LINK (CL), AVERAGE-LINK (AL), FUZZY C-MEANS (FCM),
AND NORMALIZED CUT (NC)

Datasets ECMC KM KMD SL CL AL FCM NC

USPS M5 NMI 0.693 0.687 0.485 0.017 0.445 0.024 0.663 0.690
PWF 0.704 0.697 0.526 0.351 0.499 0.352 0.685 0.700

RCV1 M2 NMI 0.731 0.029 0.541 0.010 0.063 0.013 0.651 0.778
PWF 0.907 0.686 0.835 0.681 0.647 0.680 0.865 0.933

MNIST4k NMI 0.518 0.480 0.310 0.025 0.279 0.013 0.273 0.505
PWF 0.496 0.437 0.296 0.182 0.220 0.182 0.290 0.453

Breast-Cancer NMI 0.519 0.045 0.511 0.056 0.467 0.024 0.503 0.510
PWF 0.794 0.701 0.789 0.702 0.775 0.704 0.778 0.788

Segment NMI 0.540 0.025 0.485 0.039 0.350 0.031 0.515 0.528
PWF 0.498 0.249 0.457 0.249 0.317 0.249 0.437 0.486

Yeast NMI 0.277 0.223 0.210 0.067 0.189 0.079 0.247 0.268
PWF 0.334 0.301 0.243 0.311 0.322 0.327 0.259 0.266

Table III
AVERAGE CLUSTERING PERFORMANCE OF THE PROPOSED ENSEMBLE CLUSTERING ALGORITHM (ECMC) AND THE BASELINE ENSEMBLE

CLUSTERING ALGORITHMS (MCLA, CSPA, HPGA, EAC-SL, EAC-AL, QMI, DICLENS) ON NINE DATASETS

Datasets ECMC MCLA CSPA HPGA EAC-SL EAC-AL QMI DiCLENS

USPS M5 NMI 0.693 0.685 0.591 0.363 0.175 0.612 0.678 0.688
PWF 0.704 0.696 0.623 0.352 0.328 0.619 0.693 0.694

RCV1 M2 NMI 0.731 0.288 0.618 0.467 0.595 0.589 0.717 0.705
PWF 0.907 0.620 0.832 0.680 0.801 0.795 0.899 0.806

MNIST4k NMI 0.518 0.025 0.475 0.172 0.035 0.504 0.469 0.459
PWF 0.496 0.182 0.443 0.183 0.188 0.449 0.436 0.424

Breast-Cancer NMI 0.519 0.501 0.489 0.382 0.442 0.418 0.510 0.512
PWF 0.794 0.775 0.748 0.705 0.735 0.697 0.782 0.789

Segment NMI 0.540 0.024 0.502 0.387 0.415 0.530 0.537 0.349
PWF 0.498 0.198 0.480 0.249 0.312 0.418 0.479 0.317

Yeast NMI 0.277 0.113 0.161 0.106 0.092 0.271 0.202 0.089
PWF 0.334 0.315 0.191 0.304 0.306 0.203 0.218 0.261

algorithm is applied to the completed similarity matrix to
obtain the final partition or the clustering result. Empirical
studies show that the proposed method (i) performs better
than both component (individual) clustering algorithms and
the state-of-the-art algorithms for ensemble clustering. Our
ongoing effort is to improve the efficiency of our algorithm
to make it scalable to large datasets.
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