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Abstract—A number of emerging applications requiring reli-
able identification of children have called attention to whether
biometric traits can be utilized as a solution. While biometric
traits based on friction ridge patterns (e.g. fingerprints, foot-
prints) have been evaluated to some extent, to our knowledge,
no effort has been made to evaluate the efficacy of automatic
face recognition of young children over useful durations of
time. Additionally, there are some applications where only the
face images of a child are available, such as identification of
missing or abducted children and children shown in sexually
exploitive media sequestered by law enforcement. In this paper,
we introduce the Newborns, Infants, and Toddlers Longitudinal
(NITL) face image database, which was collected by the authors
during four different sessions over a period of one year (March
2015 to March 2016) at the Saran Ashram Hospital, Dayalbagh,
India. The NITL database contains 314 subjects in total in the
age range of 0 to 4 years old. The aim of this paper is to provide
a comprehensive evaluation of a state-of-the-art commercial-off-
the-shelf (COTS) face matcher on the NITL face image database
to investigate the feasibility of face recognition of children as
they age. Experimental results show that while available face
recognition technology is not yet ready to reliably recognize very
young children, face recognition enrolled at 3 years of age or
older may be feasible.

I. INTRODUCTION

Reliable identification of young children is a problem of
growing interest in a variety of applications such as vacci-
nation and healthcare tracking, civil ID, and child abduction.
Current practice for most applications which require a child’s
identity is to link the child to their parents’ identities. In
hospitals this is done at birth with an identification bracelet1 or
with information (e.g. child’s name, date of birth, and parents’
names) provided by the child’s guardian or caregiver. However,
there are a few key issues (e.g. a guardian or neighbor bringing
the child for vaccination instead of the parents) that render this
approach inadequate; instead, giving a child their own identity
would be preferred.

Tracking the vaccinations of young children is an im-
portant application requiring child recognition. According to
UNICEF, about 6.6 million children die each year from
vaccine-preventable diseases, and about 25 million do not
receive the proper vaccines [1]. In order to reduce these
numbers and improve the health of children worldwide, it is

1Footprints of newborns are also taken but, to our knowledge, have not
been used in practice for child recognition; it is more of a souvenir for the
parents.

imperative that healthcare organizations have a reliable means
of identifying children to know which vaccines they need
or have previously been administered. This is particularly a
concern for non-governmental organizations (NGOs) operating
in remote villages of developing countries where even parents
do not have reliable forms of identification.

Swapping of newborns in hospitals is another application
that requires recognition of child identities. While security
measures currently in place in many hospitals, such as RFID
technology,2 help to make this a rare occurrence in countries
such as the United States, being “switched at birth” is still a
possibility due to overcrowded hospitals, negligent hospital
workers, or even criminal behavior.3 Because identification
bracelets can be lost or maliciously removed, alternative
solutions based on biometric recognition are of interest.

Child identification would also be beneficial for civil ID
programs. India’s Aadhaar program, in particular, is providing
unique identification (UID) numbers to all of the approxi-
mately 1.2 billion residents of India. At a current enrollment
of about 100 “crore” (1 billion) individuals and 93% of the
adult population,4 the next focus is on enrolling children aged
0-5 years old.5 While Aadhaar relies on “core” biometrics,
defined as both irises and all ten fingerprints, biometric data
is currently not captured until a child is 5 years of age. In
future years, a majority of work in maintaining the program
will involve enrolling new births. The Indian government has
started capturing a face image of each newborn at hospitals
and linking it to one of the parents’ biometric.6 At what age to
first enroll a child with his own biometrics is still a question
left to be answered.

With the growing success of biometric technologies, there
is interest in knowing whether biometrics can offer better
solutions for recognition of newborns, infants, and toddlers.

