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Abstract

Prevailing user authentication schemes on smartphones
rely on explicit user interaction, where a user types in a
passcode or presents a biometric cue such as face, finger-
print, or iris. In addition to being cumbersome and ob-
trusive to the users, such authentication mechanisms pose
security and privacy concerns. Passive authentication sys-
tems can tackle these challenges by unobtrusively monitor-
ing the user’s interaction with the device. We propose a
Siamese Long Short-Term Memory (LSTM) network archi-
tecture for passive authentication, where users can be ver-
ified without requiring any explicit authentication step. On
a dataset comprising of measurements from 30 smartphone
sensor modalities for 37 users, we evaluate our approach on
8 dominant modalities, namely, keystroke dynamics, GPS
location, accelerometer, gyroscope, magnetometer, linear
accelerometer, gravity, and rotation sensors. Experimen-
tal results find that a genuine user can be correctly verified
96.47% a false accept rate of 0.1% within 3 seconds.

1. Introduction

The Digital Age has ushered in a large number of de-
vices that store and generate information. Among these de-
vices, smartphones are the most widely used [36]. An in-
teresting phenomenon has been observed in the smartphone
age, where users appreciate the convenience of services at
their fingertips and implicitly store more and more valuable
and private data, e.g., banking and payment details, health
records, etc. This has inadvertently sparked a community of
hackers that dedicate their time and effort to gain access to
smartphones in order to steal sensitive data [39]. Therefore,
securing access to mobile devices by authenticating users is
of utmost importance.

∗Smartphones are multi-purpose mobile computing devices with strong
hardware capabilities and extensive mobile operating systems, facilitating
wide internet and multimedia functionalities [47].

Figure 1: Authentication on smartphones by exploiting sen-
sorial data has become an active field of research due to the
growing number of available sensors in smartphones. We
show 8 dominant modalities used in our passive authentica-
tion.

Current authentication schemes on mobile platforms re-
quire explicit user interaction with the device, referred to
as explicit authentication, in order to gain access to it. The
entry point for device access is typically a passcode or a bio-
metric cue such as face, fingerprints or iris [5]. Passwords
and PINs have long been viewed as the pinnacle of secur-
ing information and controlling access to mobile devices.
However, these knowledge-based authentication schemes
are prone to social engineering hacks, guessing and over-
the-shoulder attacks [16]. With recent advances in technol-
ogy, smartphones are getting better at authenticating users
by learning their biological traits, such as face, fingerprint,
or iris, which are believed to be unique to individuals [27].
Since these traits are innate to an individual, they are re-
garded as more reliable than knowledge-based authentica-
tion schemes. On the downside, biometric authentication
raises privacy concerns related to how one’s biometric data
will be stored and protected. In addition, spoof attacks at the
biometric sensor level [40], and possible theft of biometric
templates stored inside the device, are among the growing



concerns related to biometric-based authentication.
Although the use of explicit authentication schemes is

widespread, they are both cumbersome and obtrusive as the
user needs to actively focus on the authentication step be-
fore utilizing the device. For instance, an average user un-
locks their phone around 80 times a day [9], which can be
a source of frustration even for the most avid of users. It is
also estimated that, on average, a smartphone user spends
over 4 hours per day on their device [23]. Unsurprisingly,
more and more users prefer to set simple and weak pass-
words, increase the inactive period for lock-out time, or
disable the authentication step completely [35], [44]. In
addition, PIN codes, passwords, and biometric scans are
well-suited for one-time authentication but are not effective
in detecting intrusion after successful authentication by the
genuine user when unlocking the phone. Passive authenti-
cation systems tackle these challenges by providing an ad-
ditional layer of security by frequently and unobtrusively
monitoring the user’s interaction with the device. In this
paper, we propose a passive user authentication scheme for
smartphones where users are not required to participate in
any explicit authentication step.

The first and foremost difficulty in designing user au-
thentication schemes for smartphones lies in gathering data
from the wide array of sensors available in a smartphone, as
well as from a variety of users. Smartphone users today are
becoming more sensitive to their privacy and more aware of
spywares, which may avert potential users from providing
their data. In this paper, we acquired a dataset compris-
ing of measurements from 30 sensor modalities in Android
phones they normally use for 37 users.

