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Abstract—With the deployment of automatic face recognition
systems for many large-scale applications, it is crucial that we
gain a thorough understanding of how facial aging affects the
recognition performance, particularly across a large population.
Because aging is a complex process involving genetic and envi-
ronmental factors, some faces “age well” while the appearance
of others can change drastically over time. This heterogeneity
(between-subject variability) suggests the need for a subject-
specific aging analysis. In this paper, we conduct such an analysis
using two different longitudinal face databases of operational
mugshots of repeat criminal offenders. Each of the 5,636 and
18,007 subjects in the two databases has at least four face images
acquired over a minimum of five years. By fitting mixed-effects
statistical models to genuine similarity scores from state-of-the-
art commercial-off-the-shelf (COTS) face matcher, we quantify
(i) the population average rate of change in genuine scores
with respect to the elapsed time between two face images, and
(ii) how closely the subject-specific rates of change follow the
population average. Longitudinal analysis shows that despite
decreasing genuine scores over time, as expected, the average
subject can still be correctly verified at a false accept rate (FAR)
of 0.01% across all 8 and 16 years of maximum elapsed time
in the two face databases. We also investigate the effects of
several other covariates (age, sex, race, face quality). We find
that differences in subject age at enrollment are significant but
marginal, females generally have lower scores than males, and
interpupillary distance and a measure of frontalness explain a
significant amount of variation in genuine scores that is not
accounted for by elapsed time alone.

Index Terms—face recognition, longitudinal study, mixed-
effects, facial aging.

I. INTRODUCTION

FACIAL recognition technology has rapidly matured over
the last two decades, to the point where it is now utilized

in many commercial and law enforcement applications for
person recognition (e.g. mobile face unlock and de-duplication
of driver’s licenses). Automatic face recognition systems op-
erating on face images acquired in controlled conditions, such
as mugshots or driver’s license photos, have achieved high
accuracies (99% TAR at 0.1% FAR) in large-scale evaluations
conducted by the National Institute of Standards and Technol-
ogy (NIST) [1].

Technological advancements in automatic face recognition
have progressively tackled challenges caused by variations in
facial pose, illumination, and expression (collectively called
PIE variations). Current efforts (e.g. [2], [3]) are breaking
ground on robustness to “faces in the wild” to account for
PIE, occlusion, and partial face images (e.g. images posted
on the web). Comparatively, aging variations (i.e. large time
lapse between pairs of images being compared) have received
considerably less attention in the face recognition community.
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(a) Ages 30.5 and 39.6 (0.4231) (b) Ages 32.2 and 40.3 (0.4325)

(c) Ages 29.5 and 38.3 (0.4984) (d) Ages 39.2 and 48.6 (0.5002)

Fig. 1: Face image pairs of four different subjects from the
PCSO LS mugshot database which are age-separated by eight
to ten years. Similarity scores from a state-of-the-art face
matcher (COTS-A) for each pair are shown in parentheses
(score range is [0.0, 1.0]). The thresholds for COTS-A scores
at 0.01% and 0.1% FAR are 0.5331 and 0.4542, respectively.
Hence, all of these genuine pairs would be falsely rejected
at 0.01% FAR, while the two female subjects would also be
rejected at 0.1% FAR.

Published studies on facial aging in the context of automatic
face recognition have primarily employed cross-sectional tech-
niques where a population of individuals who differ in age
are analyzed according to differences between age groups
[1], [4], [5], [6], [7]. However, cross-sectional analysis cannot
adequately explore age-related effects on face recognition
because of the assumption that the individuals were sampled
at a single point in time; past and future measurements are
not considered so the trends of individuals over time are
not analyzed. Hypotheses about facial aging are, instead,
longitudinal by nature and require tracking the comparison
scores of the same individuals typically over several years.

While longitudinal studies for automatic iris recognition [8]
and fingerprint recognition [9] have been published, to our
knowledge, no large-scale longitudinal study of automatic face
recognition performance has been reported in the literature. We
aim to fill this gap by fitting multi-level statistical models to a
longitudinal face dataset to address the following question:
How robust are state-of-the-art automatic face recognition
systems to facial aging?

Aging effects on the performance of automatic face recog-
nition systems are of more than mere theoretical concern.
Because the appearance of the face changes throughout a
person’s life, most identity documents containing face images
expire after a designated period of time; U.S. passports are
only valid for 5 years for minors and 10 years for adults,
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while U.S. driver’s licenses typically require renewal every 5
years. Validity periods of such identity documents may be too
long if these photos are to be used with state-of-the-art face
matching systems. Figure 1 shows that elapsed times of eight
to ten years between two face images can cause false non-
match errors. Additionally, to our knowledge, ensuring that
a new photo has been submitted for renewal is not verified,
especially for renewals by mail or online. Studying how the
actual comparison scores change over time is important for
understanding the implications of operating with a global
threshold1 (e.g. de-duplication and other open-set scenarios)
on face recognition performance degradation due to aging.

Aging of the human body naturally causes changes in facial
appearance over time. During years of adolescence, facial
changes are predominantly due to the maturation of the shape
of the head; whereas in later stages of life, an adult face
may experience additional changes affecting skin texture and
elasticity. However, a teenager can also experience skin texture
changes due to acne scarring and/or growth of facial hair, and
the shape of an older person’s face can be severely altered by
rapid decline in health (e.g. weight loss or gain). In addition
to anatomical factors, environmental and/or lifestyle factors
also have a significant impact on facial appearance over time.
Smoking, sun exposure, stress levels, and drug abuse, for
examples, can drastically alter a person’s face, sometimes over
just a short period of time. Due to the cumulative effects of
both biological and environmental factors, facial aging is a
complex process that affects each individual differently. In this
paper, we only look at the aging issue as reflected in the visual
appearance of the subject’s face in the photograph.

A. Contributions

We conduct a longitudinal analysis of the performance
of a state-of-the-art COTS face recognition system on two
longitudinal face image databases consisting of mugshots of
repeat criminal offenders from two different law enforcement
agencies (see Table I). The COTS matchers used here are
among the top-ranked performers in the FRVT 2013 face
recognition evaluation [1]. Mixed-effects statistical models,
which are appropriate for longitudinal data, are used to analyze
the variation in genuine comparison scores over time from
the COTS matchers. The contributions of this paper can be
summarized as follows:

1) Conduct a multilevel statistical analysis of the longitudi-
nal effects of facial aging on automatic face recognition
for the two largest longitudinal databases studied to date.

2) Quantification of the average rate of change in face
comparison scores per one year increase in the average
age of a subject and one year increase in time since
enrollment.

3) Quantification of the variance in subject-specific temporal
trends in genuine face comparison scores; a representa-
tion of how genuine comparison scores for each individ-
ual change over time for a large population of subjects.

1A biometric system operating with a global threshold applies the same
threshold to all subjects and all comparisons.

TABLE I: Face Aging Databases

Database
Num.

Subjects
Num.

Images
Num. Images
per Subject

Age Range
(years)

MORPH-II [11]a 13,000 55,134
2–53

(avg. 4)
16–77

(avg. 42)
MORPH-II
commercial [11]b 20,569 78,207

1–76
(avg. 4)

15–77
(avg. 33)

FG-NET [12] 82 1,002
6–18

(avg. 12)
0–69

(avg. 16)

LEO LSc 5,636 31,852
4–20

(avg. 6)
12–69

(avg. 31)

PCSO LSc 18,007 147,784
5–60

(avg. 8)
18–83

(avg. 35)
aMORPH-II is “Album 2” of the MORPH database. There is also an earlier released version

(“Album 1”) that contains only 612 subjects and less than 2,000 images.
bThis largest version of MORPH only has 317 subjects with at least 5 images acquired over

at least 5 years.
cThe longitudinal face databases used in this study (details in Sec. III-A).