2http://www.iosrjournals.org/iosr-jce/papers/Vol16-issue3/Version-
1/F016312832.pdf

3http://www.dailymail.co.uk/news/article-3225887/Parents-discovered-
newborn-swapped-birth-doctor-sold-trafficking-ring-finally-reunited-lost-
son.html

4https://uidai.gov.in/
5http://economictimes.indiatimes.com/news/economy/policy/now-modi-

government-to-give-aadhaar-to-newborns/articleshow/52441170.cms
6http://www.hindustantimes.com/india/govt-hospitals-to-

soon-start-aadhaar-linked-birth-registration-of-newborns/story-
uGAqHm0LDJcj3Yfu7KVfQM.html



Fig. 1: Longitudinal face images of six example subjects from the Newborns, Infants, and Toddlers (NITL) face image database which was
collected during four different sessions (March 2015, September 2015, January 2016, and March 2016) at the Saran Ashram Hospital,
Dayalbagh, India. The age of each subject at the first acquisition is given in red text, and comparison scores from a state-of-the-art COTS
matcher between the first image and all subsequent images are given in black. Verification thresholds at 0.1% and 1% false accept rates
(FAR) are 0.615 and 0.524, respectively.

For targeted applications where a child interacts with an
operator (e.g. a healthcare worker), biometric traits based on
friction ridge patterns (e.g. fingerprints) are already being
attempted. However, there are a number of applications where
such controlled capture of biometric traits may not be possible,
and only face images are available for use.

Significant advancements in automatic face recognition
technology have called attention to whether state-of-the-art
algorithms are capable of recognizing the faces of children,
and if so, over what duration of time (i.e. time gap between
enrolled face and query face)? While aging is an issue for
any biometric recognition system, it is particularly a concern
with children, as early developmental stages involve rapid
changes in the face. The aim of this paper is to investigate
the performance of state-of-the-art face recognition systems
on face images of newborns, infants, and toddlers.7 To address
this question, it is important to first collect a longitudinal face
database. The contributions of this paper are as follows.

• A Newborns, Infants, and Toddlers Longitudinal (NITL)
face image database which consists of 314 children ages
0 to 4 years old. The NITL database is longitudinal in that
multiple face images were captured of the same subjects
during four different acquisition sessions over the course
of one year (March 2015 to March 2016). There are
a total of 161 subjects with face images from all four
sessions (see Fig. 1).

7The generally accepted definitions of newborns, infants, and toddlers are
the following: newborns are 0 to 28 days, infants are 1 to 12 months, and
toddlers are 1 to 3 years old.

• Evaluation of a state-of-the-art commercial-off-the-shelf
(COTS) face matcher on the NITL database to investigate
the challenges in recognizing children as their faces
undergo changes over the course of one year. The COTS
matcher used in this paper was among the top-3 perform-
ers in the NIST FRVT 2013 [2]. We also investigate the
challenges associated with the uncooperative nature of
children which results in significant variations in pose,
illumination and expression.

II. RELATED WORK

A number of different biometric modalities have been con-
sidered in the literature for automatic recognition of children,
including fingerprints [3], [4], [5], face [6], [7], iris [8],
footprint [9], palmprint [9], [10], and ballprint [11].8 As with
all biometric systems, the application and user population
should drive the choice of biometric trait. Our objective in
this paper is to investigate the feasibility of face as a biometric
for children. As such, the remainder of this section highlights
prior studies on face recognition of children.

Prior work on automatic face recognition of children is
limited due to: (i) difficulty in collecting longitudinal face data,
and (ii) the general perception that face recognition of children
is infeasible because of rapid growth rates, especially during
the ages of 0-4 years of interest here. Regarding the former,
to the best of our knowledge, the only publicly available face
image databases that include images of children are FG-NET

8The ballprint is the region of the foot located under the big toe.
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Fig. 2: Data collection effort in Dayalbagh, Agra, India. (a) Parents and children waiting in line outside the data collection room
(pediatrician’s clinic), (b) parents signing the consent form agreeing to provide their child’s biometric data, (c) data capture by the authors
at the two data collection stations, and (d) incentive (a bag consisting of staples) handed out to the parents after data collection.