Besides data collection, a major challenge in designing
a robust passive authentication system for smartphones in-
volves extracting robust features from noisy1 data. In ad-
dition, the robustness and accuracy of the authentication
scheme needs to be thoroughly evaluated and inference
should be performed in real-time. On average, a smartphone
user’s session lasts for just 72 seconds [33] and, therefore,
the time required to authenticate the user should be as small
as possible. It merely takes around 1.2 and 0.91 seconds
to unlock an iPhone using FaceID and TouchID, respec-
tively [1].

We propose a Siamese Long Short-Term Memory
(LSTM) architecture for extracting deep temporal features
from the data corresponding to a number of passive sensors
in smartphones for user authentication.

Concisely, the contributions of the paper are as follows:

• Proposed a passive user authentication method based
on keystroke dynamics, GPS location, accelerometer,
gyroscope, magnetometer, linear accelerometer, grav-

1Smartphone sensors are prone to provide time-variant sources of noise
leading to inaccurate measurements [24].

ity, and rotation modalities that can unobtrusively ver-
ify a genuine user with 96.47% TAR at 0.1% FAR
within 3 seconds.

• Acquired a dataset comprising of measurements from
30 different smartphone sensors for 37 users around
the world. An Android application was designed to
log data unobtrusively from the users’ smartphones.

• Analyzed changes in accuracy when (1) multiple
modalities are fused, and (2) authentication time is var-
ied. Increasing the number of fused modalities boosts
the accuracy, whereas the TAR at 0.1% FAR drops
from 99.87% to 96.47% for authentication times of 10
and 3 seconds, respectively.

2. Related Work
2.1. Passive Smartphone Authentication

Currently, there are around 2.5 billion active smartphone
users in the world [45]. With this increasing number, ac-
curate, fast and robust authentication on smartphones has
become an active area of research. Early work on passive
smartphone authentication was based on touchscreen anal-
ysis [19], [30]. Frank et al. proposed a classification frame-
work, namely Touchalytics, and achieved an EER of 4% on
a dataset comprising of 41 users using touchscreen input
data [21]. An obvious limitation of touchscreen recognition
for passive authentication is the requirement of substantial
explicit input from the user.

Smartphones today are shipped with an array of sensors
(see Figure 1). A topic of increasing number of studies has
focused on passive smartphone authentication via motion
sensors. For instance, Derawi et al. investigated authenti-
cating users based on their gait patterns [18] and achieved
an equal error rate of 20.1%. In [32], the authors proposed a
continuous motion-based authentication system using data
from accelerometer and gyroscope sensors and obtained an
EER of 18.2%. These high error rates do not meet smart-
phone security requirements.

2.2. Multimodal Biometric Systems

Most of the passive authentication studies have focused
on a single sensing modality for authentication. Authenti-
cating a user on their smartphone based on a single biomet-
ric modality becomes very challenging when the authenti-
cation time window is short. In addition, given the task the
user is engaged in, the amount of data and the availability of
different sensor modalities fluctuates. A robust passive au-
thentication scheme must be able to adapt to the high intra-
user variability observed in human-smartphone interaction.

Sitova et al. introduced a multimodal approach to pas-
sive smartphone authentication via accelerometer, gyro-
scope, and touch-screen observations [43]. Using a one-
class SVM classifier, an EER of 7.16% was achieved;



Table 1: A few related work on multimodal passive smartphone authentication.

Study Modality Dataset Statistics Classifier Accuracy Auth. Time*

HMOG [43] Movement, tap, keys 100 users, 24 sessions† Scaled Euclidean EER 7.16% 60-120 seconds

Hold and Sign [8] Movement, signature 30 users† Multilayer Perceptron 95% TAR @ FAR = 3.1% 235 seconds

Touchalytics [21] Touch gestures 41 users† kNN, SVM EER 3.0% 11-43 seconds

Mahbub et al. [31] Movement and others 48 users for 2 months Hidden Markov Model Accuracy 96.6% N/A

