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Abstract—The two underlying premises of automatic face recognition are uniqueness and permanence. This paper investigates the
permanence property by addressing the following: Does face recognition ability of state-of-the-art systems degrade with elapsed time
between enrolled and query face images? If so, what is the rate of decline w.r.t. the elapsed time? While previous studies have
reported degradations in accuracy, no formal statistical analysis of large-scale longitudinal data has been conducted. We conduct such
an analysis on two mugshot databases, which are the largest facial aging databases studied to date in terms of number of subjects,
images per subject, and elapsed times. Mixed-effects regression models are applied to genuine similarity scores from state-of-the-art
COTS face matchers to quantify the population-mean rate of change in genuine scores over time, subject-specific variability, and the
influence of age, sex, race, and face image quality. Longitudinal analysis shows that despite decreasing genuine scores, 99% of
subjects can still be recognized at 0.01% FAR up to approximately 6 years elapsed time, and that age, sex, and race only marginally
influence these trends. The methodology presented here should be periodically repeated to determine age-invariant properties of face
recognition as state-of-the-art evolves to better address facial aging.

Index Terms—face recognition, facial aging, longitudinal study, mixed-effects models, multilevel models, random effects.
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1 INTRODUCTION

FACIAL recognition technology has rapidly matured over
the last two decades to the point where it is now uti-

lized in many commercial and law enforcement applications
for person recognition (e.g., mobile face unlock and de-
duplication of driver’s licenses). Automatic face recognition
systems operating on face images acquired in controlled
conditions, such as mugshots or driver’s license photos,
have achieved accuracies as high as 99% true accept rate
(TAR) at a false accept rate (FAR) of 0.1% in large-scale eval-
uations conducted by the National Institute of Standards
and Technology (NIST) [1].

Technological advancements in automatic face recogni-
tion have progressively tackled challenges caused by vari-
ations in facial pose, illumination, and expression (collec-
tively called PIE variations). Current efforts (e.g., [2], [3]) are
breaking ground on robustness to “faces in the wild” (e.g.,
images posted on the web) to account for PIE, occlusion,
and partial face images. Comparatively, aging variations
(i.e., large time lapse between pairs of images being com-
pared) have received considerably less attention in the face
recognition community.

Published studies on facial aging in the context of au-
tomatic face recognition have primarily employed cross-
sectional techniques where a population of individuals who
differ in age are analyzed according to differences between
age groups [1], [4], [5], [6], [7]. However, cross-sectional
analysis cannot adequately explore age-related effects be-
cause assumptions of independent observations require that
there be only one measurement per individual in the study.
Past and future measurements are either not considered or
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(a) Ages 30.5 and 39.6 (0.423) (b) Ages 32.2 and 40.3 (0.433)

(c) Ages 29.5 and 38.3 (0.498) (d) Ages 39.2 and 48.6 (0.500)

Fig. 1: Face image pairs of four subjects from the PCSO LS
mugshot database which are age-separated by eight to ten
years. Similarity scores from a state-of-the-art face matcher
(COTS-A) are shown in parentheses (score range is [0.0,
1.0]). The thresholds at 0.01% and 0.1% FAR are 0.533 and
0.454, respectively. Hence, all of these genuine pairs would
be falsely rejected at 0.01% FAR, while the two female
subjects, (a) and (b), would also be rejected at 0.1% FAR.

are summarized into a single measurement which loses in-
formation; trends of individuals over time are not analyzed.
Hypotheses about facial aging are, instead, longitudinal by
nature and require multiple measurements of the same
individuals over time to reveal trends in comparison scores
with respect to facial aging.

To what extent facial aging affects the performance of
automatic face recognition systems is of more than aca-
demic concern. Because the appearance of the face changes
throughout a person’s life, most identity documents con-
taining face images expire after a designated period of
time; U.S. passports are only valid for five years for minors
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and ten years for adults, while U.S. driver’s licenses typi-
cally require renewal every five years. Additionally, to our
knowledge, ensuring that a new (more recent) photo has
been submitted for renewal is not verified, especially for
renewals by mail or online. Validity periods of such identity
documents may be too long if these photos are to be used
with state-of-the-art face matching systems. Fig. 1 shows
that elapsed times of eight to ten years between two face
images can cause false non-match errors. Studying how the
actual comparison scores change over time is important for
understanding the implications of operating with a global
threshold1 (e.g., de-duplication and other open-set scenar-
ios) on face recognition accuracy.

While longitudinal studies for automatic iris recognition
[8] and fingerprint recognition [9] have been published, to
our knowledge, no large-scale longitudinal study of auto-
matic face recognition performance has been reported in
the literature. We aim to fill this gap by addressing the
following question: How robust are state-of-the-art automatic
face recognition systems to facial aging? In this paper, we
conduct a longitudinal analysis of the performance of state-
of-the-art COTS face matchers on two longitudinal face
image databases consisting of repeat criminal offenders
(mugshots) from two different law enforcement agencies
(see Table 2). The COTS matchers used here are among the
top-ranked performers in the FRVT 2013 face recognition
evaluation [1]. The contributions of this paper can be sum-
marized as follows:

1) Longitudinal analysis of two of the largest longitudinal
databases studied to date. LEO LS contains 31,852 im-
ages of 5,636 subjects, and PCSO LS contains 147,784
images of 18,007 subjects, where the average time span
between a subject’s multiple image acquisitions is 6.1
and 8.5 years, respectively. Such large-scale databases
allow for evaluation of performance at low FAR values
(e.g., 0.01% and 0.1%). Previous studies (e.g., [4], [5])
evaluated at 1% FAR and higher.

2) Determine the age-invariant properties of current state-
of-the-art face matchers. Rates of change over time in
genuine comparison scores are analyzed using mixed-
effects regression models, which are appropriate for
longitudinal data. In doing so, we quantify (i) the
population-mean rate of change in genuine scores over
time and (ii) the variability in subject-specific longitu-
dinal trends (i.e., how closely individuals in the pop-
ulation follow the population-mean trend). We also
investigate the influence of age at enrollment, sex, race,
and face image quality.

3) Methodology and analysis tools for advancing the devel-
opment and evaluation of age-invariant face recognition
algorithms. The analysis conducted in this paper can
be applied to any matcher and any database. Periodic
reevaluation will be necessary as face recognition tech-
nology evolves to better address facial aging.2

Our previous longitudinal analysis of automatic face
recognition was first published in [10]. The present work

1. A biometric system operating with a global threshold uses the
same decision threshold for all subjects across all comparisons.

2. To facilitate longitudinal study on other face datasets and match-
ers, the code of our longitudinal analysis will be made publicly avail-
able at http://biometrics.cse.msu.edu/.

extends and refines our previous study in significant ways.
The primary differences are as follows. (i) We study longitu-
dinal effects of both aging (elapsed time) and age (biological
age); [10] only studied elapsed time. (ii) Genuine scores are
computed to represent a scenario where the youngest image
of each subject is enrolled in a gallery (a subject with ni total
images has ni − 1 scores, whereas [10] computed all

(
ni

2

)
genuine scores). Comparing query images to an enrollment
image (a fixed point in time) simplifies the complex correla-
tion structure that is present for all pairwise comparisons.
(iii) We analyze an additional longitudinal face database
(namely, LEO LS) from a different law enforcement agency
than the PCSO LS database used in [10], and a different
COTS matcher is used to obtain genuine scores for LEO LS.
Still, longitudinal analysis shows similar results for both
databases and matchers.

