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Abstract

Face recognition in video is becoming increasingly im-
portant due to the abundance of video data captured by
surveillance cameras, mobile devices, Internet uploads, and
other sources. Given the aggregate of facial information
contained in a video (i.e., a sequence of face images or
frames), video-based face recognition solutions can poten-
tially alleviate classic challenges caused by variations in
pose, illumination, and expression. However, with this in-
creased focus on the development of algorithms specifically
crafted for video-based face recognition, it is important
to establish a baseline for the accuracy using state-of-the-
art still image matchers. Note that most commercial-off-
the-shelf (COTS) offerings are still limited to single frame
matching. In order to measure the accuracy of COTS
face recognition systems on video data, we first investigate
the effectiveness of multi-frame score-level fusion and ana-
lyze the consistency across three COTS face matchers. We
demonstrate that all three COTS matchers individually are
superior to previously published face recognition results on
the unconstrained YouTube Faces database. Further; fusion
of scores from the three COTS matchers achieves a 20%
improvement in accuracy over previously published results.
We encourage the use of these results as a competitive base-
line for video-to-video face matching on the YouTube Faces
database.

1. Introduction

The increasing ubiquity of surveillance imaging devices
offers a promising avenue to combat acts of terrorism and
crime. Tragic events such as the Boston bombings' in 2013
and the 2011 riots in London? have drawn attention to the
potential role that surveillance cameras and video-based
face recognition can play in identifying perpetrators of such
criminal acts. Unfortunately, identification technology has
not quite lived up to expectations in such instances. A lack

of robustness to classic challenges in pose, illumination, and
expression are the prevailing explanations as to why face
recognition has limited performance in these unconstrained
scenarios. However, equally important is the inability of
state-of-the-art technology to leverage the additional tempo-
ral information available in sequences of face images (i.e.,
videos). In order for researchers to improve upon these lim-
itations, we first need to determine the accuracy of deploy-
able technology (i.e., a COTS face matcher) in matching
unconstrained faces in video data. Without such a baseline,
we cannot determine if meaningful progress is being made
in video-based face recognition.

To date, the majority of face recognition research has fo-
cused on improving the ability to match static (i.e., still)
face images. This is purportedly due to several factors,
including (i) the need to constrain the face recognition
problem, (ii) computational constraints, and (iii) the large
amount of legacy still face images (e.g. id cards, mug shots).
However, today many of these factors are no longer limit-
ing: still image face recognition has witnessed an exponen-
tial decrease in error rates [8], distributed computing readily
supports processing a very large number of images, and low
cost digital cameras are continuously acquiring an abun-
dance of video data.

Face recognition in video has many applications when
applied in a security setting (see Fig. 1). Often, the first step
is to perform re-identification, where a collection of videos
is cross-matched to locate all occurrences of the person of
interest (Fig. 1c). For example, in the recent Boston bomb-
ing incident, all available videos (both CCTV and amateur
video) needed to be cross-matched to find all instances of
the suspected attackers. In turn, the collection of videos of
a subject can be used to query legacy face image databases

'http://articles.washingtonpost.com/2013-04-
16/world/38587918_1_charge-richard-des—-lauriers-
boston-marathon-explosive-devices

2http://latimesblogs.latimes.com/technology/
2011/08/london-riots—facial-recognition-tech-
being-used-by-police.html
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in an attempt to identify the subject (Fig. 1b).

In this paper, we study the problem of video-to-video
face matching in order to gain a better understanding of
state-of-the-art recognition accuracies of COTS face match-
ers. Through studying the video-based face recognition
problem, the methods proposed in this paper can be read-
ily applied in any operational setting using existing COTS
matchers (as opposed to dedicated video-based algorithms).
Thus, the results provided in this paper offer researchers
and practitioners a better understanding of how accurately
video face data can be recognized using off-the-shelf tech-
nology. For example, we will demonstrate that on an un-
constrained, public-domain, video-based face recognition
dataset, the highest accuracies previously reported in the re-
search literature are 20% lower than those achieved by our
use of static COTS matchers. In turn, subsequent research
on video-based face recognition algorithms should demon-
strate the ability to improve upon such baseline accuracies.