This work extends, as well as refines, our previous longitudinal
analysis of automatic face recognition first published in [10].
The primary differences are stated below:

1) Analysis of both elapsed time and absolute age ([10] only
studied elapsed time).

2) Genuine scores are now computed assuming that the
youngest image of each subject is enrolled in a gallery;
if a subject has n images total, we compute n− 1 com-
parison scores, whereas [10] computed all

(
n
2

)
genuine

scores. Although the total number of genuine scores being
analyzed is lower than in [10], comparisons are made to a
fixed point in time which simplifies the complex correla-
tion structure that is present for all pairwise comparisons.

3) Analysis of an additional longitudinal database
(LEO LS) of face images from a different law
enforcement agency. LEO LS database has different
characteristics than the PCSO LS database studied in
[10] (e.g. shorter elapsed times), and comparison scores
are obtained from a different COTS matcher. Still, the
longitudinal analysis reveals similar trends for both
databases.

The remainder of this paper is organized as follows. Sec-
tion II briefly highlights related work on facial aging as
it pertains to automatic face recognition. Section III details
the two longitudinal face databases used in this study and
computation of comparison scores. Section IV explains the
methodology behind the mixed-effects statistical models used
for longitudinal analysis. Section V gives results from fitting
mixed-effects models to genuine comparison scores from both
the PCSO LS and LEO LS face databases. Section VI sum-
marizes our observations and findings about the performance
of automatic face recognition over time.

II. RELATED WORK

Almost all of the published studies that invesitgate the
effects of facial aging on automatic face recognition perfor-
mance adopt the following approach: (i) divide the database
(face pairs) into partitions depending on age group or time
lapse, (ii) report summary performance measures (e.g. TAR at
fixed FAR) for each partition independently, and then (iii) draw
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TABLE II: Summary of Related Work

Study Database
Age or Elapsed Time
Partitions

Findings

Klare and Jain [4]
PCSO (200,000 mugshots,
64,000 subjects)

0-1, 1-5, 5-10, 10+ years 96.3%, 94.3%, 88.6%, and 80.5% TAR at 1% FAR

Otto et al. [5] MORPH 0–1, 1–5 years 97% and 95% TAR at 1% FAR

Ling et al. [6] Passports (private) 4–11 years EER degradation saturates after 4 years elapsed time.

Ling et al. [6] FG-NET 0–8, 8–18, and 18+ years Verification gets easier with increasing age.

NIST FRVT [1] Visa images (19,972 subjects)
baby, kid, pre-teen, teen,
young, parents, older

Error rates higher for younger age groups when the
same threshold is used for all age groups.

Bereta et al. [7] FG-NET
0–5, 6–10, 11–15, 16–20,
21–30, > 30 years; 23–30,
31–40, 41–50, and > 50 years

Performance of local descriptors varies across absolute age and
age gap groups, but when combined with Gabor filters, most
local descriptors become relatively robust to ages and age gaps.

conclusions from the differences in performance across the
partitions. Such an approach has led to the following general
conjectures [13]:

(i) Face recognition performance decreases as the time
elapsed between two images of the same person increases
(e.g. [4], [5], [6]).

(ii) Faces of older individuals are easier to recog-
nize/discriminate than faces of younger individuals (e.g.
[1], [6]).

See Table II for a summary of these studies.2

Partitioning of data (images or subjects) based on age group
or time lapse is often arbitrary and varies from one study to
another. For example, Erbilek and Fairhurst show that different
age group partitionings result in different performance trends
for both iris and signature modalities [16]. Furthermore, this
cohort-based analysis with summary statistics cannot address
whether age-related performance trends are due to changes in
genuine (same subject) comparison scores, impostor (different
subjects) comparison scores, or both.

Multilevel (hierarchical or mixed-effects) statistical models
have been used for determining important factors (covari-
ates) to explain the performance of face recognition systems.
Beveridge et al. [17] apply generalized linear mixed models
to verification decisions made by three algorithms in the
FRGC Exp. 4 evaluation. In addition to eight levels of FAR
as a covariate, they analyze gender, race, image focus, eye
distances, age, and elapsed time. The limitations of this study
include (i) the maximum elapsed time between face images of
the same subject is less than one year, and (ii) it only involves
351 subjects. The longitudinal study on face recognition in this
paper follows the general methodology of linear mixed-effects
statistical models outlined in [8] for iris recognition and [9]
for fingerprint recognition.

While the FG-NET [12] and MORPH3 databases have
contributed to studies on facial aging, they are not suitable
for longitudinal analysis because (i) FG-NET contains only
82 subjects in total, and (ii) MORPH contains only a small
number of subjects with multiple images over time (only 317

2Studies that address age-invariant face recognition (e.g. [14], [15]) are not
in the scope of this paper.

3http://www.faceaginggroup.com/morph/

(a) (b) (c)

Fig. 3: Three examples of labeling errors in the PCSO LS face
database. All pairs show different subjects who are labeled
with the same subject ID number in the database.

Fig. 4: Examples of facial occlusions (sunglasses, bandages,
and bruises) in the PCSO LS face database.

subjects have at least 5 images over at least a 5 year time
span). For these reasons, we compiled two new longitudinal
databases of face images, detailed in Section III-A.

III. MATERIALS

A. Longitudinal Face Databases

Operational face datasets maintained by government and
law enforcement agencies can offer sources of longitudinal
records of individuals of magnitudes (e.g. over 10 years) that
are infeasible to collect in laboratory settings. These agencies
routinely collect face images of the same individuals over time
and have been doing so for relatively long durations, primarily
for applications involving driver’s licenses, visa and passport
applications/renewals, frequent travelers, and multiple arrests
of the same persons. While such databases often contain a
large number of subjects, they may or may not contain a
large number of images per subject and most are restricted
to individuals typically over the age of 18 years (adult popu-
lations). For privacy reasons, it is also extremely difficult to
access these longitudinal face datasets from government and
law enforcement agencies.
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PCSO LS Longitudinal Database (147,784 mugshots of 18,007 subjects; avg. of 8 mugshots per subject)
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LEO LS Longitudinal Database (31,852 mugshots of 5,636 subjects; avg. of 6 mugshots per subject)
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Fig. 2: Statistics of the two longitudinal face image databases used in this study: top and bottom row figures are for the
PCSO LS and LEO LS databases, respectively. (a) and (d) Number of face images per subject, (b) and (e) the time span of
each subject (i.e. the number of years between a subject’s first and last face image acquisitions), and (c) and (f) demographic
distributions of sex (male, female) and race (white, black, Asian, Indian, unknown).

The sources of face images in our longitudinal analysis
are mugshot bookings from two different law enforcement
agencies. (Note that the MORPH database in Table I is also
a mugshot database). While we acknowledge that lifestyle
factors (e.g. drug and alcohol use, etc.) likely increase aging
rates for this population, we have not been able to access
any other longitudinal face data. We did attempt to obtain
longitudinal face images from the State Department visa
databases, but discovered that roughly 5% of genuine face im-
age pairs were duplicate photo submissions. This can happen
when an individual reuses the same photo for a visa renewal
application; hence, age information for this database is not
reliable for longitudinal study.

1) LEO LS Longitudinal Face Database: The LEO LS
is a subset of face images from an operational dataset of
over 3 million law enforcement images. The subset, LEO LS,
contains 31,852 images of 5,636 individuals, where each indi-
vidual has at least 4 face images acquired over at least 5 years,
with at least a one month separation between consecutive
images of an individual. In order to focus on longitudinal
effects of facial aging, webcam images and profile mugshot
images were removed, so LEO LS contains nearly frontal face
images, most being mugshots. The LEO LS database does
contain 656 images of 369 subjects that are younger than 18

years-old; these may be juvenile4 arrests or they could be data
entry errors (it is difficult to tell based on visual examination
whether an individual is actually a juvenile versus whether
they are 18 or older). We only have access to the comparison
scores (both genuine and impostor), so we cannot show face
images from this database.