[12] and FaceTracer [13]. However, the FaceTracer database
only has one image per child. Most prior work on age-invariant
face recognition utilizes the FG-NET database (see [12] for a
summary). However, results are typically reported on the entire
database (e.g. [14], [15]), so performance on the children in
the database is not known. Additionally, there are only 82
subjects in total, and only 50 of which have two face images
at ages younger than five years old. The Cross-Age Celebrity
Database (CACD) [16] was collected to study facial aging, but
it does not contain any subjects younger than 10 years old.
Ricanek et al. provide a review of multiple face recognition
algorithms on longitudinal face images from the In-the-Wild
Child Celebrity (ITWCC) database [7], but the average age of
the first/youngest image of each subject is 10.2 years with a
standard deviation of 3.9 years. Hence, the ITWCC database
is not useful for our study.

The NIST FRVT 2013 [2] conducted an evaluation of
accuracy dependence on subject age for different age groups.
The baby and kid age groups consisted of images of 57 and
340 subjects ages [0, 3) and [3, 8) years old, respectively. For
six of the top-performing face recognition algorithms, error
rates (false negative identification) were greater than 60% for
the baby age group, and only one algorithm had an error rate
less than 50% for the kid age group. For comparison, error
rates for the parents age group (ages 30 to 55 years) were
around 10% for the top-performers. These results strongly
indicate the difficulty in recognizing young children; however,
the database is not publicly available.

Motivated by the non-intrusive capture of face images,
recent studies have proposed algorithms for face recognition

of newborns, specifically geared towards the application of
enrolling newborn identities at birth and verifying them prior
to leaving the hospital. Face images of newborns (0-3 weeks
old) were captured by Tiwari et al. [17] and Bharadwaj et
al. [6]. Both studies concluded that capturing good quality
face images of newborns is difficult because of the gross
head reflexes, and pose and expression variations. With four
images per newborn in a gallery of 86 subjects, Bharadwaj
et al. [6] reports rank-1 identification accuracy of 78.5% and
verification accuracy of 63.4% at 0.1% false accept rate (FAR)
(all face images were cropped using manually annotated eye
and mouth locations).9 Even though the face images of the
same subject are all taken within 24 hours, these error rates
are too high to be of practical value. Furthermore, the database
has no longitudinal aspect since all images of a subject are
taken within 24 hours.

Automatic face recognition of newborns, infants, and tod-
dlers deserves more attention from the research community,
but it is important to frame the research goals in terms of
feasible applications. While face recognition may not be able
to reach accuracy requirements for controlled applications like
healthcare, it is still necessary to evaluate the performance
and identify the challenges, as it may be a useful investigative
tool, in a semi-automatic fashion (“human in the loop”), for
certain law enforcement applications (e.g. identifying missing
children).

9Bharadwaj et al. [6] state that the newborn face image database will be
made publicly available, but at the time of this submission, the images have
not yet been released.



Fig. 3: Summary of the number of subjects in different age groups,
where the age group is determined by the subject’s age at the first
acquisition (March 2015). An example face image is shown for each
of the age groups. The bar colors indicate the number of acquisitions
for each age group; for example, among the 125 total subjects older
than 2 years at the first acquisition, 99 of them subsequently attended
all four sessions of data collection.

III. LONGITUDINAL FACE IMAGE DATA COLLECTION

Our longitudinal face data collection was conducted in Day-
albagh, India, as part of an effort to investigate the feasibility
of using fingerprints to reliably recognize children ages 0–4
years old. Fingerprints and face images were collected in a
pediatrician’s free clinic at the Saran Ashram Hospital while
the pediatrician, Dr. Bhatnagar, was present. Two different data
collection stations were each manned by the authors. Face
images were captured using the 8MP rear camera of iPhone
5/5s. The child’s name, age, gender, and address and contact
number of the child’s parents were collected to contact the
parents for follow up visits during subsequent phases of data
collection. This paper analyzes the longitudinal face database
that was collected.

Fig. 2 shows images of children, their accompanying par-
ents, and the data capture stations inside the pediatrician’s
clinic. Parents were required to sign a consent form (approved
by the Dayalbagh’s Educational Institute’s Ethics Committee,
Saran Ashram hospital administration, as well as the authors’
institutional review board) giving their consent to provide their
child’s fingerprint and face images. Face images were captured
at one of the two data collection stations, and an incentive
(a bag of staples, voucher for the local grocery store, or
blanket) was handed out to the parents after data collection
was complete.