The contributions of this paper can be summarized as
follows. (i) A framework for applying COTS face recog-
nition algorithms to video-based data is provided. (ii)
The impact and consistency of different match score fusion
rules are studied for several commercial matchers, provid-
ing guidance on how to best consolidate frame by frame
face match scores across the video. (iii) The performance
of COTS algorithms is studied with respect to quality-based
key-frame subset selection. (iv) An order of magnitude
decrease in error rates is achieved on the YouTube Faces
Database [24], respective to the best accuracy currently re-
ported in the literature.

2. Understanding Video-based FR

In this section we provide a brief overview of video-
based face recognition methods with an intent to highlight
the merits of different approaches and motivate the need for
a state-of-the-art baseline. For a more in depth list of video-
based face recognition algorithms, readers are referred to
the recent survey on this topic [2].

(b) Video-to-Still

J\/

(¢) Video-to-Video

Figure 1. Face recognition can generally be categorized into one of the following three scenarios based on the characteristics of the image(s)
to be matched. (a) Still-to-still image matching is perhaps the most common scenario and is used in both constrained and unconstrained
applications. (b) Video-to-still image matching occurs when a sequence of video frames is matched against a database of still images (e.g.,
mug shots or driver license photos). (c) Video-to-video matching, or re-identification, is performed to find all occurrences of a subject
within a collection of video data. Re-identification is generally a necessary pre-processing step before video-to-still image matching can
be performed. In this work, we generate a baseline accuracy using commercial face matchers for video-to-video face matching.

2.1. Prior Work

Video-based face recognition approaches have been or-
ganized into the following two categories [2] based on how
they leverage the multitude of information available in a
video sequence: (i) sequence-based, and (ii) set-based. At
a high-level, what most distinguishes these two approaches
is whether or not they utilize temporal information.

Sequence-based approaches consider all detected faces
based on their temporal ordering. For example, Zhou et al.
combined both face tracking and face recognition into a sin-
gle framework, which allowed the inter-frame dynamics to
be exploited during the recognition process [26]. However,
sequence-based methods are specialized matchers that can-
not be readily deployed in operational scenarios. See [2] for
more details about sequence-based methods.

Set-based approaches to video-based face recognition
consider all the available frames of a subject’s face as an
unordered set. Such methods have been further organized
into approaches that fuse the available information prior
to matching and those that fuse information after match-
ing [2]. Methods that fuse information prior to matching
will generally output either a feature vector representation
or a single face image. For example, manifold-based meth-
ods project the set of face images onto a manifold within
a feature space, which in turn facilitates matching within
the feature space [14, 22]. Manifold methods are similar
to sequence-based methods in that they require specialized
matching algorithms. Both super resolution methods [1]
and 3D modeling-based methods [18] output a single face
image that in turn can be matched with a face recognition
system. Thus, while such synthesis-based methods attempt
to solve a difficult generative modeling task, these methods
are compatible with COTS face recognition engines. A few
commercial solutions are available for such synthesis meth-
ods, though they are only semi-automated and hence more
relevant to forensic applications.

Finally, set-based methods that fuse information af-
ter the face matching process seek to combine the match
scores from static face matchers into a single score. While



Table 1. Characteristics of popular face video datasets and reported identification accuracies.

Database Settings No. of Subjects ~ No. of Videos  Accuracy
Motion of Body (MoBo) [7]  Treadmill walking: slowly, quickly, on incline, or with a ball 25 150 98.8% [16]

Face in Action (FIA) [6] Variations in expressions and orientations; indoor/outdoor 221 n/a 99% [18]¢

1%t Honda/UCSD [13] Staged head rotations and expressions 20 75 99% [20]

MBGC [19] Walking, activity, conversation; standard and high resolutions 821 3,764 see [19]
YouTube Celebrity [11] Unconstrained, many same-subject tracks from the same video 47 1,910 78.9% [25]
YouTube Faces [24] Unconstrained 1,595 3,425 23.34%, 38.4%b¢

“ Authors used an indoor subset of FIA TAR @ FAR = 0.1%, 1.0% [15] We demonstrate that COTS face matchers achieve higher accuracy

these methods cannot explicitly leverage the temporal in-
formation available (unlike sequence-based methods), nor
can they leverage redundant (i.e., confirmatory) informa-
tion (unlike feature-based fusion methods), these set-based
methods have the notable advantage of being able to easily
leverage proven COTS face matchers.