2) PCSO LS Longitudinal Face Database: The PCSO LS
database consists of 147,784 operational mugshots of 18,007
repeat criminal offenders booked by the Pinellas County Sher-
iff’s Office (PCSO) from 1994 to 2010. This subset of images
was selected from a larger database consisting of 1.5 million
images of 450,000 subjects using the following criteria. Each
subject has at least 5 face images that were acquired over at
least a 5 year time span, where each pair of consecutive images
is time-separated by at least one month. The database statistics
are shown in Fig. 2. Example face images from PCSO LS are
shown in Fig. 5. Each booking record, in addition to the face
image, also includes ancillary information (e.g. gender, race,
date of birth, date of arrest).

For both databases, we only include white and black race
subjects in this study because there are too few subjects of
other races to do a meaningful statistical analysis (see Fig. 2).
Human labeling errors of demographic attributes, as well as
subject ID, are typical of large-scale legacy databases. Identi-

4In the United States, a juvenile is typically under the age of 17.
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Fig. 5: (a) Face images of six example subjects from the PCSO LS database. The enrollment face image in the top row is the
youngest image of each subject; all other images are in order of increasing age. Genuine scores are computed by comparing the
query/probe images of each subject to his/her enrollment image. The maximum elapsed time between a subject’s enrollment
image and oldest image is given in the bottom row of (a). Genuine scores and example trend lines for each subject are plotted
against (b) elapsed time and (c) age of query image. The differences in intercepts and slopes of the trend lines for the six
subjects are subject-specific variations (random effects). The deviations of each subject’s own scores around their own trend
line are the residual variations.

fying all such errors is not feasible due to the large size of both
the LEO LS and PCSO LS databases. To ensure consistent
labels within each subject’s record, we determine the gender,
race, and date of birth of a subject as the majority vote from
the set of face images for that subject. A cursory examination
of the PCSO LS database revealed 134 subject records that
contained multiple identities (see Fig. 3). These subjects were
removed from our study. While the LEO LS and PCSO LS
databases contain relatively constrained face images, some
confounding factors are still present (e.g. sunglasses and facial
injury shown in Fig. 4). We have retained such images in this

study.

B. Face Comparison Scores
Face comparison scores (similarities) were obtained from

two different commercial-off-the-shelf (COTS) face matchers,
both of which were among the top performers in the FRVT
2013 [1]. We will denote the two matchers used for the
PCSO LS and LEO LS databases as COTS-A and COTS-
B, respectively.5 Genuine comparison scores sij between the

5Scores for the LEO LS database were provided by the Image group,
National Institute of Standards and Technology (NIST).
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enrollment and jth face images of subject i, were standardized
so yij = (sij−µ)/σ, where µ and σ are the mean and standard
deviation, respectively, of all the genuine scores from all
subjects. This standardized response yij is in terms of standard
deviations from the mean of the genuine distribution, which
allows interpretation of coefficients from regression models
as quantifying the change in genuine scores as β standard
deviations per year, for example.

Responses for all mixed-effects models in this study are
genuine comparison scores. To evaluate face recognition per-
formance, changes in genuine scores should be considered
in context with respect to an impostor distribution. Hence,
for both the LEO LS and PCSO LS databases, we compute
all possible impostor scores, and then calculate thresholds at
different fixed false accept rates (FARs). The threshold at, say,
0.01% FAR is used to determine when genuine scores drop
below the threshold, hence, causing false rejection/negative
errors.

As mentioned in Section III-A, the LEO LS database con-
sists of 31,852 images of 5,636 subjects, and the PCSO LS
database consists of 147,784 images of 18,007 subjects. Under
the scenario where each subject’s set of images are compared
to his/her enrollment image, this results in a total of 26,216 and
129,773 genuine scores and 546,940,788 and 11,102,014,369
impostor scores for the LEO LS and PCSO LS databases,
respectively.

IV. METHODS

Mixed-effects models (also known as random-effects, mul-
tilevel, and hierarchical models) are widely used in various
scientific disciplines for studying data that is hierarchically
structured, including longitudinal data of repeated observations
over time [18], [19]. In our case, face images (and comparison
scores) are grouped by subject because we have repeated
observations of each individual in our study. When data is
structured in such a manner, responses from the same clus-
ter/group/individual are correlated with each other and across
time (for longitudinal data); hence, variation in the response
(here, face comparison scores) occurs at different levels of the
data hierarchy. Mixed-effects models enable analysis of these
different sources of variation.

Ideally, longitudinal data collection would observe all indi-
viduals in the study following the exact same schedule over
the entire duration of interest. However, longitudinal data is
typically not this nice; either it is difficult (and expensive) to
collect or it must be analyzed retrospectively. Even if we were
to attemp to design a longitudinal data collection procedure,
the number of cohorts, overlap between cohorts, and the fre-
quency of measurements are all important design decisions to
consider, and no “best” design exists [20]. Instead, longitudinal
data is most often time-unstructured and unbalanced, meaning
individuals in the study population are observed at different
schedules and have different numbers of observations. For
the mugshot databases, this translates to different rates of
recidivism for each subject. Figure 2 shows that subjects in
the LEO LS and PCSO LS databases have anywhere from 4
to more than 20 mugshots, and Fig. 6 shows that the age spans
of the subjects are highly unstructured.
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Fig. 6: Age distribution of a random subset of 200 subjects
from the PCSO LS database. Each line denotes the age span
of a subject (i.e. age of the youngest image to the age of the
oldest image of that subject), separated along the y-axis by
the elapsed time for each subject (i.e. the length of the age
span).

A. Statistical Analysis

Given ni face images of subject i, let AGEij denote the
absolute age of the ith individual in their jth face image, where
AGEij < AGEik for j = 0, . . . , ni − 2 and k = j + 1, . . . ,
ni − 1 (i.e. the ni images are ordered by increasing age). To
begin with, assume that the youngest image (first acquisition)
of each subject is enrolled in the gallery, and let AGEie =
AGEi0 denote the age of individual i at enrollment where
AGEie < AGEij for j = 1, . . . , ni − 1. We can compute
mi = ni − 1 genuine comparison scores by comparing every
other image to the enrollment image. Hence, in this scenario,
yij (j = 1, . . . , mi) is the comparison score between the
jth face image of individual i and his/her enrollment image.
AGEij is the age of the jth query/probe image of subject i,
so the elapsed time between enrollment and query image is
4Tij = AGEij −AGEie.

When studying age-related effects on automatic face recog-
nition performance, there are two different, albeit closely
related, time-varying covariates which are of primary interest:
(i) the elapsed time between and (ii) the absolute ages of the
two face image acquisitions in comparison.