The remainder of this paper is organized as follows. Sec-
tion 2 highlights related work on facial aging as it pertains to
automatic face recognition. Section 3 details the two longitu-
dinal face databases used in this study. Section 4 explains the
methodology used for longitudinal analysis. Section 5 gives
results for both the PCSO LS and LEO LS face databases.
Section 6 summarizes our observations about the current
longitudinal capabilities of automatic face recognition.

2 RELATED WORK

Almost all of the published studies that investigate the
effects of facial aging on automatic face recognition perfor-
mance adopt the following approach: (i) divide the database
(face pairs) into partitions depending on age group or time
lapse, (ii) report summary performance measures (e.g., TAR
at fixed FAR) for each partition independently, and then
(iii) draw conclusions from the differences in performance
across the partitions. Such an approach has led to the
following general conjectures [11]: (i) Face recognition per-
formance decreases as the time elapsed between two images
of the same person increases (e.g., [4], [5], [6]). (ii) Faces of
older individuals are easier to recognize/discriminate than
faces of younger individuals (e.g., [1], [6]). See Table 1 for a
summary of these studies.3

Partitioning of data (images or subjects) based on age
group or time lapse is often arbitrary and varies from one
study to another. Erbilek and Fairhurst show that differ-
ent age group partitionings result in different performance
trends for both iris and signature modalities [14]. Further-
more, this cohort-based analysis with summary statistics
cannot address whether age-related performance trends are
due to changes in genuine (same subject) comparison scores,
impostor (different subjects) comparison scores, or both.

Multilevel (hierarchical or mixed-effects) statistical mod-
els have been used for determining important factors (co-
variates) to explain the performance of face recognition
systems. Beveridge et al. [18] apply generalized linear mixed
models to verification decisions (accept or reject) made by
three algorithms in the FRGC Exp. 4 evaluation. In addition
to eight levels of FAR as a covariate, they analyze gender,
race, image focus, eye distances, age, and elapsed time. The
limitations of this study include (i) the maximum elapsed

3. Studies that address developing age-invariant face recognition
algorithms (e.g., [12], [13]) are beyond the scope of this paper.
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TABLE 1: Table of related work on the effects of facial aging on face recognition performance.

Study Database Age or Elapsed Time
Partitions

Summary of Findings

Ling et al. [6]
Passports
(private)

4–11 years elapsed time Degradation in EER saturates after 4 years elapsed time.

FG-NET 0–8, 8–18, and 18+ years old Verification accuracies increase with increasing age group.
Klare and Jain
[4]

PCSO (200,000
mugshots, 64,000
subjects)

0-1, 1-5, 5-10, 10+ years
elapsed time

TARs at 1% FAR are 96.3%, 94.3%, 88.6%, and 80.5% for the listed
elapsed time partitions. Training/testing on different aging
partitions decreases performance in some non-aging scenarios.

Otto et al. [5] MORPH-II 0–1, 1–5 years elapsed time TARs at 1% FAR are 97% and 95% for the listed elapsed time
partitions. The nose is the most stable facial component over time.

Bereta et al. [7] FG-NET 0–5, 6–10, 11–15, 16–20,
21–30, and 30+ years elapsed
time; 23–30, 31–40, 41–50,
and 50+ years old

Identification accuracies of local descriptors (e.g., variants of LBP)
when combined with Gabor wavelet magnitudes become
relatively consistent across absolute ages and age gap groups, but
accuracies are still fairly low for a small gallery.

NIST FRVT [1] Visa images
(19,972 subjects)

baby, kid, pre-teen, teen,
young, parents, older

Error rates (for open-set identification) are higher for younger age
groups when the same threshold is used for all age groups.

EER = equal error rate; TAR = true accept rate; FAR = false accept rate

TABLE 2: Facial Aging Databases

Database
Num.

Subjects
Total Num.

Imgs
Num. Imgs
per Subject

Age Range
(years)

FG-NET [15] 82 1,002
6–18

(avg. 12)
0–69

(avg. 16)

MORPH-II [16] 13,000 55,134
2–53

(avg. 4)
16–77

(avg. 42)
MORPH-II
commercial [16]a 20,569 78,207

1–76
(avg. 4)

15–77
(avg. 33)

CACD [17] 2,000 163,446
n.a.

(avg. 81)
16–62
(n.a.)

LEO LSb 5,636 31,852
4–20

(avg. 6)
12–69

(avg. 31)

PCSO LSb 18,007 147,784
5–60

(avg. 8)
18–83

(avg. 35)
aThis largest version of MORPH-II only has 317 subjects with at least 5 images acquired
over at least 5 years.

bThe longitudinal face image databases used in this study (details in Sec. 3).

time between face images of the same subject is less than
one year, and (ii) it only involves 351 subjects. Poh et al. [19]
utilized regression models to estimate subject-specific bio-
metric (face and speech) performance trends over time, but
the database used only contains 150 subjects and the elapsed
times are less than two years. The longitudinal study on face
recognition in this paper follows the general methodology
of linear mixed-effects statistical models outlined in [8] for
iris recognition and [9] for fingerprint recognition.

The two main databases used for research on facial
aging, including automatic age estimation, age progression,
and age-invariant face recognition, are FG-NET [15] and
MORPH [16]. Panis et al. [20] provide a recent overview
of research that has utilized the FG-NET database. While
the public release of these databases greatly encouraged
progress in these areas, the databases are not suitable for
longitudinal analysis because (i) FG-NET contains only 82
subjects in total, and (ii) MORPH contains only a small
number of subjects with multiple images over time (only 317
subjects have at least 5 images over at least 5 years).4 The

4. Images in FG-NET are relatively unconstrained (scanned from
personal photo collections), while the MORPH databases are mugshots,
similar to LEO LS and PCSO LS used in this paper but with different
database properties (see Table 2).

Cross-Age Celebrity Dataset (CACD) [17] was recently re-
leased, containing 163,446 images of 2,000 celebrities across
10 years. However, because the images were downloaded
from the web (via Google search), the unconstrained quality
makes it difficult to statistically model the effects of facial
aging. Variations in pose, illumination, expression, etc.,
may largely influence the trends in similarity scores. Such
covariates are difficult to quantify in order to “tease out”
these effects from the longitudinal effects, so standardized
imaging (near-frontal, neutral expression, uniform illumi-
nation) is preferable for the longitudinal study conducted in
this paper. Relatively constrained images, such as mugshots,
help to ensure that other effects, such as PIE variations, are
captured in the noise term in the statistical models. For the
above reasons, our longitudinal analysis utilizes two new
longitudinal face databases, detailed in Section 3.

3 LONGITUDINAL FACE DATABASES

Operational face image datasets maintained by government
and law enforcement agencies can contain longitudinal
records of individuals of magnitudes that are infeasible to
collect in laboratory settings (e.g., elapsed times over 10+
years). These agencies routinely collect face images of the
same individuals over time and have been doing so for rel-
atively long durations, primarily for applications involving
driver’s licenses, visa and passport applications/renewals,
frequent travelers, and multiple arrests of repeat criminal
offenders. The sources of face images in our longitudinal
analysis are mugshot bookings. While we acknowledge that
lifestyle factors (e.g., drug5 and alcohol use, trauma, etc.)
may increase aging rates for some individuals in this pop-
ulation (adult repeat criminal offenders), these accelerated
agers are expected to be outliers in the statistical models in
our analysis; the overall trends should be relatively robust
to this factor. Additionally, we were not able to access any
other longitudinal face data. We did attempt to use longitu-
dinal face images from the State Department visa databases.
However, we discovered that roughly 5% of genuine face

5. See Yadav et al. [21] for work specifically on the effects of drug
abuse on face recognition performance.
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PCSO LS Longitudinal Database (147,784 mugshots of 18,007 subjects; avg. of 8 mugshots per subject)
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LEO LS Longitudinal Database (31,852 mugshots of 5,636 subjects; avg. of 6 mugshots per subject)
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Fig. 2: Statistics of the two longitudinal face image databases (PCSO LS and LEO LS) used in this study. (a) and (e) Number
of face images per subject, (b) and (f) the time span of each subject (i.e., the number of years between a subject’s youngest
and oldest face image acquisitions), (c) and (g) demographic distributions of sex (male, female) and race (white, black,
Asian, Indian, unknown), and (d) and (h) the age of the youngest image of each subject (in years).

images were duplicate photo submissions (e.g., an individ-
ual reuses the same photo for a visa renewal application),
so the corresponding inaccurate age information rendered it
unsuitable for longitudinal study.