2.2. Representative Baselines

The afore-discussed approaches to video-based face
recognition can also be categorized based on their technol-
ogy readiness level. That is, all video-based face recog-
nition algorithms are not equal in their capabilities. Ac-
curacy aside, methods that can quickly be integrated into
operational environments are preferable to those that have
only been demonstrated in proof of concept (i.e., academic)
implementations. Because specialized matching algorithms
are not readily usable in operational environments, the first
question that must be answered for these methods is, how
much, if any, does such a specialized matcher improve upon
deployable algorithms? This question is often not properly
addressed, making it unclear if such proposed algorithms
are worth the effort to engineer into operational systems.

Along these lines, while many previously proposed
video-based face matching algorithms have been compared
to frame-based static matchers, the static (or still image)
matchers chosen were often not representative of state-of-
the-art matchers. For example, only a few previous publi-
cations have demonstrated improved recognition accuracy
using COTS face matchers as a baseline (e.g., [17, 18]).

Thus, the motivation for this work is as follows: we pro-
vide a baseline accuracy for video-based face recognition
by using state-of-the-art COTS face matchers. This way,
the merits of specialized face recognition systems for video
data subsequently proposed in the literature can be properly
evaluated based on their ability to improve over this base-
line accuracy.

2.3. Video Face Databases

A summary of the common public domain databases
used to evaluate video-based face recognition algorithms
can be found in Table 1. Of particular interest for these

datasets is the number of subjects available and whether or
not the activities of the subjects were constrained or uncon-
strained. Notably, the YouTube Faces (YTF) database [24]
contains the largest number of subjects and has the highest
degree of unconstrained behavior. While the MBGC video
data [19] also has strong relevance to the problem being
studied, we decided to use the YTF database for the fol-
lowing reasons: (i) it contains the largest number of sub-
jects, (ii) the actions of the subjects are naturally varied
(as opposed to performing prescribed actions), (iii) the YTF
database is easier to acquire (thus allowing the baselines to
be used by the research community at large), and (iv) all
subjects in the YTF database also have still images avail-
able in the Labeled Faces in the Wild (LFW) database [9]
(thus allowing baselines to be compared to the video to still
image matching scenario).

3. Benchmarking Video-to-Video Matching

With the exception of Cognitec’s FaceVACS-
VideoScan', most commercial face recognition systems
are only capable of still image enrollment and matching.
Therefore, practical application of COTS matchers for
video-based face recognition generally involves formulat-
ing the problem in terms of single frame matching.

The first step in applying static face matchers to video
data is to detect the faces that are present in the video. Here,
any face detection algorithm can be applied, including the
underlying matcher’s face detector. The output from this
step will be a set of face locations and corresponding time
stamps. From this set of face locations and times, different
face tracks are formed, where a face track is any sequence
of extracted faces which can be assumed to be of the same
person (i.e., consecutive frames of the same face).

This work is not concerned with challenges in face track
formation. Instead, our focus is on how to best match face
tracks using black box COTS face matchers. However, the
topic of face detection and tracking in video is still an active
research area (see [2] for additional information).

'http://www.cognitec-systems.de/FaceVACS—
VideoScan.20.0.html
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Figure 2. Example images from face tracks of two subjects. Top
two and bottom two rows are face tracks from the same subject.

A face track can be represented as a set of images, U =
{u1,usg, ..., uq }, where u; is the i-th face detected/extracted
from a consecutive frames of a video. Given two face tracks
U and V, each containing a and b faces, respectively, we can
apply any static-image face matcher to all frame-to-frame
pairs (u;,v;) to obtain ¢ x b similarity scores s(u;,v;).
Hence, the comparison of two face tracks results in a simi-
larity matrix S(U, V). Under the assumption that each face
track contains faces of a single person, we wish to recog-
nize if two face tracks represent the same identity. Whether
for face identification or face verification, the track similar-
ity matrix needs to be resolved to a single similarity score
indicating the overall similarity between the two identities
present in the two face tracks.