1) Function of Elapsed Time: The simplest notion of face
recognition performance over time is a function of the elapsed
time between a subject’s enrollment and query face images,
f(4Tij). A linear mixed-effects model with two levels (to
account for subject-specific trends) and a single covariate for
elapsed time can be formulated as follows. At level-1, the
comparison score yij between the enrollment and jth query
image of subject i can be modeled as a linear function of
4Tij :

yij = ϕ0i + ϕ1i4Tij + εij , (1)
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TABLE III: Mixed-Effects Model Formulations

Model Level-1 Model Level-2 Model: Intercept Level-2 Model: Slope

A yij = ϕ0i + εij ϕ0i = β00 + b0i

BT yij = ϕ0i + ϕ1i4Tij + εij ϕ0i = β00 + b0i ϕ1i = β10 + b1i

CT yij = ϕ0i + ϕ1i4Tij + εij ϕ0i = β00 + β01AGEie + b0i ϕ1i = β10 + b1i

CT yij = ϕ0i + ϕ1iAGEij + εij ϕ0i = β00 + β01AGEie + b0i ϕ1i = β10 + b1i

D yij = ϕ0i + ϕ1i4Tij + εij ϕ0i = β00 + β01AGEie + β02AGE2
ie + b0i ϕ1i = β10 + β11AGEie + b1i

where the ith individual’s intercept, ϕ0i, and slope, ϕ1i, are

ϕ0i = β00 + b0i,

ϕ1i = β10 + b1i.
(2)

The level-1 equation in (1) models within-subject longitudinal
change in yij where a subject’s scores can vary around his/her
linear trend by εij . The level-2 model in (2) accounts for
between-subject variation in comparison scores because each
subject’s intercept and slope parameters, ϕ0i and ϕ1i, respec-
tively, are modeled as a combination of fixed and random
effects. The fixed effects, β00 and β10, are the grand means of
the population intercepts and slopes, respectively, and define
the overall population-mean trend, while the random effects,
b0i and b1i, are subject-specific deviations from the population-
mean parameters. Since each subject can have his/her own in-
tercept and slope parameters, mixed-effects models are flexible
in handling/allowing for biometric zoo [21], [22] effects (some
subjects generally have higher or lower scores and subject
scores change at different rates over time).

The random structure of the above two-level model includes
the level-1 residuals, {εij}, as well as the random effects, b0i
and b1i, which can be thought of as level-2 residuals. The
assumptions of these error terms are:

εij ∼ N(0,σ2
ε) (3)

and [
b0i
b1i

]
∼ N

([
0
0

]
,

[
σ2
0 σ01

σ10 σ2
1

])
, (4)

where N(., .) denotes a Gaussian distribution.
Substituting the level-2 equations for subject-specific inter-

cepts and slopes into the level-1 model in (1), the composite
form of the two-level mixed-effects model is:

yij =
[
β00 + b0i

]
+
[
β10 + b1i

]
4Tij + εij . (5)

Here, the model terms inside the two brackets in (5) corre-
spond to all coefficients for the intercept and slope terms,
respectively.

When the error terms are equal to their assumed means
of zero, (6) reduces to the population-mean trend of yij =
β00 + β104Tij . The grand mean intercept β00 quantifies the
expected marginal mean comparison score when 4Tij = 0.
Note that this intercept is not particularly meaningful, as our
data does not contain any same-day comparisons. However,
interpretation of β00 does give us some notion of differences in
subject’s initial statuses, or comparison scores at baseline. The
primary coefficient we are interested in is β10 which quantifies

the expected change in mean comparison score per one-year
increase in elapsed time since enrollment. Because this model,
as well as all others considered in this paper, include random
terms for both intercepts and slopes (b0i and b1i), we can
also analyze the variation in the population’s parameters (i.e.
differences in the trends of individuals in the population).

2) Function of Elapsed Time and Age at Enrollment: If
rates of change in comparison scores are steeper or flatter
throughout an individual’s lifetime, then face recognition
performance may be a function of elapsed time, as well as
absolute age. If we add the age of the enrollment image6 to
the mixed-effects model in (5), the model becomes:

yij =
[
β00 + β01AGEie + b0i

]
+
[
β10 + b1i

]
4Tij + εij . (6)

Because AGEie is a constant for each subject, it is a time-
invariant, or fixed, effect, and the above composite model
actually has a two-level specification with the same level-1
model in (1). Hence, AGEie cannot improve the model fit
at level-1 (within-subject); it can only influence the level-2
subject-specific variations. The population-mean trend for (6)
is:

yij = β00 + β01AGEie + β104Tij
= β00 + β01AGEie + β10(AGEij −AGEie).

(7)

By definition,4Tij is a centered version of AGEij , where the
centering term (AGEie) is subject-specific. Hence, the model
for aging as a function of elapsed time and age at enrollment,
f(4Tij , AGEie), is mathematically equivalent to a model for
aging as a function of the age of the query image and age at
enrollment, f(AGEij , AGEie):

yij = β00 + β01AGEie + β10AGEij . (8)

The two models in (7) and (8) will result in the same
estimate for longitudinal change, β10. What distinguishes them
is the interpretation of the coefficient β01 quantifying the effect
of AGEie. Note the relationship between the two models:
β
(8)
01 = β

(7)
01 − β

(7)
10 . Hence, β(8)

01 is the “contextual” effect
that models the difference between the within- and between-
subject effects of time [23].7 The significance of subject age
at enrollment in Model (8) is tested with the null hypothesis
of H0 : β01 = 0, whereas restricted inference is needed to test

6Comparing all images of an individual to a fixed enrollment image means
that AGEij and 4Tij are perfectly correlated at level-1 (within-subject) of
the model. Hence, we cannot include both of these covariates; the effect of
age must be added as a level-2 covariate.

7The equality β(8)
01 = β

(7)
01 − β

(7)
10 holds for mixed-effects models with

random intercepts, and is approximately true for models with both random
intercepts and random slopes.
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significance in Model (7). In particular, the null hypothesis
must instead be H0 : β01 = β10.

The relationship between these two models is similar to
common approaches for decoupling the longitudinal and cross-
sectional effects of a time-varying covariate. A time-varying
covariate at level-1 (e.g. age or elapsed time) exhibits vari-
ability within, but also between individuals; models which
assume that the within- and between-individual effects are
equal do not properly estimate either of these effects [19],
[24], [25], [23]. The estimated regression coefficient (i.e. β10
in (2) and (5)) which quantifies the expected change in the
response for a unit increase in a covariate xij , is actually a
weighted combination of the true longitudinal (within-subject)
change and the cross-sectional (between-subject) effect, where
the weights are related to the proportion of between-subject
variation in the covariate, relative to the within-subject vari-
ation [19]. Typically, the time-varying covariate is “centered”
on subject-specific means. Adjusting for “cluster-level” mean
covariate levels can remove potential confounding bias in
estimation of the effect of the individual-level covariate and
the outcome/response [25].

B. Model Comparison and Evaluation

All models in our analysis are fit with full maximum likeli-
hood (ML) estimation via iterative generalized least-squares
(GLS). Goodness-of-fit measures based on log-likelihood
statistics can be used to compare models with different co-
variates and degrees of complexity. Deviance quantifies how
much worse the current model is compared to the (hypothet-
ical) saturated model that includes all possible covariates to
perfectly fit the data. Because the log-likelihood (LL) of the
saturated model is 0,

Deviance = −2[LLcurrent − LLsaturated] = −2LLcurrent. (9)

Deviance can be used to calculate χ2 statistics for comparing
nested models (i.e. the simpler model is a reduced form of
the more complex model, where some coefficients in the
complex model are equal to 0) that are fit to the same data.
To compare non-nested models, Akaike Information Criterion
(AIC) penalizes the log-likelihood by the number of parame-
ters8 in the model, and Bayesian Information Criterion (BIC)
additionally penalizes large sample sizes. Note that for all three
goodness-of-fit measures, smaller values indicate better fit.9

Additionally, to evaluate different models, normal probability
plots of the level-1 residuals and level-2 random effects (for
both intercepts and slopes) can be used to determine whether
model assumptions (3) and (4) are valid; the error terms follow
Gaussian distributions if the normal probability plots are linear.

V. RESULTS

The goal of statistical modeling is to find a model that
includes substantive predictors and excludes unnecessary ones
(parsimony). In this paper, we are interested in determination

8For full ML estimation, the number of parameters includes both the fixed
effects and the variance components.

9For AIC and BIC, the magnitude of the reduction in fit is difficult to
interpret.
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Fig. 7: Distributions of standardized genuine comparison
scores from (a) PCSO LS and (b) LEO LS longitudinal face
databases; scores are from (a) COTS-A and (b) COTS-B.