The two databases used in this longitudinal study (LS),
denoted LEO LS and PCSO LS, are subsets of subjects
and images from two larger mugshot databases initially
consisting of 3.7 and 1.5 million images, respectively. The
following criteria were used to compile the subsets: (i) Each
subject has at least 4 (LEO LS) or 5 (PCSO LS) face images
that were (ii) acquired over at least a 5 year time span, and
(iii) each pair of consecutive images is time-separated by at
least one month. Database statistics are shown in Fig. 2.

The facial variations in the PCSO S and LEO LS
databases are well-controlled because the mugshots adhere
to standards similar to those detailed in the ANSI/NIST-
ITL 2011 face image standards.6 The standards specify that
mugshots should be captured at frontal pose, with neutral
expression, uniform illumination, and a background set to
18% gray, for examples. Because these databases are both
from operational sources, some confounding factors are
still present, such as minor pose and expression variations
(see Fig. 6). We also observed rare occurrences of facial
occlusions or injury, as shown in Fig. 4, but have retained
such images in this study.

For both databases, we only include white and black
race subjects in this study because there are too few subjects
of other races to do a meaningful statistical analysis. Since
human labeling errors pertaining to demographic attributes

6. https://www.nist.gov/itl/iad/image-group/
ansinist-itl-standard-history

(a) (b) (c)

Fig. 3: Three examples of labeling errors in the PCSO LS
face database. All pairs show two different subjects who are
labeled with the same subject ID number in the database.

Fig. 4: Examples of facial occlusions (sunglasses, bandages,
and bruises) in the PCSO LS face database.

and subject ID can be inadvertently introduced in large-
scale legacy databases, we determine the sex, race, and
date of birth of a subject as the majority vote from each
subject’s records to ensure consistent labels within each
subject. Identifying all such errors was not feasible due to
the large size of these databases, but a cursory examination
of the PCSO LS database revealed 134 subject records that
contained multiple identities (Fig. 3). These subject records
were removed from our study.

3.1 LEO LS Face Database
The LEO LS database contains 31,852 images of 5,636 sub-
jects from an operational dataset of law enforcement images.
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TABLE 3: Overall true accept rates (TARs) at fixed false ac-
cept rates (FARs) for various face matchers on the PCSO LS
and LEO LS databases.

0.01% FAR 0.1% FAR 1% FAR

PCSO LS
COTS-A 94.98 97.83 99.14
PittPatt 41.54 58.65 78.30

LEO LS

COTS-B 99.35 99.66 99.84
COTS-2 90.62 94.96 97.92
COTS-3 78.97 86.87 93.49
COTS-4 96.68 98.47 99.31

Each subject has an average of 6 images over an average
time span of 5.8 years (maximum of 8 years). Demographic
makeup of the LEO LS database includes 2,009 white and
3,627 black subjects where 4,922 subjects are males and
714 are females. Subjects in LEO LS are primarily adults,
but there are 656 images of 369 subjects that are younger
than 18 years-old; these may be juvenile7 arrests or they
could be data entry errors. Due to privacy considerations,
we only have access to the comparison scores (both genuine
and impostor), so we cannot show face images from this
database.

3.2 PCSO LS Face Database

The PCSO LS database consists of 147,784 operational
mugshots of 18,007 repeat criminal offenders booked by the
Pinellas County Sheriff’s Office (PCSO) from 1994 to 2010.
Each subject has an average of 8 images over an average
time span of 8.5 years (maximum of 16 years). Demographic
makeup of the PCSO LS database includes 11,002 white
and 7,004 black subjects where 14,882 subjects are males
and 3,124 are females. Example face images from PCSO LS
are shown in Fig. 6. Each booking record in PCSO LS
contains both the date of birth and the date of arrest (actual
dates were unavailable for LEO LS, only the ages were
provided to us).

3.3 Face Comparison Scores

Face comparison scores (similarities) were obtained from
various commercial face matchers with the aim of evalu-
ating current state-of-the-art longitudinal performance. Two
matchers were applied to the PCSO LS database, and com-
parison scores were obtained from four different matchers
for the LEO LS database.8 As shown in Table 3, COTS-A
and COTS-B were the overall most accurate matchers. Due
to space limitations, longitudinal results are only reported
for COTS-A and COTS-B throughout the remainder of the
paper. COTS-A and COTS-B were both among the top-3
performers in the FRVT 2013 [1].

The original mugshot images were input to each COTS
matcher, and a total of 26,216 and 129,773 genuine scores
were computed for the LEO LS and PCSO LS databases,

7. In the United States, a juvenile is typically under the age of 17.
8. Comparison scores and ancillary information (sex, race, age) for

the LEO LS face image database were provided by the Image Group,
National Institute of Standards and Technology (NIST), http://www.
nist.gov/itl/iad/ig/.

8

12

16

20 30 40 50 60 70
Age Span of Subject (years)

E
la

ps
ed

 T
im

e 
(y

ea
rs

)

Fig. 5: Age distribution of a random sample of 200 subjects
from the PCSO LS database. Each line denotes the age span
of a subject (i.e., age of youngest image to age of the oldest
image), separated along the y-axis by the elapsed time for
each subject (i.e., the length of the age span).

respectively, under the scenario where each subject’s set
of face images are compared to his/her enrollment image.
Genuine comparison scores, sij , between the enrollment
and jth face images of subject i were standardized so
yij = (sij−µ)/σ, where µ and σ are the mean and standard
deviation of the genuine scores from all subjects. This stan-
dardized response, yij , is in terms of standard deviations
from the mean of the genuine distribution, which allows
interpretation of coefficients from mixed-effects regression
models as quantifying the change in genuine scores as β
standard deviations per year. Fig. 7 shows the distributions
of COTS-A and COTS-B standardized genuine scores.

The response variable for all mixed-effects models in this
study are standardized genuine comparison scores. How-
ever, to evaluate face recognition performance, trends in
genuine scores should be considered in context with an
impostor distribution. For both the LEO LS and PCSO LS
databases, we computed all possible impostor scores (5.5
million and 11.1 billion, respectively) to calculate thresholds
at different fixed FAR values. The threshold at 0.01% FAR,
for example, is used to determine when genuine scores drop
below the threshold, causing false rejection errors.