Fridman et al. [22] Stylometry, app &
web usage, GPS

200 users for 5 months SVM, n-gram EER 5.0% 60 seconds

This study 8 modalities in Table 2 37 users for 15 days Siamese LSTM 96.47% TAR @ FAR=0.1% 3 seconds

TAR = true accept rate; FAR = false accept rate; EER = equal error rate
† No time span available for this study
* Time required before authentication

however, the authors deferred real-world scenarios, such
as investigating authentication accuracy when the user
is not engaged in typing, to future work. Authentica-
tion in a continuous setting has been studied in the past.
Specifically, for smartphones, continuous authentication
performance for touch gestures have been widely stud-
ied [48], [17], [21], [2], [20], [38], [11]. Keystroke dynam-
ics is also another popular modality for studying continu-
ous authentication on mobile phones [13], [12], [7], how-
ever, the devices used in these studies have a hardware
keyboard for interfacing with the device and not a touch-
based keyboard. Frank et al. and Serwadda et al. stud-
ied gait for exploring continuous authentication on smart-
phones [21], [41]. Niinuma et al. explored a continuous
authentication scheme using the user’s face and color of
clothing for verification using a webcam [34]. In [15], the
authors explored a passive authentication system for smart-
phones using face recognition. However, unobtrusively ac-
quiring face images may be invasive to the user’s privacy.
Using a Siamese convolution neural network, Centono et al.
showed a 97.8% accuracy in verifying the genuine user [10]
using accelerometer, gyroscope, and magnetometer sen-
sor modalities. However, the study does not consider the
temporal dependence between samples. DeepAuth, on the
other hand, used a LSTM architecture to classify a gen-
uine/impostor user via accelerometer, gyroscope, and mag-
netometer samples [3]. However, they considered a small
dataset where each user’s session lasts for only 10-13 min-
utes.

Fusing decisions from multiple modalities to authenti-
cate the user has been demonstrated to be very useful [42].
The majority of multimodal biometric systems fuse classi-
fiers at the score level based on min, max, or sum rules [29].
In the proposed approach, we adopt the sum of scores fu-
sion technique, which has been shown to perform well in
multimodal biometric systems compared to other fusion
schemes [26].

Limited studies on passive smartphone authentication
have utilized multimodal biometric systems but, to the best
of our knowledge, they have (1) all considered a small pool
of modalities, (2) not evaluated the temporal performance
of intrusion detection, and (3) not considered the tempo-
ral dependence of features across modalities. In this study,
we propose a Siamese LSTM network to address temporal
dependencies. A brief list of related work on passive smart-
phone authentication is given in Table 1.

3. System Overview
In the off-line phase, an authentication model is trained

via the proposed methodology for each modality. During
deployment, the incoming data from the smartphone sen-
sor modalities are continuously monitored. If the incoming
data successfully passes the authentication criteria, a deci-
sion is made that the current user is indeed the legitimate
owner of the devices. Otherwise, the system locks out the
user from the device and expects an explicit authentication
method such as a password, or biometrics such as finger-
print scans.

4. Dataset
The dataset used in this work consists of measurements

from 30 sensors, currently present in most commonly used
smartphones, for 37 users. Data for each user was collected
over a period of 15 days. Users that participated in the data
collection process were primarily students from universi-
ties, across different countries, who are also regular smart-
phone users2. Dataset statistics are given in Table 3.

An Android application3 was built that passively ac-
quired data from the sensors. This application automati-

2The users were contacted by the authors and a consent form along with
the link to the data collection application was sent. Users were remuner-
ated with USD 50 for their efforts.

3https://play.google.com/store/apps/details?id=
com.debayan.continuousdatacollect

https://play.google.com/store/apps/details?id=com.debayan.continuousdatacollect
https://play.google.com/store/apps/details?id=com.debayan.continuousdatacollect


Table 2: The eight dominant sensor modalities considered
in our study.

Keystroke Dynamics Key hold time, finger area and finger pressure
GPS Location User’s GPS location (latitude, longitude)
Accelerometer Smartphone’s acceleration in X, Y, Z plane
Gyroscope Gesture Rate of rotation of the device in X, Y, and Z planes
Magnetometer Earth’s magnetic field in X, Y, and Z planes
Gravity Sensor Direction and magnitude of gravity
Linear Acceleration Linear acceleration in X, Y, and Z planes
Rotation Sensor Device’s rotation in X, Y, and Z planes

Table 3: Dataset Statistics. A record is a measurement for
a sensor modality. Users that participated in the study are
primarily students located in different regions of the world,
including USA, India, Turkey, Brazil, and Dominican Re-
public.