(a) (b) (c)

Fig. 8: Normal probability plots of (a) level-1 residuals,
εij , and level-2 random effects for (b) intercepts, b0i, and
(c) slopes, b1i from Model BT on the PCSO LS database.
Departure from normality at the tails of the distributions is
likely due to low quality face images or errors in subject IDs.

of significant factors that explain the variation in genuine
comparison scores of face images, particularly over time. A
common approach to arrive at a “final model” is to fit increas-
ingly complex models to successively evaluate the impact of
adding different covariates [18]. We first focus on analysis
of the PCSO LS database, starting with the simple models
discussed in Section IV and progressing to more complex
models including covariates for face quality and subject sex
and race. We then present results for the LEO LS database.

A. Model Assumptions

While mixed-effects models are capable of handling non-
Gaussian response distributions (e.g. COTS-A genuine scores
for the PCSO LS database in Fig. 7a), the error terms must fol-
low Gaussian distribution. Figure 8a shows normal probability
plots of the level-1 residuals, εij , from fitting Model BT to
genuine scores from the PCSO LS database. Since significant
departure from linearity is observed at the tails, we cannot
verify that the model assumptions hold; normal probability
plots of random effects, b0i and b1i, also depart from linearity
(Figs. 8b, 8c). This behavior was observed for other models
as well, precluding the use of standard errors for formal
hypothesis tests of parameters [26].

In situations where parametric model assumptions are vio-
lated, it is common to resort to non-parametric bootstrap to es-
tablish confidence intervals for the parameter estimates. Hence,
for the PCSO LS database, we conduct a non-parametric
bootstrap by case resampling [26]; 1,000 bootstrap replicates
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TABLE IV: Bootstrap results for mixed-effects models on the PCSO LS database (COTS-A genuine scores)

Model A Model BT Model CT Model CA Model D

FIXED EFFECTS (95% CONFIDENCE INTERVALS):

(INTERCEPT) β00
0.02736 0.67343 0.72258 0.71267 0.51576

(0.01711, 0.03755) (0.66238, 0.68490) (0.69048, 0.75563) (0.68134, 0.74335) (0.40727, 0.62394)

TIME β10
−0.13640 −0.13639 −0.13772 −0.13718

(−0.13792,−0.13494) (−0.13792,−0.13493) (−0.13922,−0.13630) (−0.14257,−0.13155)

AGE GROUP β01
−0.00160 0.13676 0.01199

(−0.00265,−0.00055) (0.13490, 0.13854) (0.00472, 0.01891)

AGE GROUP × TIME β11
0.00002#

(−0.00016, 0.00020)

AGE GROUP2 β02
−0.00020

(−0.00032,−0.00009)

VARIANCE COMPONENTS:a

Level-1 Residual σ2
ε 0.60762 0.39115 0.39116 0.40781 0.39117

Random Intercepts σ2
0 0.38409 0.32433 0.32393 0.78544 0.32311

Random Slopes σ2
1 0.00283 0.00283 0.00060 0.00283

Covariance σ01 −0.00386 −0.00385 −0.01725 −0.00382

GOODNESS-OF-FIT:b

AIC 333433 287016 287006 288148 286985

BIC 333462 287074 287075 288217 287073

Deviance 333427 287004 286992 288134 286967

aConfidence intervals for variance components have been omitted due to space limitations.
bGoodness-of-fit values are the mean values of the 1,000 bootstrap samples.

are generated by sampling 18,007 subjects with replacement.
Multilevel models are fit to each bootstrap replicate, and
the mean parameter estimates over all 1,000 bootstraps are
reported. Tests for fixed effects parameters can be conducted
by examining the bootstrap confidence intervals.10 Table IV
gives the bootstrap parameter estimates (with 95% confidence
intervals), variance components, and goodness-of-fit for the
multilevel models in Table III.

B. Unconditional Means Model

The simplest mixed-effects model is the unconditional
means model, which partitions the total variation in compari-
son scores by subject. Denoted Model A in Table III, and with
composite form of

yij = β00 + b0i + εij , (10)

b0i is the subject-specific mean and β00 is the grand mean.
Similar to analysis of variance (ANOVA), Model A provides
initial estimates of the within-subject variance σ2

ε (i.e. devia-
tions around each subject’s own mean comparison score) and
the between-subject variance σ2

0 (i.e. deviations of subject-
specific means around the grand mean). The intraclass corre-
lation coefficient (ICC) quantifies the proportion of between-
subject variation in the response, ρ = σ2

0/(σ
2
0 +σ2

ε). Variance
components for Model A shown in Table IV indicate that
between-subject differences account for 38.8% (ρ = 0.3873)
of the total variation in genuine scores from the PCSO LS
database. Baseline goodness-of-fit measures are also shown in
Table IV.

Further comparisons of models depend on whether the
successive model has included a time-invariant (e.g. gender,
race) or time-varying (e.g. face quality, age) covariate to the
baseline model. For both cases, pseudo-R2 statistics can be

10The null hypothesis of the parameter value equal to 0 can be rejected at
significance of 0.05 if the 95% confidence interval does not contain 0.

calculated to measure the proportional reduction in variance
attributable to additional covariates. For addition of time-
invariant predictors, we can examine the level-2 variance
components (e.g. σ2

0 for Model A); Note that time-invariant
predictors cause no change in the level-1 residual variance
σ2
ε . For time-varying predictors, we can examine proportional

reductions in the level-1 residual variance.

C. Unconditional Growth Model: Elapsed Time
The next model to consider in longitudinal analysis is the

unconditional growth model that includes the time-related
covariate. In our case, we add elapsed time, 4Tij , as well
as random effects for slopes, b1i to Model A, resulting in
Model BT. Table IV shows that Model BT estimates that
PCSO LS genuine scores decrease by 0.1364 standard devi-
ations per one-year increase in elapsed time (see solid black
line in Fig. 9). Comparing the level-1 residual variation of
Models A and BT, elapsed time explains 35.6% of the variation
in a given subject’s genuine scores around his/her own average
genuine score.11

Longitudinal change estimated by Model BT implies that
the population-mean trend will drop below the thresholds for
0.001% and 0.01% FAR after 13.5 and 19.1 years elapsed
time, respectively. However, this only provides insight into
performance on the average (i.e. typical) subject in the pop-
ulation. Figure 9 plots a region of two standard deviations of
subject-specific deviations around the population-mean trend
and shows that subjects can have individual trends that are
quite different from the population-mean. Since two standard
deviations is approximately 95% of a distribution, this figure
indicates that genuine scores for 95% of the population will
remain above the threshold at 0.01% FAR for up to 5 years
elapsed time. From 5 to 10 years elapsed time, an additional
14% (1σ) of the population will begin to drop below the 0.01%
FAR threshold.

11Using pseudo-R2 = (σ2
ε(A)− σ2

ε(BT ))/σ
2
ε(A).
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Fig. 9: Model BT on COTS-A genuine scores from the
PCSO LS database. The bootstrap-estimated population-mean
trend is shown in black (confidence intervals are too small to
be visible). The blue band plots two standard deviations of the
subject-specific intercepts and slopes around the population-
mean trend; dashed red lines additionally add σε to the subject
deviations. Hence, approximately 95% of the subjects lie
within the blue band, but scores around their trends can further
extend to the red dashed lines. Note that the thresholds (based
on the full impostor distribution of PCSO LS) at 0.001%,
0.01%, and 0.1% FAR for COTS-A are −1.16, −1.93, and
−2.60, respectively.