4. Multi-Frame Fusion

As discussed in the previous section, a face track is a
set of multiple face samples of the same subject. As with
biometric fusion from multiple sensors (e.g., near-infrared
and visible face images) or modalities (e.g. face and iris),
fusion from multiple frames of a video track can be con-
ducted at the feature, score, decision, or rank levels [10].
3D modeling (e.g., [17, 4]) and super-resolution (e.g., [23])
are examples of feature-level fusion. Comparatively, fusion
at the rank, decision, and score levels is simpler, as it can
be applied to the outputs of existing matchers. Rank-level
fusion is a popular approach for video-based face recogni-
tion. For example, with the majority voting rule, the identity
present in a face track is determined by the majority vote
amongst all frame-to-frame identity decisions. Rank-level
fusion does have notable drawbacks: it is only applicable
in identification paradigms and has an additional computa-
tional cost of sorting to determine ranks.

In this work, we focus on score-level fusion, which
supports both verification and identification matching
paradigms. Furthermore, score-level fusion provides more
information than rank and decision levels. Kittler et al. used
Bayesian estimation theory to formulate the verification de-
cision from multiple samples [12]. Based on the assumption

that the posterior probability estimates from single samples
are corrupted by noise, they show that a combination of
these estimates by averaging, max, min, and median rules
reduces error theoretically and improves performance em-
pirically over using a single sample. In the video-to-video
matching framework, the max and mean rules are given by
Egs. 1 and 2, respectively.
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The min and median rules are formulated similar to the max
rule. Note that the mean rule is also referred to as the sum
rule in the literature. We use the term “mean” to emphasize
that the sum has to be normalized by the number of frames
in tracks U and V. This is because in unconstrained video-
to-video matching, the video sequence lengths can vary. By
contrast, in traditional sum fusion, the number of sources of
evidence (e.g., sensors, modalities, matchers) is a constant,
so this normalization is not necessary.

4.1. Quality-based Fusion

The performance of static COTS matchers typically de-
pends on the quality of the input face images. Quality can
be a measure of faceness (the confidence or reliability that
the detected object is a face [20]), image sharpness, illu-
mination conditions, facial pose, etc., or a combination of
multiple attributes. Within a given face track, face images
often span a variety of such quality measures. In order to
boost the accuracy of matching a face track, good quality
frames should have more impact on the final matching result
than low quality frames. Selecting a subset of the highest
quality frames from each face track prior to matching has
been addressed in, for example, [20] and [18]. In this paper,
we evaluate the performance of COTS matchers when key
frames are selected based on the highest face confidence and
most near-frontal pose.

4.2. Fusion of Multiple Matchers

In addition to combining the evidence across multi-
frame face tracks to determine the verification decision, we
also consider fusion of multiple matchers. There are two
pipelines for how this can be done: 1) fusion of multiple
matchers can be applied to the frame-to-frame scores (i.e.,
before multi-frame score fusion across two videos), or 2)
fusion of multiple matchers can be applied to the video-
to-video scores (i.e., after multi-frame score fusion across
two videos). We denote these two approaches as Multi-
Matcher Multi-Frame (MMMF) and Multi-Frame Multi-
Matcher (MFMM) fusion. To fuse the similarity scores by
multiple matchers, the max, min, median, and sum rules



are applied in conjunction with these multi-matcher fusion
schemes.

For example, suppose the mean rule is used for multi-
frame fusion of a x b scores (recall a and b are the number
of frames in the two tracks U and V/, respectively), and the
max rule is used for multi-matcher fusion of m scores ob-
tained from m matchers. The final video-to-video similar-
ity scores for the MMMF and MFMM fusion pipelines are
given by Eqs. 3 and 4, respectively.

Smy(U, V) b E E (k max uz,"uj)) 3)
i=1j=1 ~ 777
sim(U, V) = <ab g E s(us,vj ) )
""" =1 j=1

Because the m frame-to-frame scores, sk(ui7vj), or m
video-to-video scores, Si(U, V), obtained from different
COTS matchers may fall in different ranges and/or follow
different statistical distributions, score normalization is nec-
essary. We utilize four simple transformation-based nor-
malization schemes: min-max, z-score, median, and tanh
(see [10]).

5. Experiments

Data: We evaluate the performance of three different
COTS matchers on a subset of the YouTube Faces (YTF)
database. The 1,447 subjects and 3,226 videos in this sub-
set are those included in the evaluation protocol provided by
Wolf et al. [24]. The number of videos per subject ranges
from one to six, with an average of 2.15 videos. The longest
and shortest videos contain 48 and 2,157 frames, respec-
tively, with an average of 182 frames per video.