No. of users 37
Data collection duration 15 days
No. of sensor modalities 30
Total number of records 6.7M
Average number of records per user 180K
Male to Female Ratio (%) 57/43
Age Range (years) 18 - 56

cally turns on whenever the smartphone boots up and con-
tinuously runs in the background while passively recording
sensor data. In order to collect keystroke dynamics, we also
built a custom soft-keyboard, installable from the data col-
lection application.

To the best our knowledge, our dataset is unique due to
(i) its rich sensor space (30 different sensors), and (ii) the
manner in which data was acquired keeping the real-world
scenario in mind. First, no user interaction with the data col-
lection application is required, thereby enabling the users to
use their smartphones as they generally would in their ev-
eryday lives. In order to simulate real world performance,
data from users were collected from their own personal de-
vices with no restrictions placed on the usage patterns, the
Android device, or the Android OS version. Data from the
modalities were acquired continuously, even when the user
is not actively interacting with their smartphone.

In this study, we evaluate authentication performance of
our proposed method on eight modalities (see Table 2), (i)
keystroke dynamics, (ii) GPS location, and (iii) accelerom-
eter, (iv) gyroscope, (v) magnetometer, (vi) linear accelera-
tion, (vii) gravity, and (viii) rotation. We chose these modal-
ities due to their popularity in literature [4], [43], [22], and
because these sensors are available in all smartphones. In
addition, among all the 30 modalities, measurements from
these eight sensors are most abundant and distinctive.

Keystroke Dynamics By modeling user’s typing rhythms
and mannerisms, it is possible to authenticate smartphone
users. We record the finger pressure, finger area, and hold
time whenever a user types a character on their smart-

phone (similar to [4]). The exact characters typed are not
logged and therefore, the keystroke patterns collected are
non-invasive in nature.

GPS Location For every user in the dataset, a pair of lat-
itude and longitude coordinates is recorded whenever the
device was moved. Location is considered as a measure of
an individual’s characteristic and, therefore, we hypothesize
that distinguishable patterns can be found in a user’s loca-
tion pattern.

Movement We evaluate the authentication performance
for all the six movement sensors in our dataset: accelerome-
ter, gyroscope, magnetometer, linear accelerometer, gravity,
and rotation. Measurements are recording in three axes, X ,
Y , and Z, for all six sensors. The sampling rate for all six
sensor data stream is 1 Hz, i.e. one measurement per second.

In our dataset, intra-user chronological gaps in measure-
ments exists due to the high-variability in user’s behavior.
For instance, they may switch off their smartphone, or the
phone may shut off due to battery drain. Even though these
intra-user variations in the dataset pose additional chal-
lenges, it also better simulates real-world scenarios where
such situations are common.

5. Methodology

As shown in Figure 1, smartphones today are shipped
with an array of sensors, including global positioning sys-
tem (GPS), accelerometer, gyroscope, magnetometer, and
others. In this paper, our goal is to utilize data from these
modalities in order to verify whether the genuine owner of
the device is logged in. There are two main passive smart-
phone authentication model training strategies, namely, on-
line and off-line. On-line approach trains an authentication
model using samples pertaining to the smartphone user for a
certain period of time before deploying the model. A major
limitation to on-line approach involves training an individ-
ual model for each user. As a consequence, it is challeng-
ing to accurately evaluate the overall authentication perfor-
mance across all the users due to high variance. In addition,
the required amount of data, the duration of data collection
before model deployment, and privacy concerns of storing
the training data are ongoing challenges.