D. Elapsed Time and Subject Age Group

We next investigate whether the population-mean trends
in genuine scores over time depend on a subject’s absolute
age (i.e. whether variation in subject-specific trends observed
in Model BT can be explained by differences in subject
age). Firstly, whether considering face recognition perfor-
mance as a function of age at enrollment and elapsed time,
f(AGEie,4Tij), or age at enrollment and age of query
image, f(AGEie,AGEij , both Models CT and CA result in
similar estimates of rates of change due to elapsed time, as
well as a signifcant effect of age at enrollment. However,
note the difference between the magnitude of the estimated
β01 coefficients in Table IV for Models CT and CA. Recall
that β01 in Model CT is the true between-subject effect of
AGEie because 4Tij at level-1 uses AGEie as a centering
constant for each subject, whereas β01 in Model CA actually
estimates the difference between the longitudinal change and
the effect of age at enrollment. Hence, from the relatively small
magnitude of β01 in Model CT, we can conclude that the effect
of age at enrollment is statistically significant, but a 100-year
increase in age at enrollment is required for the change in
genuine scores to be of the same order of magnitude as a
one-year increase in elapsed time.

To further test the complexity of the effects of age at
enrollment, we add additional terms associated with AGEie

to Model CT, resulting in Model D (recall Table III). The
hypotheses of interest are:

1) Older subjects are easier to recognize than younger
subjects, and

2) Younger subjects age at faster rates than older subjects.
These two hypotheses manifest in younger subjects having
higher genuine scores, on average, and steeper negative rates of
change. Note that the significance of the AGEie term in Model
CT actually suggests a negative linear relationship between age
at enrollment and genuine scores.

Table IV shows that the interaction term AGEie×4Tij in
Model C is not significant because the 95% confidence interval
for β11 contains zero; hence, we cannot conclude that subject
enrollment age has a linear effect on rates of change in COTS-
A genuine scores for the PCSO LS database. The statistically
significant β02 coefficient indicates a quadratic relationship
between subject enrollment age and intercepts, and goodness-
of-fit measures are lower compared to Model BT. However,
further comparing to Model BT, level-2 variation in random
effects for intercepts (σ2

0) is only reduced by 0.4% after includ-
ing AGEie terms. The differences between scores for different
ages at enrollment are marginal compared to the change in
scores due to elapsed time; the change in score between a a 20
year-old and a 30 or 50 year-old (at enrollment) is equivalent
to only 7 and 5 months of elapsed time (longitudinal change),
respectively.

The relatively small, arguably marginal, effects of subject
age at enrollment could be explained as follows: (i) This
particular matcher, COTS-A, is not largely sensitive to subject
age. (ii) The PCSO LS database is limited in that the age
range is primarily 18–60 years old (473 subjects older than
60). Additional data for both younger and older subjects may
result in a larger effect of subject age. (iii) The relationship
between elapsed time and subject age is more complex than
our models allow for. For example, Model C does not account
for whether subjects with enrollment age of 20 years have
query images spanning 21–26 or 31–36 years old. Figure 10
shows that this type of scenario is present in the highly time-
unstructured PCSO LS database. (iv) There are significant
omitted covariates, particularly at level-1 (within-subject).

E. Face Quality

Adding level-2 covariates (i.e. time-invariant values for each
subject, such as AGEie) cannot improve the fit of the model
at level-1 (within-subject). Table IV shows that the level-1
residual variation σ2

ε (i.e. deviation of scores around each
subject’s own linear trend) is quite large when time is the
only level-1 covariate for all models considered thus far. One
standard deviation of level-1 residual variation estimated by
Model BT (and similarly Models CT and D) is equivalent
to 4.6 years of elapsed time (calculated as

√
σ2
ε/β10 =√

0.39117/−0.13718). This is visually shown by the dotted
red lines in Fig. 9.

Level-1 residual variation can only be reduced by time-
varying covariates; in this section we investigate whether face
image quality measures can be used to improve the model fit.
The quality measures considered are interpupillary distance
(IPD) and a “frontal” score, both of which are output by
COTS-A. While higher frontalness indicates better quality, the
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Fig. 10: Histogram of number of subjects for time span (age of
oldest image minus age of youngest image) versus subject age
at enrollment (age of youngest image) for the 18,007 subjects
in the PCSO LS database.
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Fig. 11: A boxplot of interpupillary distances (IPDs) versus
year of acquisition shows that mean IPDs systematically
changed over time for the PCSO LS database, likely due to
booking stations adhering to face imaging standards in more
recent years.

range of the frontal score has little meaning, since its com-
putation is proprietary. We standardize the frontalness score
so we can interpret model parameters as standard deviations
from the mean of the frontalness scores from all images in
PCSO LS.

First, we fit models with a quality measure, either IPD or
frontalness, as the only covariate (including separate measures
for both enrollment and query images). In summary, we found
that neither of the quality measures alone explain variation in
genuine scores as well as Model BT with only elapsed time
as covariate (details are omitted due to space limitations).

Second, we add the quality measures to Model BT such that
the new level-1 (within-subject) model is:

yij = ϕ0i + ϕ1i4Tij + ϕ2iQij + ϕ3iQij4Tij + εij , (11)

TABLE V: Bootstrap results for mixed-effects models with
elapsed time and face quality covariates for the PCSO LS
database (COTS-A genuine scores)

Model QF Model QI Model QFI

LEVEL-1 RESIDUAL VARIANCE:
σ2
ε 0.33022 0.35385 0.32175

GOODNESS-OF-FIT:
AIC 275108 281296 273643

BIC 275283 281471 273848

Deviance 275072 281260 273601

aConfidence intervals for variance components have been
omitted due to space limitations.
bGoodness-of-fit are the mean of the 1,000 bootstrap samples.

TABLE VI: Elapsed times in years for when population-mean
trends in genuine scores drop below the decision thresholds at
0.001% and 0.01% FAR for different measures related to face
quality (frontalness and IPD) of the enrollment image Qie and
the query image Qij

Qie Qij 0.001% FAR 0.01% FAR

Fr
on

ta
l −1σ −1σ 10.9 15.6

µ µ 13.0 18.4
1σ 1σ 16.8 23.0

IP
D

100 pixels 100 pixels 13.8 19.4
100 pixels 120 pixels 14.0 20.0
120 pixels 120 pixels 13.0 18.4

and the level-2 (between-subject) model is:

ϕ0i = β00 + β01Qie + b0i,

ϕ1i = β10 + β11Qie + b1i,

ϕ2i = β20 + β21Qie + b2i,

ϕ3i = β30,

(12)

where Qie and Qij denote the quality measure of the enroll-
ment and jth query images of subject i, respectively.

Table V gives estimated level-1 residual variation and
goodness-of-fit for models with frontalness, IPD, and both
frontalness and IPD (Model QF, QI and QFI, respectively).
Model QF has a better overall fit than Model QI. Table VI
gives the elapsed times for when population-mean scores cross
thresholds at 0.001% and 0.01% FAR for different values
of frontalness and IPD. Note how changing frontalness has
a greater impact on when population-mean genuine scores
cross the thresholds than changes in IPD. Model QFI with
both measures of quality further reduces the level-1 residual
variation and goodness-of-fit values.

The values of 100 and 120 pixels for IPD in Table VI were
chosen because we observed systematic changes in IPDs over
time (see Figure 11); in particular, mean IPD varies around
100 pixels from 1994–2002 but increases to a consistent
∼120 pixels after the year 2003. This observation, along with
correspondence with Pinellas County Sheriff’s Office, suggests
that booking agencies began to adopt imaging standards during
the years 2001–2003. To investigate whether this aspect of
the data confounds the estimation of longitudinal effects (face
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TABLE VII: Mixed-effects model results for the LEO LS
database

Model A Model BT Model CT Model CA Model D

FIXED EFFECTS (STANDARD ERRORS):

(INTERCEPT) β00
0.00368 0.53953 0.54676 0.56094 0.08944

(0.00981) (0.01273) (0.03249) (0.03413) (0.10566)

TIME β10
−0.16994 −0.16994 −0.17028 −0.19801

(0.00231) (0.00231) (0.00211) (0.00764)

AGE GROUP β01
−0.00025 0.16971 0.03464

(0.00105) (0.00234) (0.00682)

AGE GROUP

× TIME
β11

0.00098

(0.00025)

AGE GROUP2 β02
−0.00060

(0.00010)

VARIANCE COMPONENTS:

Level-1 Residual σ2
ε 0.59854 0.42755 0.42755 0.45174 0.42745

Intercepts σ2
0 0.40091 0.55433 0.55417 1.10361 0.55164

Slopes σ2
1 0.00585 0.00584 0.00063 0.00578

Covariance σ01 −0.03173 −0.03171 −0.02165 −0.03161

GOODNESS-OF-FIT:

AIC 68705 62647 62649 62811 62606

BIC 68730 62697 62707 62868 62679

Deviance 68699 62635 62635 62797 62588

images in later years may be of higher quality), we also tested
for a difference in slope prior to 2003 versus after 2003 by
using a piecewise linear formulation for the mixed-effects
model (with a breakpoint at 2003). We found that slope after
2003 was significantly flatter (less negative).