4 MIXED-EFFECTS MODELS

Mixed-effects models (also known as random-effects, multi-
level, and hierarchical models) are widely used in various
scientific disciplines for studying data that is hierarchi-
cally structured, including longitudinal data of repeated
observations over time [22], [23]. In our case, face images
are grouped by subject because we have repeated obser-
vations of each individual in our study. When data is
structured in such a manner, responses from the same clus-
ter/group/individual are correlated with each other and
across time (for longitudinal data). Mixed-effects models en-
able analysis of variation in the response (here, standardized
face comparison scores) that occurs at different levels of the
data hierarchy.
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Fig. 6: An example of cross-sectional vs. longitudinal analysis. (a) Face images of six example subjects from the PCSO LS
database. The enrollment face image (leftmost column) is the youngest image of each subject, and all query images are
in order of increasing age. In this study, genuine similarity scores are computed by comparing the query images of each
subject to his/her enrollment image. In (b), a cross-sectional approach (ordinary least squares (OLS) linear regression) is
applied, which incorrectly assumes that all the scores are independent. In (c), OLS is instead applied six times, separately to
each subject’s set of scores. The slope estimated by cross-sectional analysis (black dotted line) is much flatter than the slopes
of subject-specific trends in (solid colored lines in (c)). The longitudinal analysis in this paper utilizes mixed-effects models,
which provide “shrunken” OLS estimates for each subject, where the OLS trends shrink towards a population-mean trend
[22], [23], further accounting for the correlation that exists between scores from the same subject.

Ideally, longitudinal data collection would observe all
individuals in the study following the exact same schedule
over the entire duration of interest. However, longitudinal
data is typically not this nicely structured because it is
difficult (and expensive) to collect, or it must be analyzed
retrospectively, as is the case with the mugshot databases
used in this study. Instead, longitudinal data is most often
time-unstructured and unbalanced, meaning individuals in the
study population are observed at different schedules and
have different numbers of observations. For the mugshot
databases, this translates to different rates of recidivism for
each subject. Fig. 2 shows that subjects in the LEO LS and
PCSO LS databases have anywhere from 4 to more than 20
mugshots, and Fig. 5 shows that the age spans of the subjects
are highly unstructured.

Mixed-effects models can handle imbalanced and time-
unstructured data and are preferable over other approaches
because they model both the mean response (fixed effects
define the population-mean trend), as well as the covariance
structure (random effects allow deviations of individuals
from the population-mean). In longitudinal data, this co-
variance structure has a complicated form which stems from
the fact that error terms are not independent (as is assumed

in standard linear regression). The remainder of this section
provides details of the models and covariates of interest.

4.1 Model Formulations
Given ni face images of subject i, let AGEij denote the
absolute age of the ith individual for the jth face image,
where AGEij < AGEik for j = 0, . . . , ni − 2 and k = j+1,
. . . , ni − 1 (i.e., the ni images are ordered by increasing
age). To begin with, assume that the youngest image (first
acquisition) of each subject is enrolled in the gallery, and
let AGEie = AGEi0 denote the age of individual i at
enrollment where AGEie < AGEij for j = 1, . . . , ni − 1.
We can compute mi = ni − 1 genuine comparison scores
by comparing every other image to the enrollment image.
Hence, in this scenario, yij (j = 1, . . . ,mi) is the comparison
score between the jth face image of individual i and his/her
enrollment image. AGEij is the age of the jth query/probe
image of subject i, so the elapsed time between enrollment
and query image is 4Tij = AGEij −AGEie.

When studying age-related effects on automatic face
recognition performance, there are two different, albeit
closely related, time-varying covariates which are of pri-
mary interest: (i) the elapsed time between image acquisitions
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TABLE 4: Mixed-Effects Model Formulations

Model Level-1 Model Level-2 Model: Intercept Level-2 Model: Slope

A yij = ϕ0i + εij ϕ0i = β00 + b0i

BT yij = ϕ0i + ϕ1i4Tij + εij ϕ0i = β00 + b0i ϕ1i = β10 + b1i

CT yij = ϕ0i + ϕ1i4Tij + εij ϕ0i = β00 + β01AGEie + b0i ϕ1i = β10 + b1i

CA yij = ϕ0i+ϕ1iAGEij+εij ϕ0i = β00 + β01AGEie + b0i ϕ1i = β10 + b1i

D yij = ϕ0i + ϕ1i4Tij + εij ϕ0i = β00 + β01AGEie + β02AGE2
ie + b0i ϕ1i = β10 + β11AGEie + b1i

E yij = ϕ0i + ϕ1i4Tij + εij ϕ0i = β00 + β01AGEie + β02AGE2
ie +

β03Mi + β04Bi + b0i

ϕ1i = β10 + β11AGEie + β12Mi + β13Bi + b1i

Q yij = ϕ0i + ϕ1i4Tij +
ϕ2iQij +ϕ3iQij4Tij + εij

ϕ0i = β00 + β01Qie + b0i ϕ1i = β10 + β11Qie + b1i,
ϕ2i = β20 + β21Qie + b2i, ϕ3i = β30

4Tij : elapsed time (years) between the enrollment and jth face image of subject i;
AGEie: age (years) of subject i in her enrollment face image; AGEij : age (years) of subject i in her jth face image;
Mi: binary indicator of subject sex (Mi = 1 if male, 0 if female); Bi: binary indicator of subject race (Bi = 1 if black, 0 if white)
Qie: quality (e.g., frontalness or interpupillary distance) of the enrollment image of subject i;
Qij : quality (e.g., frontalness or interpupillary distance) of the jth query image of subject i

and (ii) the absolute ages of the subject in the two face images
being compared. Below, we discuss mixed-effects models
which include these and other covariates.

4.1.1 Function of Elapsed Time
The simplest notion of face recognition performance over
time is a function of the elapsed time between a subject’s
enrollment and query face images, f(4Tij). A linear mixed-
effects model with two levels (to account for subject-specific
trends) and a single covariate for elapsed time can be
formulated as follows. At level-1, the comparison score yij
between the enrollment and jth query image of subject i can
be modeled as a linear function of 4Tij :

yij = ϕ0i + ϕ1i4Tij + εij , (1)

where the ith individual’s intercept, ϕ0i, and slope, ϕ1i, are

ϕ0i = β00 + b0i,

ϕ1i = β10 + b1i.
(2)

The level-1 equation in (1) models within-subject longitudinal
change in yij where a subject’s scores can vary around
his/her linear trend by εij (level-1 residual variation). The
level-2 model in (2) accounts for between-subject variation
in comparison scores because each subject’s intercept and
slope parameters, ϕ0i and ϕ1i, respectively, are modeled
as a combination of fixed and random effects. The fixed
effects, β00 and β10, are the grand means of the population
intercepts and slopes, respectively, and define the overall
population-mean trend, while the random effects, b0i and b1i,
are subject-specific deviations from the population-mean
parameters. Since each subject can have his/her own inter-
cept and slope parameters, mixed-effects models are flexible
in handling/allowing for biometric zoo effects [24], [25]
(some subjects generally have higher or lower scores). Fig. 6
shows six example subjects from the PCSO LS database at
different ages, with their subject-specific trends in genuine
scores over time shown in Fig. 6c.

The random structure of the above two-level model
includes the level-1 residuals, {εij}, as well as the random

effects, b0i and b1i, which can be thought of as level-2
residuals. The distributional assumptions of these two error
terms are:

εij ∼ N(0,σ2
ε) (3)

and [
b0i
b1i

]
∼ N

([
0
0

]
,

[
σ2
0 σ01

σ10 σ2
1

])
, (4)

where N(., .) denotes a Gaussian distribution.
Substituting the level-2 equations for subject-specific

intercepts and slopes into the level-1 model in (1), the
composite form of the two-level mixed-effects model is:

yij =
[
β00 + b0i

]
+
[
β10 + b1i

]
4Tij + εij . (5)

Here, the model terms inside the two brackets in (5) corre-
spond to all coefficients for the intercept and slope terms.