Off-line approaches, on the other hand, train a common
authentication model that learns salient representations for
individual modalities. In this approach, the same trained
model is deployed when users install the application. More-
over, the users can avail of the authentication mechanism
immediately after the installation of the application. For
these reasons, we propose an off-line learning strategy for
passive smartphone authentication. In particular, for each of
the eight modalities, we train a Siamese LSTM network to
learn deep temporal features. Samples from users are trans-
formed into an embedding space learned by the Siamese
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Figure 2: Architecture of the proposed model. Here, {Xi, Xj} are input segment pairs, yij is the label, and fθ(·) and dθ
denote the embedding and distance function, respectively. The parameters of the Siamese LSTM network are denoted by θ.

network. Therefore, during deployment, only the features
extracted from the incoming data are required for authen-
tication, thereby, eliminating the need to store private data
on the device. The proposed method is comprised of three
modules: (1) data sampling, (2) preprocessing, and (3)
Siamese LSTM. Figure 2 outlines the overall architecture
of the proposed method.

Sampling Module Suppose that we extract a D-
dimensional data sample for a given sensor modality (for
instance, accelerometer has data in 3 axes, namely X , Y ,
and Z). The number of samples for each user can vary, and
our dataset is comprised of chronologically irregular mea-
surements for the same user due to various reasons such as
their phones being switched off. Therefore, we segment the
data by moving a window of fixed size T (authentication
time window) over the sequential data with a pre-defined
shift of Tshift and build overlapping fixed-sized segments.
Hence, for each user, we have a set of D × T segments.

Preprocessing Module The outputs of the sampling
module contain measurements from a modality in their orig-
inal domain, namely the time domain. The frequency do-
main can handle and remove noise, while also retaining
the discriminating patterns in the data within sequential
data [37]. We map measurements from the time domain to
frequency domain only for the movement sensors, i.e. ac-
celerometer, gyroscope, magnetometer, linear accelerome-
ter, gravity, and rotation. Fast Fourier Transform (FFT) [14]
is utilized to convert time domain signals on each feature
dimension to frequency domain signals. The output of the
FFT vectors are concatenated with samples in the time do-
main so that we can utilize information from both the do-
mains.

Siamese LSTM Our goal is to obtain highly discrimina-
tive features for each modality that can distinguish sam-
ples from genuine and impostor users. In other words, we
would like to learn information-rich transformation of the
data from modalities into an embedding space that can pre-
serve distance relation between training samples. Suppose
we are given a pair of input samples, {Xi, Xj}. Let yij be
a label, such that, yij = 0, if Xi and Xj belong to the same
user, and yij = 1, otherwise. Our objective is to map input
samples to an embedding space where two samples from
the same user are closer together and two samples from dif-
ferent users are far apart. A Siamese network architecture,
which is a neural network architecture comprising of two
identical sub-networks, is well-suited for such verification
tasks [6], [46]. In this manner, relationship between two in-
put samples can be learned. In a Siamese network, weights
between the two sub-networks are shared and the weights
are updated based on the label, yij .

A Siamese Convolutional Neural Network (CNN) was
previously proposed for passive smartphone authentica-
tion [10]; however, CNNs are not well-suited to capture the
temporal dependence within samples. We leverage Long
Short-Term Memory (LSTM) [25] as our Siamese archi-
tecture to model patterns in users’ data. LSTM, a vari-
ant of Recurrent Neural Networks (RNN), is designed for
classifying, processing and making predictions on time se-
ries data. In our approach, we stack two LSTMs in order
to learn hierarchical representation of the time series data.
The first LSTM outputs a sequence of vectors, h11, . . . , h

1
T

which are then fed as input to the second LSTM. The last
hidden state, h2T , of the second LSTM represents the final
non-linear embedding, denoted by fθ(·), where θ represents
the parameters of the Siamese LSTM network. This hierar-



Table 4: Authentication performance of the 8 modalities. Across 5 folds, the mean and std. dev. of the TARs at 1.0% and
0.1% FAR are given. The best performing model (highlighted in light gray) is the proposed Siamese LSTM (first column).