Additional face quality factors known to cause changes in
face recognition performance are illumination, expression, and
occlusions. However, there are no widely accepted methods
for quantifying such variations in face images and doing so is
beyond the scope of this paper.

F. LEO LS Database

Table VII gives results for the models in Table III fit to
COTS-B genuine scores from the LEO LS database; fixed-
effects parameter estimates are given with standard errors
(bootstrapping was not needed for LEO LS models because
the error terms followed Gaussian distributions). Firstly, Model
A estimates that 40% of the total variation in genuine scores is
due to between-subject differences in subject-specific average
scores. The longitudinal change in genuine scores estimated
by both Model BT and Model CT indicates that a one
year increase in elapsed time decreases genuine scores by
β10 = −0.16994 standard deviations. Model CT also estimates
that a one year between-subject increase in age at enrollment
decreases genuine scores by β01 = −0.00025 standard devi-
ations. Although this between-subject effect of age is orders
of magnitude smaller than the longitudinal effect, is is still
significantly different from β10. The significance of age at
enrollment can also be seen in Model CA where the null
hypothesis of β01 = 0 is rejected at p = 0 significance
level. Although both models show reductions in goodness-of-
fit compared to Model A, the goodness-of-fit values (as well as
level-1 residual variation σ2

ε ) for Model CT are lower than for
Model CA, indicating that elapsed time as the level-1 covariate
better explains the variation in comparison scores than the age
of the query image as the level-1 covariate.
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Fig. 12: Model BT on COTS-B genuine scores from the
LEO LS database. The population-mean trend is shown in
black. The blue band plots two standard deviations of the
subject-specific intercepts and slopes around the population-
mean trend; dashed red lines additionally add σε to the subject
deviations. Hence, approximately 95% of the subjects lie
within the blue band, but scores around their trends can further
extend to the red dashed lines. Note that the thresholds (based
on the full impostor distribution of LEO LS) at 0.001%,
0.01%, and 0.1% FAR for COTS-B are −2.25, −2.54, and
−2.84, respectively (all of which are below the lower limit of
the y-axis).

The significant interaction term AGEie×4Tij in Model C
indicates that longitudinal change in comparison scores tends
to vary with subject’s age at enrollment; a 10 year in-
crease in subject’s age results in a longitudinal slope that is
β11 = −0.00980 standard deviations steeper. Population-mean
rates of change range from −0.17841 to −0.14901 standard
deviations per year for subjects with age at enrollment of 20
and 50 years, respectively (calculated as β10+β11AGEie). The
significant β02 coefficient indicates a quadratic relationship
between subject age group and intercepts (p < 0.001).

To test for effects of subject sex and race, we add sex
and race to Model D as both fixed effects and interactions
with elapsed time. Results indicate that intercepts (i.e. genuine
scores at hypothetical 4Tij = 0) are 0.05651 and 0.42375
standard deviations higher for black and male subjects, respec-
tively (so, black-male subjects have intercepts that are 0.48026
standard deviations higher than white-female subjects). Slopes
are not statistically different for black and white subjects,
but the population-mean slope for males is 0.02106 steeper
(i.e. more negative) than for females. These population-mean
trends are shown in Fig. 13 for different ages at enrollment;
while male genuine scores decrease at slightly faster rates
than female scores, males are clearly easier to recognize
with higher genuine scores overall. Fig. 13 also shows that
the differences between subject race are minor compared to
differences between males and females.
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Fig. 13: Model C with additional subject sex and race covari-
ates for COTS-B genuine scores from the LEO LS database.
Population-mean trends are plotted by subject demographics of
sex and race, in addition to five different ages at enrollment (20
to 60 years). Each trend line represents seven years of elapsed
time from the age at enrollment. For example, the solid blue
line beginning at AGEij = 20 years represents the population-
mean trend for white males enrolled at age 20. Note that the
thresholds (based on the full impostor distribution of LEO LS)
at 0.001%, 0.01%, and 0.1% FAR for COTS-B are −2.25,
−2.54, and −2.84, respectively (all of which are below the
lower limit of the y-axis).

VI. DISCUSSION

We presented a longitudinal study of automatic face recog-
nition, utilizing two large operational databases of mugshots,
PCSO LS (147,784 images of 18,007 subjects) and LEO LS
(31,852 images of 5,636 subjects), where each subject has at
least four face images acquired over at least a five-year time
span. Mixed-effects statistical models were used to analyze
variation in genuine scores due to elapsed time, age, sex,
and race, as well as subject-specific differences in scores (i.e.
biometric zoo effects). Face comparison scores were obtained
from a state-of-the-art COTS matcher for both the PCSO LS
and LEO LS databases. Based on our analysis of these two
databases, we make the following observations:

1) Population-mean trends indicate that genuine scores sig-
nificantly decrease with increasing elapsed time, to no
surprise. However, the population-mean trends, if sus-
tained, estimate that average genuine scores do not fall
below thresholds at 0.01% FAR until after 15 years
elapsed time for both databases.

2) Analysis of subject-specific variations in aging trends
suggests that genuine scores for 95% of the population
will still remain above thresholds at 0.01% FAR up to
approximately 5 years elapsed time.

a) But going from 5 years elapsed time to 10 years
elapsed time, more subjects start to quickly fall below
the 0.01% FAR threshold.

b) A rough approximation is that when matching a query
image after 10 years elapsed time since enrollment,

20% of the subjects would experience false rejection
errors.

3) We observed a downward quadratic trend in average
genuine scores with respect to age at enrollment (with
maximum scores at approximately 30 years-old). Of the
ages studied in our analysis, older subjects (55–60) were
more difficult to recognize (with the lowest average
genuine scores). However, rates of change in genuine
scores over time get flatter (less negative) with increasing
age at enrollment. This suggests that younger individuals
age faster than older individuals.

a) While the effects of age at enrollment considered
here were statistically significant, they resulted in only
marginal reductions in the variation in subject-specific
trends. Hence, again, while the population-mean trends
for all subject age groups remain above thresholds at
low FARs, the subject-specific deviations still indicate
that false rejections due to aging are an issue.

b) Caveat: Our models make no distinction between, for
example, two subjects with age at enrollment of 20
years-old but with query images of ages 21-27 versus
26-33. These two subjects are considered to have the
same effect of age.

4) Subject sex has a larger effect on genuine scores and
rates of change than subject race. Both COTS matchers
compute significantly higher genuine scores for males
than for females. The two COTS matchers/databases
did not agree on the direction of the effect of subject
race (black/white), but the magnitude of the effect is
consistently minor compared to the effect of subject sex.

a) Rates of change in genuine scores (slopes) tend to
depend more on subject sex than race (effect of race on
slopes was not significant for COTS-B on the LEO LS
database); male scores decrease faster over time than
female scores.