When the error terms are equal to their assumed means
of zero, (6) reduces to the population-mean trend of yij =
β00 + β104Tij . The grand mean intercept β00 quantifies the
expected marginal mean comparison score when 4Tij = 0.
Note that this intercept is not particularly meaningful, as our
data does not contain any same-day comparisons. However,
interpretation of β00 does give us some notion of differences
in subject’s comparison scores at a projected baseline of
zero years elapsed time. The primary coefficient we are
interested in is β10 which quantifies the expected change
in mean comparison score per one-year increase in elapsed
time since enrollment. Because this model, as well as all
others considered in this paper, include random terms for
both intercepts and slopes (b0i and b1i), we can also analyze
the variation in the population parameters (i.e., differences
in the trends of individuals in the population).

4.1.2 Function of Elapsed Time and Age at Enrollment
If rates of change in comparison scores are steeper or flatter
throughout an individual’s lifetime, then face recognition
performance may also be a function of absolute age. If we
add the age of the enrollment image to (5):

yij =
[
β00 + β01AGEie + b0i

]
+
[
β10 + b1i

]
4Tij + εij . (6)
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Because AGEie is a fixed effect for each subject (time-
invariant), the above composite model actually has a two-
level specification with the same level-1 model in (1). Hence,
AGEie cannot improve the model fit at level-1 (within-
subject); it can only influence the level-2 subject-specific
variations.9 The population-mean trend for (6) is:

E(yij) = β00 + β01AGEie + β104Tij
= β00 + β01AGEie + β10(AGEij −AGEie).

(7)

By definition, 4Tij is a centered version of AGEij , where
the centering term (AGEie) is subject-specific. Hence, the
model for aging as a function of elapsed time and age at
enrollment, f(4Tij , AGEie), is mathematically equivalent
to a model for aging as a function of the age of the query
image and age at enrollment, f(AGEij , AGEie):

E(yij) = β00 + β01AGEie + β10AGEij . (8)

The two models in (7) and (8) will result in the same
estimate for longitudinal change, β10. What distinguishes
them is the interpretation of the coefficient β01 quantifying
the effect of AGEie. Note the relationship between the two
models: β(8)

01 = β
(7)
01 − β

(7)
10 . Hence, β(8)

01 is the “contextual”
effect that models the difference between the within- and
between-subject effects of aging [26].10 The significance of
subject age at enrollment in (8) is tested with the null
hypothesis of H0 : β01 = 0, whereas restricted inference is
needed to test significance in (7) because the null hypothesis
must instead be H0 : β01 = β10.

The relationship between these two models (CT and
CA) is similar to common approaches for decoupling the
longitudinal and cross-sectional effects of a time-varying
covariate. A time-varying covariate at level-1 (e.g., age or
elapsed time) exhibits variability within, but also between
individuals; models which assume that the within- and
between-individual effects are equal do not properly esti-
mate either of these effects [23], [26], [27], [28]. Typically,
the time-varying covariate is “centered” on subject-specific
means, so as to remove between-subject variation at level-1
of the model.

4.2 Model Comparison and Evaluation
The goal of statistical modeling is to find a model that
includes substantive predictors and excludes unnecessary
ones (parsimony). A common approach is to fit increasingly
complex models to successively evaluate the impact of
adding different covariates [22]. Models can be compared
using goodness-of-fit measures based on log-likelihood
statistics: deviance, Akaike Information Criterion (AIC), and
Bayesian Information Criterion (BIC). Deviance quantifies
how much worse the current model is compared to the
(hypothetical) saturated model that includes all possible co-
variates to perfectly fit the data. Because the log-likelihood
(LL) of the saturated model is zero,

Deviance = −2[LLcurrent − LLsaturated] = −2LLcurrent. (9)

9. Comparing all images of a given subject to her fixed enrollment
image means that AGEij and 4Tij are perfectly correlated at level-1
(within-subject) of the model. Hence, we cannot include both of these
covariates; the effect of age must be added as a level-2 covariate.

10. The equality β(8)
01 = β

(7)
01 − β

(7)
10 holds for mixed-effects models

with random intercepts, and is approximately true for models with both
random intercepts and random slopes.
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Fig. 7: Distributions of standardized genuine comparison
scores from the two longitudinal face databases used in this
study: (a) COTS-A on PCSO LS and (b) COTS-B on LEO LS.
There are a total of 129,773 and 26,216 genuine scores in (a)
and (b), respectively.

Deviance can be used to compare nested models (i.e., the
more complex model can be reduced to the simpler model
by placing constraints on its parameters) that are fit to the
same data. To compare non-nested models, AIC and BIC
penalize the log-likelihood based on the complexity of the
models11 and the sample size. Smaller values indicate better
fit for all three goodness-of-fit measures.12

Further comparisons of models depend on whether the
successive model has included a time-invariant (e.g., sex,
race) or time-varying (e.g., face image quality) covariate to
the baseline model. For both cases, pseudo-R2 statistics can
be used to measure the proportional reduction in level-
2 variance (σ2

0 , σ2
1) and level-1 residual variance (σ2

ε ) at-
tributable to inclusion of time-invariant and time-variant
covariates, respectively.

5 RESULTS

We first focus on analysis of the PCSO LS database, starting
with simpler models (i.e., Model A and BT) and progressing
to more complex models including covariates for subject
sex/race and face image quality. We then present results for
the LEO LS database. Recall that models are discussed in
Section 4 and equations are provided in Table 4. All models
in our analysis are fit with full maximum likelihood (ML) es-
timation via iterative generalized least-squares (GLS) using
the lme4 package (v1.1-9) [29] for R (v3.2.2).

5.1 Model Assumptions

While mixed-effects models are capable of handling non-
Gaussian response distributions (e.g., COTS-A genuine
scores in Fig. 7a), the error terms must follow Gaussian dis-
tribution. Fig. 8a shows normal probability plots of the level-
1 residuals, εij , from fitting Model BT to genuine scores
from the PCSO LS database. Since significant departure
from linearity is observed at the tails, we cannot verify
that the model assumptions hold; normal probability plots
of random effects, b0i and b1i, also depart from linearity

11. For full ML estimation, the number of parameters includes both
the fixed effects and the variance components.

12. For AIC and BIC, the magnitude of the reduction in model fit is
difficult to interpret.
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TABLE 5: Bootstrap results for mixed-effects models on the PCSO LS database and COTS-A genuine scores.

Model A Model BT Model CT Model D

FIXED EFFECTS (95% CONFIDENCE INTERVALS):

INTERCEPT β00
0.0274 0.6734 0.7226 0.5158

(0.0171, 0.0376) (0.6624, 0.6849) (0.6905, 0.7556) (0.4073, 0.6239)

TIME β10
−0.1364 −0.1364 −0.1372

(−0.1379,−0.1349) (−0.1379,−0.1349) (−0.1426,−0.1316)

AGE GROUP β01
−0.0016 0.0120

(−0.0027,−0.0006) (0.0047, 0.0189)

AGE GROUP

× TIME
β11

0.0000#

(−0.0002, 0.0002)

AGE GROUP2 β02
−0.0002

(−0.0003,−0.0001)

VARIANCE COMPONENTS:a

Level-1 Residual σ2
ε 0.6076 0.3912 0.3912 0.3912

Random Intercepts σ2
0 0.3841 0.3243 0.3239 0.3231

Random Slopes σ2
1 0.0028 0.0028 0.0028

Covariance σ01 −0.0039 −0.0039 −0.0038

GOODNESS-OF-FIT:b

AIC 333433 287016 287006 286985

BIC 333462 287074 287075 287073

Deviance 333427 287004 286992 286967

aConfidence intervals for variance components have been omitted due to space limitations.
bGoodness-of-fit values are the mean values of the 1,000 bootstrap samples.