Modality Proposed Siamese LSTM Siamese CNN [10] LSTM [3] Euclidean Distance
1.0% FAR 0.1% FAR 1.0% FAR 0.1% FAR 1.0% FAR 0.1% FAR 1.0% FAR 0.1% FAR

Keystroke Dynamics 81.61 ± 13.65 58.71 ± 14.61 71.12 ± 15.67 43.87 ± 11.39 59.87 ± 18.82 26.73 ± 16.75 12.11 ± 7.60 8.20 ± 7.60
GPS 78.34 ± 4.76 52.21 ± 5.76 63.23 ± 10.82 39.23 ± 8.26 51.87 ± 9.97 21.42 ± 7.76 21.32 ± 1.32 12.76 ± 1.65
Accelerometer 74.56 ± 5.64 37.74 ± 6.67 67.28 ± 6.61 35.98 ± 7.33 64.83 ± 3.73 23.11 ± 3.82 13.06 ± 1.87 8.01 ± 0.81
Gyroscope 44.15 ± 7.53 15.18 ± 3.50 28.14 ± 7.69 11.33 ± 2.21 36.68 ± 7.43 8.89 ± 2.39 8.15 ± 1.23 6.54 ± 0.81
Magnetometer 74.15 ± 7.52 46.19 ± 8.83 60.91 ± 9.07 32.21 ± 6.87 26.33 ± 9.26 10.26 ± 8.33 18.85 ± 5.15 16.51 ± 5.88
Linear Accelerometer 50.19 ± 14.86 28.39 ± 16.20 46.35 ± 17.62 27.97 ± 18.74 29.89 ± 9.54 11.53 ± 6.78 8.91 ± 1.38 7.66 ± 0.95
Gravity 69.95 ± 4.35 32.24 ± 2.49 61.87 ± 7.95 31.92 ± 4.32 52.43 ± 5.64 32.12 ± 4.14 18.07 ± 5.41 10.98 ± 3.36
Rotation 74.85 ± 4.78 41.52 ± 3.02 61.91 ± 4.14 30.08 ± 1.29 56.75 ± 4.86 35.21 ± 3.98 17.96 ± 5.6 13.33 ± 3.72

chy of hidden layers allows for more salient representation
of the time-series data. We denote the embedding size of
both LSTMs as C.

In order to train the Siamese LSTM network, we define
a pairwise contrastive loss function. For a given pair of in-
put samples, the Euclidean distance between the two output
feature vectors from the two sub-networks are fed to the
contrastive loss function. This loss function regulates large
or small distances depending on the label associated with
the pair of samples, yij . In this manner, we ensure that the
Euclidean distance between the pairs, dθ(Xi, Xj), where

dθ(Xi, Xj) = ||fθ(Xi)− fθ(Xj)||2

is small for genuine pairs and large for impostor pairs. The
contrastive loss function is defined as [46]:

`θ = ΣNi,j=1Lθ(Xi, Xj , yij), where

Lθ = (1− yij)
1

2
(dθ)

2 + (yij)
1

2
{max(0, α− dθ)}2

where, α > 0 is called the margin.

6. Experimental Results
The contrastive loss function is optimized using

Adam [28] optimizer. The embedding size (the number
of hidden units) is fixed at 16. Segment shift is set to
Tshift = 1 for all the experiments.

6.1. Individual Modality Performance

Since a separate Siamese LSTM model is trained for
each modality, we first evaluate the authentication perfor-
mance of each individual modality. We perform 5-fold
cross-validation such that each fold comprises of 29 users
for training and 8 users for testing. The proposed method
is trained and tested on 20-second segments (T = 20). In
order to train and evaluate our model, pairs of segment sam-
ples are generated. Genuine pairs are all possible pairs of
segments from the same user. A sample from a user is
paired with another user’s segment randomly to constitute
an impostor pair. On average, each user has around 180,000
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Figure 3: Best performing subsets of modalities. Increasing
the number of fused modalities boosts the overall accuracy
which saturates at a subset of 4 modalities.

genuine pairs and the same number of impostor pairs across
all the modalities.

In Table 4, authentication performance of the proposed
method is compared with three baselines: (1) Siamese CNN
proposed by Centeno et al. [10], (2) a single LSTM network
proposed by Amini et al. [3], and (3) Euclidean distance
classifier. The proposed Siamese LSTM network outper-
forms Siamese CNN due to LSTM’s capability of capturing
temporal dependencies. In addition, Siamese architectures
are better suited for preserving distances between pairs of
input samples. Thus, the proposed architecture has a bet-
ter authentication performance than a single LSTM. Since
Euclidean distance is used in the proposed method, we also
investigate the authentication performance without learning
a non-linear transformation of the temporal data. For this
purpose, we obtain thresholds at 1.0% and 0.1% FARs by
computing the Euclidean distances between the raw seg-
ment pairs in the training set. These thresholds are used
to compute the TARs. We observe that using deep tempo-
ral features significantly improves the authentication perfor-
mance.