5) While the model fit improved for more complex models
incorporating simple measures of face quality (for the
PCSO LS database), the models are still limited for
prediction purposes.

a) The smallest level-1 residual variation for the most
complex model considered for PCSO LS was σ2

ε =
0.33, so one standard deviation around a given sub-
ject’s trend means that genuine scores can change by
±0.57 standard deviations of the full genuine score
distribution. This is equivalent to the change in scores
due to approximately 3.5 years of elapsed time (if
β10 = −0.165). Stated otherwise, at a given value
of elapsed time, short-term variations such as illumi-
nation, expression, etc. can cause genuine scores to
change by the same amount as ±3.5 years of aging.

b) Comparatively, short-term variations in iris and finger-
print genuine scores was orders of magnitudes smaller
than or equivalent to, respectively, the decrease in
scores across 10 and 16 years elapsed time (the full
periods of time of the iris and fingerprint databases
used in longitudinal studies [8] and [9]). This suggests
that elapsed time plays a minor factor in iris and
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fingerprint scores compared to other factors like pupil
dilation and fingerprint image quality.

In the absence of a reliable face quality measure, mixed-
effects models quickly become very complicated for anal-
ysis when various factors are considered (such as IPD, a
measure of frontalness, etc.), especially considering that both
the quality of the enrollment and query face images should
be considered. Longitudinal analysis, in general, is a very
difficult problem, and to the best of our knowledge, no proper
statistical analysis has yet been conducted for studying face
recognition performance over long periods of time. In this
paper, we attempted to analyze the covariates of interest that
were available to us (elapsed time, age, sex, race, etc.), but
there are additional covariates that cannot be accounted for
because we do not have the information (e.g. camera charac-
teristics, IPD for the LEO LS database, expression variations,
etc.). Additionally, observations detailed in this paper are both
matcher and database dependent. However, the longitudinal
study on automatic face recognition presented here utilizes
two of the largest, deepest, and longest (in terms of number
of subjects, number of images per subject, and time spans
of subject images, respectively) face image databases studied
to date, and the COTS matchers are representative of current
state-of-the-art.

Future work will include: (i) Evaluation of face identifi-
cation (both closed-set and open-set) performance over time.
Statements about recognition accuracy in this paper apply
to face verification scenarios (i.e. one-to-one comparisons)
operating with a global threshold. (ii) Models for all pairwise
comparisons to include 4Tijk and AGEijk as two time-
varying level-1 covariates, and a covariance structure that can
account for the pairwise relationships. (iii) Investigation into
a single face quality measure for mugshot type face images.

ACKNOWLEDGMENT

The authors would like to thank Patrick Grother and Mei
Ngan at the National Institute of Standards and Technology
(NIST) for collaboration in providing covariates and COTS-B
comparison scores for the LEO LS database.

REFERENCES

[1] P. Grother and M. Ngan, “FRVT: Performance of face identification
algorithms,” NIST Interagency Report 8009, May 2014.

[2] D. Wang, C. Otto, and A. K. Jain, “Face search at scale: 80 million
gallery,” http://arxiv.org/abs/1507.07242, Jul. 2015.

[3] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the
gap to human-level performance in face verification,” in Proc. CVPR,
2014.

[4] B. Klare and A. K. Jain, “Face recognition across time lapse: On learning
feature subspaces,” in Proc. IJCB, 2011.

[5] C. Otto, H. Han, and A. Jain, “How does aging affect facial compo-
nents?” in ECCV WIAF Workshop, 2012.

[6] H. Ling, S. Soatto, N. Ramanathan, and D. W. Jacobs, “Face verification
across age progression using discriminative methods,” IEEE Transac-
tions on Information Forensics and Security, vol. 5, no. 1, pp. 82–91,
Mar. 2010.

[7] M. Bereta, P. Karczmarek, W. Pedrycz, and M. Reformat, “Local
descriptors in application to the aging problem in face recognition,”
Pattern Recognition, vol. 46, no. 10, pp. 2634–2646, Oct. 2013.

[8] P. Grother, J. R. Matey, E. Tabassi, G. W. Quinn, and M. Chumakov,
“IREX VI: Temporal stability of iris recognition accuracy,” NIST
Interagency Report 7948, Jul. 2013.

[9] S. Yoon and A. K. Jain, “Longitudinal study of fingerprint recognition,”
Proc. National Academy of Sciences, vol. 112, no. 28, pp. 8555–8560,
Jul. 2015.

[10] L. Best-Rowden and A. K. Jain, “A longitudinal study of automatic face
recognition,” in Proc. International Conference on Biometrics, 2015.

[11] K. Ricanek and T. Tesafaye, “MORPH: A longitudinal image database
of normal adult age-progression,” in Proc. FGR, 2006.

[12] A. Lanitis, C. J. Taylor, and T. F. Cootes, “Toward automatic simulation
of aging effects on face images,” IEEE Trans. on PAMI, vol. 24, no. 4,
Apr. 2002.

[13] Y. M. Lui, D. Bolme, B. A. Draper, J. R. Beveridge, G. Givens, and
P. J. Phillips, “A meta-analysis of face recognition covariates,” in Proc.
BTAS, 2009.

[14] D. Gong, Z. Li, D. Lin, J. Liu, and X. Tang, “Hidden factor analysis
for age invariant face recognition,” in Proc. ICCV, 2013.

[15] F. Juefei-Xu, K. Luu, M. Savvides, T. D. Bui, and C. Y. Suen, “Inves-
tigating age invariant face recognition based on periocular biometrics,”
in Proc. IJCB, 2011.

[16] M. Erbilek and M. Fairhurst, “A methodological framework for inves-
tigating age factors on the performance of biometric systems,” in Proc.
Multimedia and Security, 2012.

[17] J. R. Beveridge, G. H. Givens, P. J. Phillips, and B. A. Draper, “Factors
that influence algorithm performance in the face recognition grand
challenge,” CVIU, vol. 113, pp. 750–762, 2009.

[18] J. D. Singer and J. B. Willett, Eds., Applied Longitudinal Data Analysis:
Modeling Change and Event Occurrence. New York: Oxford Univ.
Press, Inc., 2003.

[19] G. M. Fitzmaurice, N. M. Laird, and J. H. Ware, Applied Longitudinal
Analysis, 2nd ed. Hoboken, New Jersey: John Wiley & Sons, Inc.,
2011.

[20] S. Galbraith, J. Bowden, and A. Mander, “Accelerated longitudinal
designs: An overview of modelling, power, costs and handling missing
data,” Statistical Methods in Medical Research, vol. 0, no. 0, pp. 1–25,
Aug. 2014.

[21] G. Doddington, W. Liggett, A. Martin, M. Przybocki, and D. Reynolds,
“Sheep, goats, lambs and wolves: A statistical analysis of speaker
performance in the nist 1998 speaker recognition evaluation,” in Proc.
ICSLP, 1998.

[22] N. Yager and T. Dunstone, “The biometric menagerie,” IEEE Trans. on
PAMI, vol. 32, no. 2, pp. 220–230, Feb. 2010.

[23] A. Bell and K. Jones, “Explaining fixed effects: Random effects mod-
eling of time-series cross-sectional and panel data,” Political Science
Research and Methods, vol. 3, no. 1, pp. 133–153, Jan. 2015.

[24] J. M. Neuhaus and J. D. Kalbfleisch, “Between- and within-cluster
covariate effects in the analysis of clustered data,” Biometrics, vol. 54,
no. 2, pp. 638–645, Jun. 1998.

[25] M. D. Begg and M. K. Parides, “Separation of individual-level and
cluster-level covariate effects in regression analysis of correlated data,”
Statistics in Medicine, vol. 22, no. 16, pp. 2591–2602, Aug. 2003.

[26] R. van der Leeden, F. M. Busing, and E. Meijer, “Bootstrap methods
for two-level models,” in Multilevel Conf., 1997.