(a) (b) (c)

(d) (e) (f)

Fig. 8: Normal probability plots of ((a) and (d)) level-1
residuals, εij , and level-2 random effects for ((b) and (e))
intercepts, b0i, and ((c) and (f)) slopes, b1i, from Model BT
on the PCSO LS and LEO LS databases (top and bottom
rows, respectively). Departure from normality at the tails of
the distributions is likely due to low quality face images or
errors in subject IDs.

(Figs. 8b, 8c). This behavior was observed for other models
as well, precluding the use of standard errors for formal
hypothesis tests of parameters [30].

When parametric model assumptions are violated, it is
common to resort to non-parametric bootstrap to estab-
lish confidence intervals for the parameter estimates, as
followed in Yoon and Jain [9]. Hence, for the PCSO LS
database, we conduct a non-parametric bootstrap by case
resampling [30]; 1,000 bootstrap replicates are generated
by sampling 18,007 subjects with replacement. Multilevel
models are fit to each bootstrap replicate, and the mean
parameter estimates over all 1,000 bootstraps are reported.
Tests for fixed effects parameters can be conducted by ex-

amining the bootstrap confidence intervals.13 Table 5 gives
the bootstrap parameter estimates (with 95% confidence
intervals), variance components, and goodness-of-fit for the
models in Table 4.

5.2 Unconditional Means Model (Model A)

The simplest mixed-effects model is the unconditional
means model, which partitions the total variation in com-
parison scores by subject. Denoted Model A in Table 4, and
with composite form of yij = β00+b0i+εij , b0i is the subject-
specific mean and β00 is the grand mean. Similar to analysis of
variance (ANOVA), Model A provides initial estimates of
the within-subject variance σ2

ε (i.e., deviations around each
subject’s own mean comparison score) and the between-
subject variance σ2

0 (i.e., deviations of subject-specific means
around the grand mean). The intraclass correlation coef-
ficient (ICC) quantifies the proportion of between-subject
variation in the response, ρ = σ2

0/(σ
2
0 + σ2

ε). Variance
components for Model A shown in Table 5 indicate that
between-subject differences in genuine scores (i.e., biometric
zoo) account for 38.7% (ρ = 0.3873) of the total variation
in genuine scores from the PCSO LS database. Baseline
goodness-of-fit measures are also shown in Table 5.

5.3 Unconditional Growth Model (Model BT)

The next model to consider in longitudinal analysis is the
unconditional growth model that includes the time-related
covariate. In our case, we add elapsed time, 4Tij , as well
as random effects for slopes, b1i, to Model A, resulting
in Model BT. Table 5 shows that Model BT estimates that
PCSO LS genuine scores decrease by 0.1364 standard de-
viations per one-year increase in elapsed time (see solid
black line in Fig. 9). Comparing the level-1 residual variation
of Models A and BT, elapsed time explains 35.6% of the

13. The null hypothesis of the parameter equal to 0 can be rejected at
significance of 0.05 if the 95% confidence interval does not contain 0.
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Fig. 9: Results from Model BT on COTS-A genuine
scores from the PCSO LS database. The bootstrap-estimated
population-mean trend is shown in black (bootstrap confi-
dence intervals are too small to be visible). The blue and
green bands plot regions of 95% and 99% confidence, respec-
tively, for subject-specific variations around the population-
mean trend. Grey dotted lines additionally add one stan-
dard deviation of estimated residual variation, σε. Hence,
Model BT estimates that 95% and 99% of the subject trends
fall within the blue and green bands, but scores can vary
around their trends, extending to the grey dotted lines.
Thresholds at 0.01% and 0.1% FAR for COTS-A are shown
as dashed red lines.

variation in a given subject’s genuine scores around his/her
own average genuine score.14

Longitudinal change estimated by Model BT implies that
the population-mean trend will drop below the thresholds for
0.01% and 0.1% FAR after 19.1 and 24.0 years elapsed time,
respectively, but this only provides insight into performance
on subjects in the population with average (or higher)
genuine scores over time. A reliable face recognition system
must be able to recognize much more than just 50% of the
population it encounters, so we are also interested in the
spread of the population around the population-mean trend.
Do all subjects closely follow the population-mean trend, or
is there large variability between subjects? Do biometric zoo
effects extend to rates of change over time?

Using the estimated variance components for slopes and
intercepts (σ2

0 , σ2
1 , and σ01), we compute a 2D confidence

ellipse (random effects are assumed to be 2D Gaussian
distributed) to define a region that contains, for example,
95% of the estimated subject-specific parameters. In order to
translate from the 2D space of intercepts and slopes to obtain
a confidence region for genuine scores versus elapsed time,
we sample 100 combinations of intercept and slope param-
eters along the contour of the confidence ellipse, compute
the predicted genuine scores for each of the 100 trends, and
define the confidence region as between the minimum and
maximum predicted scores for different values of elapsed
time. Results are shown in Fig. 9.

From the confidence bands of subject variations in Fig. 9,
we infer that genuine scores for 99% of the population
will remain above the threshold at 0.01% FAR for up to

14. Using pseudo-R2 = (σ2
ε(A)− σ2

ε(BT ))/σ
2
ε(A).

Enrollment

Image

Query Images

(in order of increasing age in years old)

19.9 21.7 22.0 24.4 24.7 25.1 25.3

31.1 31.3 34.5 34.7 34.8 35.7 37.0

69.1 69.3 70.8 72.4 73.2 73.4 82.3

31.5 33.2 34.6 35.7 38.2 43.5 45.3

20.6 20.8 21.3 22.7 23.1 23.5 27.9

Fig. 10: Example outlier subjects, i.e., subjects whose subject-
specific trends, estimated by Model BT, significantly deviate
from the spread of the population in the PCSO LS database.
All images were aligned using COTS-A eye locations.

approximately 5.5 years elapsed time, which reduces to 95%
of the population after 7 years (i.e., false reject errors would
occur, on average, for 5% of subjects after 7 years since
enrollment). Similarly, at a higher FAR of 0.1%, 99% of sub-
jects can be recognized up to 8.5 years elapsed time, which
reduces to 95% after 10.5 years. Fig. 10 shows face images
from six example outlier subjects whose estimated trends
lie outside the 99% region of confidence due to extreme
intercepts and/or slopes; subjects significantly deviate from
the population spread due to alignment errors, face quality
issues (illumination, facial occlusion), and changes to facial
hair, for example.

5.4 Age at Enrollment (Models CT and D)

We next investigate whether the population-mean trends in
genuine scores over time depend on a subject’s absolute age
(i.e., whether variation in subject-specific trends observed in
Model BT can be explained by differences in subject age).
The significance of the AGEie term in Model CT suggests
a negative linear relationship between age at enrollment and
genuine scores, but the magnitude of β01 is relatively small.