All videos were downloaded from YouTube by search-
ing the names of the same subjects in the Labeled Faces in
the Wild (LFW) database [9]. Faces were detected with the
Viola-Jones face detector [21]. Videos with faces “stably”
detected in at least 48 consecutive frames were included. A
face detection was considered stable if the Euclidean dis-
tance between its center and the center of the preceding
detection was less than 10 pixels. In addition to provid-
ing the raw frames of each video at 24fps, Wolf et al. pro-
vide each subject’s video in the same manner as face tracks.
Images were cropped to 300x300 pixels and aligned after
expanding the detected bounding boxes by a factor of 2.2
[24]. The task at hand is matching face tracks to face tracks,
thus replicating the cross video matching scenario that is of
strong interest for re-identification in surveillance videos.

We directly feed the 300x300 images to the COTS
matchers, whereas [24] and [15] further crop the aligned
images to the central 100x 100 pixels of the face. We allow
the COTS matchers to perform their own enrollment (i.e.,
face and landmark detection) on the raw face track images

because: 1) COTS matchers may fail to enroll a face if it has
been tightly cropped, ii) the center 100x 100 pixels may not
be the best cropping for a given matcher, and iii) a rough
initial cropping after detection is more representative of op-
erational settings. Note that there is no scale difference (i.e.,
the interpupillary distances remain the same) between the
images used here and those used by [3, 15, 24]. However,
[5] resizes the cropped faces to 40x24 pixels.

The evaluation protocol for the YTF database is a set of
ten-fold, cross validation, pair-matching tests. All subjects
in each of the ten splits are “subject mutually exclusive”
and include 250 same person (i.e., genuine) video pairs and
250 not-same (i.e., impostor) video pairs [24]. For all ex-
periments in this study, we follow the restricted protocol.
However, the COTS face matchers we evaluate are black
box algorithms and may have been trained using data exter-
nal to the YTF database. We report face verification results
as mean and standard deviations of true accept rates (TAR)
at fixed false accept rates (FAR) across all ten splits, and
ROC curves are computed by threshold averaging.

Matchers: We evaluate the performance of the three
COTS face matchers available to us. We have obfuscated
the names and details of these specific matchers and in-
stead refer to them as COTS-A, COTS-B, and COTS-C. All
three matchers were participants in the 2010 NIST Multi-
Biometric Evaluation (MBE) [8].

The accuracies of the proposed COTS fusion schemes
are benchmarked against Wolf et al.’s Matched Back-
ground Similarity (MBGS) [24], Li et al.’s Adaptive Prob-
abilistic Elastic Matching (APEM) Fusion [15], Cui et
al’s Spatio-Temporal Face Region Descriptor Pairwise-
constrained Multiple Metric Learning (STFRD+PMML)
[5], and Bhatt et al.’s method which we call Rank Aggre-
gation [3]. The results of these methods, under the same
protocol, are made publicly available? by the authors.

5.1. Experimental Results

We conduct three experiments for video-based face
recognition using the YTF database. All experiments fol-
low the 10-fold cross-validation pairwise tests protocol sug-
gested for the YTF database [24].

Experiment 1: We first examine the performance of the
three COTS matchers individually on the YTF video data.
The match score between a pair of face tracks is obtained by
multi-frame score-level fusion of the frame-to-frame scores
of a COTS matcher as outlined in Sec. 4. The results for
each of the three matchers with multi-frame fusion rules
(mean, median, and max) are given in Table 2. We omit re-
sults for min fusion, as they were consistently inferior to the
other rules. We report the average true accept rates (TAR)
and standard deviations at fixed false accept rates (FAR) of
0.1% and 1.0%. Furthermore, to compare the performance

2http://www.cs.tau.ac.il/~wolf/ytfaces/
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Figure 3. Verification results for key-frame selection based on two quality measures, highest faceness, and most near-frontal. Matching
using the single highest quality frame from each track performs poorly for all COTS matchers; matching 30-50 frames from each track
performs comparably to matching all frames for all matchers; matching the 30 frames with the highest faceness from each track improves

the performance of the COTS-B matcher over matching all frames.

of a COTS matcher on video data versus still images, ev-
ery frame-to-frame pair used in the video-to-video match-
ing is considered as a verification attempt in isolation from
their respective videos. This provides insight into how each
COTS matcher performs on unconstrained still images.