Face images were collected during four different sessions
over the duration of one year: March 2015, September 2015,
January 2016, and March 2016. A total of 206 subjects
participated in the March 2015 session, of which 178 subjects
also returned in March 2016 (one year later), and 161 subjects
attended all four sessions. Fig. 3 summarizes the resulting
data by age groups and number of acquisitions per subject.
During Sessions 2 and 3 of data collection, we further recruited
an additional 107 newborns and infants (66 new subjects for
Session 2 and 41 new subjects in Session 3). The total number
of subjects encountered in our study was 314.

During data collection in the pediatrician’s clinic, 3 to
5 face images of each subject were captured sequentially
over approximately one minute. Many of the acquired face
images are quite unconstrained, particularly with respect to
poor illumination conditions in the clinic (see Fig. 2(c))
and uncooperative subjects leading to variations in pose and
expression. To meet the throughput requirements of the long
line queued up (see Fig. 2(a)), we could not afford to spend
more than five minutes or so with each child for the entire
biometric data capture (three impressions of each thumb and
at least three face images). Hence, face images were captured
quickly with little effort to ensure that a high quality face
image was captured (especially if the child was screaming or
crying). This is the situation in typical operational scenarios
we are targeting.

IV. EXPERIMENTS

To facilitate analysis of both the absolute age and the
longitudinal aging factors, we consider subsets of the NITL
database based on the session at which each subject was first
encountered (the first face acquisition), which we refer to as
the enrollment session. Table I details the three subsets of the
NITL database used for experiments, namely, (i) newborns,
infants, and toddlers enrolled in Session 1 (NIT-S1), (ii)
newborns and infants enrolled in Session 2 (NI-S2), and (iii)
newborns and infants enrolled in Session 3 (NI-S3).

Face comparison scores were obtained from a state-of-the-
art COTS face matcher, denoted COTS-A, which was among
the top-3 performers in the NIST FRVT 2013 [2]. All face
images were scaled down to 244⇥326 (one tenth of the
original image size) to reduce computational time (there was
no loss in accuracy). Fig. 8 shows that poor illumination,
motion blur, partial face images, and extreme facial pose
caused failure to enroll (FTE) for some face images (i.e. the
face and/or eyes could not be detected by COTS-A); COTS-A
failed to enroll 24 of the 3,144 total face images in the
database.10 Because we captured 3 to 5 face images per subject
in each session, we manually selected only three images per
subject for the experiments, and found that max fusion across
the multiple face images in each session performed better than
other fusion schemes (mean and min). Therefore, max fusion
is used for all experiments reported here.

We first evaluated the performance of COTS-A on matching
face images from the same session to obtain a baseline
for intra-session variability. Genuine scores are computed as
all pairwise comparisons between face images of the same
subject from the same session. Impostor scores are all possible
impostor scores from all four sessions (a total of 1,363,885
scores). As expected, the true accept rates are quite high (TARs
greater than 93% at 0.1% FAR for all four sessions). This is
because intra-session variability is small; face images from the
same session of the same subject are often near-duplicates,
captured consecutively within a few seconds.

10If an image failed to enroll, all comparisons with that image are set to
the minimum similarity score (resulting in a false reject error for a genuine
pair, but a true reject for an impostor pair).



(a) NIT-S1 (b) NI-S2 (c) NI-S3

Fig. 4: Distributions of age at enrollment for three subsets of the NITL face image database. (a) NIT-S1: 206 newborns, infants, and toddlers
whose first face acquisition was in Session 1, March 2015; (b) NI-S2: 66 newborns and infants whose first face acquisition was in Session
2, September 2015; and (c) NI-S3: 41 newborns and infants whose first face acquisition was in Session 3, January 2016. Note that age in
(a) is displayed in years old, while the age in (b) and (c) are in weeks.