To further test the complexity of the effects of age
at enrollment, we add additional terms associated with
AGEie, resulting in Model D (see Table 4). The hypotheses
of interest are 1) older subjects are easier to recognize than
younger subjects, and 2) younger subjects age at faster
rates than older subjects. These two hypotheses manifest in
younger subjects having lower genuine scores, on average,
and steeper negative rates of change. Table 5 shows that
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Fig. 11: Model E fit to COTS-A genuine scores from the
PCSO LS database. Population-mean trends are plotted by
subject demographics of sex and race and for five different
ages at enrollment (20 to 60 years). Each trend line rep-
resents seven years of elapsed time after enrollment. For
example, the solid blue line beginning at AGEij = 20 years
represents the average decrease in genuine scores for white
males enrolled at age 20 with query images until age 27.

the interaction term AGEie × 4Tij in Model D is not
significantly different from zero because the 95% confidence
interval for β11 contains zero; hence, we cannot conclude
that subject enrollment age has a linear effect on rates of
change in COTS-A genuine scores. The statistically signif-
icant β02 coefficient indicates a quadratic relationship be-
tween subject enrollment age and intercepts, and goodness-
of-fit measures are lower compared to Model BT. However,
further comparing to Model BT, level-2 variation in random
effects for intercepts (σ2

0) is only reduced by 0.4% after
including AGEie terms. The differences between scores for
different ages at enrollment are marginal compared to the
change in scores due to elapsed time; the change in score
between a 20 year-old and a 30 or 50 year-old (at enrollment)
is equivalent to only 7 and 5 months of elapsed time (within-
subject longitudinal change), respectively.

5.5 Sex and Race (Model E)

Model E in Table 4 is used to test the effects of subject
sex and race. First, we observed that Model E results in
better model fit than Model D (deviance for Model E is
285,712 compared to 286,967 for Model D). The main effect
of subject sex is statistically non-zero at significance level of
0.05, but the main effect of subject race is not (the 95% boot-
strap confidence interval contains 0). Male genuine scores
at baseline (4Tij = 0 years) are 0.3987 standard devia-
tions higher than female scores. Significant interactions with
elapsed time indicate that rates of change in genuine scores
depend on both sex and race; population-mean slopes are
−0.0113 and −0.0267 standard deviations steeper for males
and black subjects, respectively. Population-mean trends
separated by subject demographics are shown in Fig. 11
for different ages at enrollment. while male genuine scores
decrease at slightly faster rates than female scores, males
are clearly easier to recognize with higher genuine scores
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Fig. 12: A boxplot of interpupillary distances (IPDs) versus
year of acquisition shows that mean IPDs systematically
changed over time for the PCSO LS database, likely due
to booking stations adhering to face imaging standards only
in more recent years.

TABLE 6: Bootstrap results for mixed-effects models with
elapsed time and face quality covariates for the PCSO LS
database and COTS-A genuine scores.

Model QF Model QI Model QFI

σ2
ε 0.3302 0.3539 0.3218

AIC 275108 281296 273643
BIC 275283 281471 273848

Deviance 275072 281260 273601

overall. Fig. 11 also shows that the differences between
subject race are minor compared to differences between
males and females.

5.6 Face Image Quality (Model Q)
Adding level-2 covariates (i.e., time-invariant values for
each subject, such as AGEie) cannot improve the fit of the
model at level-1 (within-subject). Table 5 shows that the
level-1 residual variation σ2

ε (i.e., deviation of scores around
each subject’s own linear trend) is quite large when time
is the only level-1 covariate for all models considered thus
far. One standard deviation of level-1 residual variation
estimated by Model BT (and similarly Models CT and D)
is equivalent to 4.6 years of elapsed time (calculated as√
σ2
ε/β10 =

√
0.3912/−0.1372). This is visually shown by

the dotted grey lines in Fig. 9.
Level-1 residual variation can only be reduced by level-1

time-varying covariates (i.e., image-specific); in this section
we investigate whether face image quality measures can
be used to improve the model fit. The quality measures
considered are interpupillary distance (IPD) and a “frontal”
score, both of which are output by COTS-A. While higher
frontalness indicates better quality, the range of the frontal
score has little meaning, since its computation is proprietary.
We standardize (z-score) the frontalness score so we can
interpret model parameters as standard deviations from the
mean of the frontalness scores from all images in PCSO LS.

After finding that neither of the quality measures alone
explain variation in genuine scores as well as Model BT with
only elapsed time as covariate (details are omitted due to
space limitations), we then added the quality measures to
Model BT, resulting in Model Q in Table 4. Table 6 gives
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TABLE 7: Elapsed times (in years) for when population-
mean trends in genuine scores drop below the decision
thresholds at 0.001% and 0.01% FAR for different measures
related to face quality (frontalness and IPD) of the enroll-
ment image Qie and the query image Qij .

Qie Qij 0.001% FAR 0.01% FAR

Fr
on

ta
l −1σ −1σ 10.9 15.6

µ µ 13.0 18.4
1σ 1σ 16.8 23.0

IP
D

100 pixels 100 pixels 13.8 19.4
100 pixels 120 pixels 14.0 20.0
120 pixels 120 pixels 13.0 18.4

estimated level-1 residual variation and goodness-of-fit for
models with frontalness, IPD, and both frontalness and IPD
(Model QF, QI, and QFI, respectively). Model QF has a better
overall fit than Model QI. Table 7 gives the elapsed times
for when population-mean scores cross thresholds at 0.001%
and 0.01% FAR for different values of frontalness and IPD.
Note how changing frontalness has a greater impact on
when population-mean genuine scores cross the thresholds
than changes in IPD. Model QFI with both measures of
quality further reduces both the level-1 residual variation
and values of goodness-of-fit values.

The values of 100 and 120 pixels for IPD in Table 7 were
chosen because we observed systematic changes in IPDs
over time (see Fig. 12); in particular, mean IPD varies around
100 pixels from 1994–2002 but increases to a consistent∼120
pixels starting in 2003. This observation, along with corre-
spondence with Pinellas County Sheriff’s Office, suggests
that booking agencies began to adhere to imaging standards
around this time. To investigate whether this aspect of the
data confounds the estimation of longitudinal effects (face
images in later years may be of higher quality), we also
tested for a difference in slope prior to 2003 versus after
2003 by using a piecewise linear formulation for the mixed-
effects model (with a breakpoint at 2003). We found that
slope after 2003 was significantly flatter (less negative).

Additional face quality factors known to cause changes
in face recognition performance are illumination, expres-
sion, and occlusions. However, there are no widely accepted
methods for quantifying such variations in face images and
doing so is beyond the scope of this paper.

5.7 LEO LS Database

Table 8 gives results for the models in Table 4 fit to COTS-
B genuine scores from the LEO LS database. Fixed-effects
parameter estimates are given with standard errors; boot-
strapping was not conducted for LEO LS models because
the error terms better follow Gaussian distributions (see
Fig. 8). Model results are summarized as follows.

Model A estimates that 40% of the total variation in
genuine scores is due to between-subject differences. The
longitudinal change in genuine scores estimated by both
Model BT and Model CT indicates that a one year increase
in elapsed time decreases genuine scores by β10 = −0.1699
standard deviations. From the confidence bands of subject
variations in Fig. 13 (estimated by Model BT), we infer that
genuine scores for 99% of the population will remain above

TABLE 8: Mixed-effects model results for the LEO LS
database and COTS-B genuine scores.