For all three COTS matchers, the mean and median rules
give the highest accuracies for video-to-video matching.
These two methods consolidate all match scores obtained
from comparing two face tracks and are thereby more rep-
resentative of the entire tracks, whereas the min and max
rules are susceptible to outliers in true and false matches,
respectively. Because the YTF database is unconstrained,
COTS matchers may output high similarity between an im-
postor pair or low similarity between a genuine pair of face
images due to extreme variations in pose, expression, illu-

MF Rule COTS-A COTS-B COTS-C

mean 385+ 7.9 404+ 7.9 35.8+ 9.6
median 36.8+ 8.1 40.0 £+ 6.5 34.7+ 9.7
max 28.5+ 5.1 22.6 + 9.3 38.4+ 5.9
frame-to-frame 25.2 +15.3 37.24+11.9 38.7+£12.5

(a) TAR @ FAR =0.1%

MF Rule COTS-A COTS-B COTS-C

mean 49.1+ 3.2 55.6 + 6.4 56.4+ 5.8
median 47.6 + 3.9 56.2+ 6.3 55.2 4+ 6.7
max 36.2 + 4.8 40.8 + 6.5 50.3 + 4.2
frame-to-frame ~ 36.0 £14.7 55.0 £11.8 56.6 £11.9

(b) TAR @ FAR = 1.0%
Table 2. Verification results (with standard deviations) of three
COTS matchers on the YTF database. Rows are multi-frame
(MF) fusion rules for consolidating match scores obtained from
all frame pairs of two video face tracks.

mination, and/or resolution. In all subsequent experiments,
we use the mean rule for multi-frame fusion.

Table 2 also shows that the performance of COTS-A is
significantly higher on video data than individual still im-
ages. COTS-B experiences a slight improvement on video
data, and COTS-C performs comparably for video data and
still images. For all three COTS matchers, the standard de-
viation of the TAR at a fixed FAR is reduced in the video-
to-video matching for all score fusion rules. We believe this
is because the multi-frame fusion rules suppress the effect
of outliers on the overall accuracy for video matching.

Experiment 2: The results for quality-based key-frame
selection are given in Fig. 3. To select a subset of key frames
from each face track, we used each COTS matcher’s own
measure of faceness and frontal pose. We tried selecting
sets of 1, 5, and 10-50 (in increments of 10) frames, but for
sake of clarity have only included ROC curves for the best
results with respect to the lowest number of frames. Overall,
Fig. 3 demonstrates that COTS matchers are able to achieve
consistent accuracies whether all frames or a subset of high-
est quality frames are matched from two face tracks. Fur-
thermore, the use of more than one high quality frame for
video-to-video matching improves the performance signifi-
cantly. This shows that face recognition on multiple images
from a video can help to achieve higher accuracy than on
single unconstrained still images.

Note that for COTS-B, matching only the 30 frames with
the highest faceness quality from each face track clearly im-
proves performance over matching all frames of two face
tracks, while for COTS-A and COTS-C, only a small im-
provement is obtained. Thus, the use of quality measures
depends on the underlying COTS face matcher, as well as
the accuracy of the quality measurement. However, this mo-
tivates the use of quality measures for improving the perfor-



MM Rule tanh Z-score min-max median

sum 49.2 +15.3 44.0+ 8.8 44.4 +10.5 45.2 +16.1
median 48.8 +15.3 46.2 +11.9 29.54+ 4.9 47.3 £18.8
max 48.9 +11.5 419+ 8.8 41.1+ 8.1 39.4 +£10.5

(a) TAR @ FAR=0.1%

MM Rule tanh z-score min-max median

sum 63.1+ 3.9 58.5+ 5.7 58.8+ 5.4 60.6 &+ 7.3
median 62.9+ 4.7 61.9+ 3.7 434+ 7.7 63.6 = 6.7
max 59.8 4+ 7.7 57.8+ 6.8 56.4+ 5.8 59.8+ 5.3

(b) TAR @ FAR =1.0%

Table 3. Verification results (with standard deviations) of MMMF
fusion of three COTS matchers on YTF database. Columns are
score normalization schemes; rows are multi-matcher (MM) fu-
sion rules for the three COTS matchers operating on the same pair
of frames.

mance of COTS static face matchers on video data.