6.2. Fusion of Modalities

The performance of the individual modalities is far from
satisfactory. Given a short authentication time window, re-
lying on a single modality for authentication is, therefore,
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Figure 4: Relative contribution of each modality.

not practical for robust and accurate authentication. In ad-
dition to poor performance of individual modalities, all the
modalities may not even be available at any given time of
the day. For instance, if the user is not using the keyboard,
we will not have access to keystroke dynamics. Therefore,
for a reliable passive authentication system, it is imperative
that we rely on a combination of modalities. We evaluate
the authentication performance for all possible subsets of
modalities on fusing 2, 3, 4, 5, 6, 7, and 8 modalities to-
gether (totaling 247 different subsets).

For all the 247 different combinations, the best perform-
ing subsets are shown in Figure 3. It is observed that: (1)
increasing the number of fused modalities boosts the over-
all authentication performance; (2) the performance satu-
rates after fusing 4 different modalities. A subset of ac-
celerometer, linear accelerometer, magnetometer, and rota-
tion achieves 99.87% TAR at 0.1% FAR.

6.3. Modality Contribution

The next natural question to ask is, ‘Which modality
contributes the most when all the 8 modalities are fused?’
Let M = {m1, . . . ,m8} be the set of all modalities.
When a modality, say, mi, is not considered in the fu-
sion, the drop in overall authentication performance is com-
puted by (TARM − TARM ′), where M ′ contains all the
modalities except mi and TARM denotes the True Ac-
cept Rate (%) at 0.1% FAR on fusing all modalities in
M . The contribution for modality, mi, is defined as
(TARM − TARM ′) /(100 − TARM ′). We plot the rel-
ative contributions of the eight modalities in Figure 4. Note
that a high performing individual modality may not neces-
sarily have a high relative contribution. For instance, mag-
netometer has the lowest contribution to the overall authen-
tication performance out of the eight modalities. Linear ac-
celerometer, on the other hand, has a relatively high contri-
bution even though it performs poorly on its own. This is
likely because the comparison scores obtained from the lin-
ear accelerometer model is complementary to scores from
other modalities.
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Figure 5: TAR at 0.1% FAR for authentication time win-
dows varying from 3 to 20 seconds.

6.4. Temporal Information

A common phenomenon in passive authentication sys-
tems involves a trade-off between the authentication time
and recognition performance. Figure 5 shows the authenti-
cation performance for segment sizes of T = 3, 5, and 10
seconds. We find that accuracy slightly drops with decreas-
ing authentication time windows, likely due to lack of in-
formation content required to successfully authenticate the
user. Therefore, the window size can be chosen depend-
ing on the application at hand. When shorter authentication
times are desired, then more number of modalities should
be considered for a secure application.

7. Conclusions

We have proposed a Siamese LSTM architecture for pas-
sive authentication of smartphone users. We collected a
dataset comprised of measurements from 30 sensor modali-
ties, for 37 smartphone users, over a time period of 15 days,
while they are engaged in their daily activities on their own
smartphones. We evaluated the authentication performance
under various scenarios for 8 dominant modalities, namely
keystroke dynamics, GPS location, accelerometer, gyro-
scope, magnetometer, linear accelerometer, gravity, and ro-
tation. We summarize our findings as follows:

• The proposed method can passively authenticate a
smartphone user with TAR of 99.87% and 96.47% at
0.1% FAR within 10 and 3 seconds, respectively.

• Relying on a single modality for authentication is not
reliable. Fusing a subset of 4 modalities achieves
99.87% TAR @ 0.1% FAR.

With the growing number of sensors found in smart-
phones, it is important to explore robust and unobtrusive
passive authentication approaches. In the future, we plan
on acquiring data from new smartphone sensors and fusing
additional smartphone modalities.
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