Model A Model BT Model CT Model D

FIXED EFFECTS (STANDARD ERRORS):

(INTERCEPT) β00
0.0037 0.5395 0.5468 0.0894

(0.0098) (0.0127) (0.0325) (0.1057)

TIME β10
−0.1699 −0.1699 −0.1980

(0.0023) (0.0023) (0.0076)

AGE GROUP β01
−0.0003 0.0346

(0.0011) (0.0068)

AGE GROUP

× TIME
β11

0.0010

(0.0003)

AGE GROUP2 β02
−0.0006

(0.0001)

VARIANCE COMPONENTS:
Level-1 Residual σ2

ε 0.5985 0.4276 0.4276 0.4275

Intercepts σ2
0 0.4009 0.5543 0.5542 0.5516

Slopes σ2
1 0.0059 0.0058 0.0058

Covariance σ01 −0.0317 −0.0317 −0.0316

GOODNESS-OF-FIT:
AIC 68705 62647 62649 62606

BIC 68730 62697 62707 62679

Deviance 68699 62635 62635 62588
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Fig. 13: Results from Model BT on COTS-B genuine scores
from the LEO LS database. The population-mean trend is
shown in black. The blue and green bands plot regions of
95% and 99% confidence, respectively, for subject-specific
variations around the population-mean trend. Grey dotted
lines additionally add one standard deviation of estimated
residual variation, σε. Hence, Model BT estimates that 95%
and 99% of the subject trends fall within the blue and green
bands, but scores can vary around their trends, extending to
the grey dotted lines. Thresholds at 0.01% and 0.1% FAR for
COTS-B are shown as dashed red lines.

the threshold at 0.01% FAR for up to approximately 6.5
years elapsed time, which reduces to 95% of the popula-
tion after 8.5 years (i.e., false reject errors would occur, on
average, for 5% of subjects after 8.5 years since enrollment).
Similarly, at a higher FAR of 0.1%, 99% of subjects can be
recognized up to 8.0 years, which reduces to 95% after 9.5
years elapsed time.

Although the between-subject effect of age at enrollment
(β01) is significantly different from β10 in Model CT, the
effect is not significantly different from zero, indicating that
there is no linear relationship between subject enrollment
age and average genuine scores. However, additional terms
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Fig. 14: Model E for COTS-B genuine scores from the
LEO LS database. Population-mean trends are plotted by
subject demographics of sex and race, in addition to five
different ages at enrollment (20 to 60 years). Each trend line
represents seven years of elapsed time since enrollment. For
example, the solid blue line beginning at AGEij = 20 years
represents the average decrease in genuine scores for white
males enrolled at age 20 with query images until age 27.

involving AGEie result in significant effects of enrollment
age in Model D. The significant β02 coefficient indicates
a downward quadratic relationship between age at en-
rollment and average genuine scores (similar to COTS-A
on PCSO LS). Furthermore, the significant interaction term
AGEie ×4Tij indicates that longitudinal change in scores
tends to vary with subject’s age at enrollment; a 10-year
increase in subject age results in a longitudinal slope that
is β11 = −0.0098 standard deviations steeper. Population-
mean rates of change range from −0.1784 to −0.1490 stan-
dard deviations per year for subjects with age at enrollment
of 20 to 50 years (calculated as β10 + β11AGEie). Recall that
age at enrollment had no effect on rates of change for COTS-
A on PCSO LS.

Model E results indicate that intercepts are 0.0565 and
0.4238 standard deviations higher for black and male sub-
jects, respectively (so, black-male subjects have intercepts
that are 0.4803 standard deviations higher than white-
female subjects). Slopes are not statistically different for
black and white subjects, but the population-mean slope for
males is steeper (i.e., more negative) than for females. These
population-mean trends are shown in Fig. 14 for different
ages at enrollment. Fig. 14 also shows that the differences
between subject race are minor compared to differences
between males and females, as was also the case for COTS-A
on the PCSO LS database.

6 CONCLUSIONS

We presented a longitudinal study of automatic face
recognition, utilizing two large operational databases of
mugshots, PCSO LS (147,784 images of 18,007 subjects,
avg. 8 images per subject over avg. 8.5 years) and LEO LS
(31,852 images of 5,636 subjects, avg. 6 images per subject
over avg. 5.8 years), where each subject has at least four face

images acquired over at least a five-year time span. Lin-
ear mixed-effects regression models were used to analyze
variation in genuine scores due to elapsed time, age, sex,
and race, as well as subject-specific differences in scores (i.e.,
biometric zoo effects). Face similarity scores were obtained
from state-of-the-art COTS matchers for both the PCSO LS
and LEO LS databases. Based on our analysis, we make the
following observations (statements apply to both databases
and matchers):

F Population-mean trends indicate that genuine scores
significantly decrease with increasing elapsed time between
enrollment (gallery) and query (probe) images, as expected.
However, population-mean trends (average genuine scores)
do not fall below thresholds at 0.01% FAR until after 15 years
elapsed time. This suggests that in a practical application, an
average individual’s genuine scores decrease at a rate that
will not affect the recognition accuracy at 0.01% FAR until
more than 15 years since enrollment.

F Significant subject-specific variability around the
population-mean trends is observed; genuine scores for
some subjects decline at much faster rates than the
population-mean. Analysis of the estimated variance in
subject-specific parameters (intercepts and slopes) allowed
for estimation of subject-based accuracies (i.e., how many
subjects are estimated to be falsely rejected, rather than
standard image-based accuracy calculations). For example,
the models estimate that genuine scores for 99% of the
population will remain above the threshold at 0.01% FAR
until 6.5 years elapsed time for PCSO LS and 5.5 years for
LEO LS. Other calculations (e.g. 95% of the population) are
also within approximately one year for both databases.

F Subject-specific variance in rates of change (i.e., linear
slopes) is only marginally attributable to subject age at
enrollment, sex, and race. Subject sex was the most signifi-
cant factor for between-subject differences in genuine scores,
with males having significantly higher genuine scores than
females. The magnitude of the difference suggests that false
reject errors may occur approximately two years earlier for
females than for males (assuming that a global threshold is
used operationally).

F While the model fit improved for more complex mod-
els incorporating simple measures of face quality (for the
PCSO LS database), the models are still limited for prediction
purposes. The within-subject variability (i.e., level-1 residual
variance) is still quite large. All models considered in this
study indicate that one standard deviation in genuine scores
due to short-term variations (e.g., illumination, hairstyle,
etc.) is approximately equivalent to the change in genuine
scores due to ±4 years of elapsed time (for these particular
databases and matchers).

Longitudinal analysis, in general, is an important, yet
very difficult, problem. To the best of our knowledge, no
proper statistical analysis has yet been conducted for study-
ing face recognition performance on a large population over
periods of time longer than five years. In this paper, we
attempted to analyze the covariates of interest that were
available to us (elapsed time, age, sex, race, some measures
of quality), but there are additional covariates that cannot
be accounted for because we do not have the information
(e.g., camera characteristics, IPD for the LEO LS database,
expression variations, etc.). Despite this, the longitudinal
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study on automatic face recognition presented here utilizes
two of the largest, deepest, and longest (in terms of number
of subjects, number of images per subject, and time spans of
subject images, respectively) face image databases studied
to date, and the COTS matchers are representative of current
state-of-the-art. Given that the performance of face recog-
nition systems continues to improve, longitudinal analysis
should be conducted periodically to reevaluate robustness
to facial aging (and other covariates).

Future work includes: (i) Evaluation of face identification
(both closed-set and open-set) performance over time. Ob-
servations about recognition accuracy in this paper apply to
verification scenarios (i.e., one-to-one comparisons) operating
with a global threshold. (ii) Development of a single face
quality measure for mugshot type face images. (iii) Lon-
gitudinal analysis on different face cropping (particularly,
pre-cropped images to exclude most of the hair region) to
investigate the impact of changing hairstyle over time.
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