Experiment 3: Lastly, we evaluate the performance of
utilizing all three COTS matchers for video-to-video face
recognition with MMMF and MFMM fusion, as outlined
in Sec. 4.2. Parameters for all tanh, min-max, z-score, and
median score normalization schemes are calculated using
the scores from nine training splits when evaluating a test
split. We calculated parameters for tanh normalization in
the same manner as Jain et al. [10].

Results for the different score normalization schemes
and multi-matcher fusion rules are given in Table 3
for MMME. In total, we evaluated the performance of
4x4x4 = 64 different combinations of score normaliza-
tion schemes, multi-matcher fusion rules, and multi-frame
fusion rules for both MMMF and MFMM pipelines. Due to
space limitations, we omit most results for MFMM fusion
as the performance was consistently comparable to MMMF.
The best results for video-to-video face matching with indi-
vidual COTS matchers, as well as fusion of multiple match-
ers, are shown in Fig. 4.

From Fig. 4 and Table 4, it is observed that all COTS
matchers significantly outperform previous results on the
YTF database, with all COTS matchers achieving roughly
an order of magnitude decrease in error rates. Further, the
fusion of all three COTS matchers achieves even greater ac-
curacy, with a 20% accuracy improvement at low false ac-
cept rates. Perhaps equally important is that in using COTS
matchers, the accuracies we demonstrate are through the
use of systems that can be readily deployed in operational
settings.

6. Conclusions

This paper has presented an evaluation of COTS static
face matchers on video-to-video unconstrained face match-
ing. Our results demonstrate that utilizing existing tech-

..‘_-,'.'.:“':‘. —COTS-A (mean)
e —COTS-B (mean, 30 frames)
—COTS~-C (mean)

True Accept Rate
)
=

3 —MMMF (tanh, sum, mean)

0.2r ---Rank Aggregation

0.1F === APEM Fusion
STFRD+PMML

0%01 Obl 0.1 1

False Accept Rate
Figure 4. Verification results on the YTF database protocol. All
three COTS face matchers and fusion of three matchers sig-
nificantly outperform previous methods: Rank Aggregation [3],
APEM Fusion [15], and STFRD+PMML [5].

Method AUC  EER Method AUC  EER
MBGS [24] 82.6 25.3 COTS-A 88.6 19.6
APEM Fusion [15] 86.6 21.4 COTS-B 93.1 14.2
STFRD+PMML [5] 88.6 19.9 COTS-C 93.4 13.8

Rank Aggregation [3] 85.8 21.6 MMMF Fusion 93.9 12.6

(a) Previous results (b) Our results

Table 4. AUC and EER statistics for performance comparisons on
the YouTube Faces database.

nology for video-based face recognition can achieve rea-
sonable accuracies. COTS face matchers individually out-
performed the best face recognition results previously pub-
lished on the YTF database; further, a fusion of the three
COTS matchers used here achieved a 20% improvement
over previous results. We suggest subsequent research on
video-to-video face matching should now demonstrate the
ability to improve upon these presented baseline accuracies.

The increase in performance observed by fusion of mul-
tiple COTS face matchers can partially be attributed to the
face registration problem (e.g. face detection and landmark
localization). Table 5 gives the number of face images that
each COTS matcher failed to enroll out of all the 587,035
frames in the YTF database. All three COTS matchers only
failed to enroll the same 0.2% among all the frames, which
is substantially lower than the number of frames that could
not be enrolled in each COTS matcher individually. Thus,
when we fuse the match scores obtained from multiple
matchers, we are essentially also utilizing their complemen-
tary image registration capabilities. Fig. 5 shows examples
of images from face tracks where one of the COTS matchers
failed to enroll all frames of that track. This demonstrates
that unconstrained face detection and landmark localization
are crucial to be able to fully leverage all available frames
in a face track.



COTS-A COTS-B  COTS-C  COTS-All*  Total Frames

21,687 7,525 12,494 1,393 587,035

@ All three COTS matchers failed to enroll these frames

Table 5. Number of frames that could not be enrolled out of the
587,035 total frames in the YTF database.

Figure 5. Example images from eight face tracks in the YTF
database where all images in that track could not be enrolled by
one of the COTS matchers. These images display extreme pose
and illumination conditions, low resolution, and motion blur.
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