Subset Enrollment
Session

# Subjects
(males)

Age Range
(median age)

# Ret.
Sess. 2

# Ret.
Sess. 3

# Ret.
Sess. 4

Time Gap
(4T )

NIT-S1 1 (Mar. 2015) 206 (96) 0 – 5 (2.0) yrs 169 182 178 12 mos
NI-S2 2 (Sep. 2015) 66 (33) 0 – 23 (1.5) mos n.a. 53 51 6 mos
NI-S3 3 (Jan. 2016) 41 (18) 0 – 32 (1.8) mos n.a. n.a. 32 2 mos

TABLE I: Summary of the three subsets of the NITL face image database used in our experiments.

To evaluate the longitudinal performance, we compare Ses-
sion 1 face images of the NIT-S1 subset (206 subjects) to
the face images of the same subjects from the subsequent
sessions. This allows us to observe performance after 6, 10,
and 12 months elapsed time since enrollment. For verification
experiments, the impostor distribution is kept consistent and
includes all possible impostor scores from comparing Session
1 face images with face images from Sessions 1 through 4,
totaling 150,881 scores (after max fusion). For identification
experiments, the Session 1 face images make up the gallery,
so there are 206 subjects in the gallery.

Fig. 5 shows that the performance for subjects younger than
1 year old at enrollment in Session 1 is much worse than for
subjects at least 1 year old.11 Although the performance is
better for older subjects, it is still quite poor; at 0.1% FAR,
TAR is only 53% for elapsed time of only 6 months (Session
1 to Session 2). Note that the same operating point results in
almost 30% lower TAR for subjects younger than 1 year old.
Fig. 5 also shows that Session 2 and Session 4 performance
are similar for both verification and identification, suggesting
that longitudinal time of 12 months is not much worse than
longitudinal time of 6 months. What is peculiar, however, is
that Session 3 performance (longitudinal time of 10 months)
is much worse than both Session 2 and Session 4. We attribute
this to the fact that Session 3 was collected in January 2016
when it was quite cold (winter) in Dayalbagh, India; many

11We also evaluated the difference between children younger and older than
2 years old, but the performance gap was similar to the difference between
children younger and older than 1 year old.

children were wearing warm hats (which we did not ask them
to remove), and the sunlight streaming through the open door
of the room in the clinic was different during January, as it
was cloudy most days.

Because the impostor distribution was a single distribution
containing all impostor scores across all sessions for all curves
in Fig. 5, we construct a heatmap of mean impostor similarity
scores by age group, shown in Fig. 6(a), to further explore
the distribution. The higher mean similarity scores along the
diagonal elements of the figure indicate that subjects with
similar ages tend to falsely match each other more than
subjects that are a couple years apart in age.

A. Face Recognition of Newborns and Infants

Same-week Recognition: In Session 2 of data collection,
we recruited a new set of 66 newborns and infants (NI-
S2 in Table I). As shown in Fig. 4(b), almost all of these
subjects were younger than 24 weeks (6 months) old at the first
acquisition. Because data collection occurred Monday through
Friday, we asked these 66 newborns to return a few days
later. This allows us to evaluate the performance of COTS-A
on infants and newborns when genuine face images are only
separated by two to four days; COTS-A performance in this
scenario is extremely poor with TARs of 15.07% and 36.99%
at 0.1% and 1% FAR, respectively, and rank-1 identification
accuracy of 36.93% against the gallery of only 66 newborns
and infants. Note that this COTS-A performance is quite a lot
lower than performance reported by Bharadwaj et al. (rank-1
accuracy of 78.5% and 63.4% TAR at 0.1% FAR) on their
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Fig. 5: Longitudinal performance of COTS-A for (a) verification and (b) identification experiments of the 206 total subjects in the NIT-S1
subset of the NITL face image database. The gallery for these experiments consists of face images from Session 1, and the probe sets are
face images from Sessions 2, 3, and 4 (with different elapsed times, 4T ). Performance is further broken down by age at Session 1 enrollment
(younger than 1 year old vs. at least 1 year old). The numbers in parentheses indicate the number of subjects (out of 206) that returned for
each of the subsequent sessions. The number of impostor scores in (a) is 150,881 scores, and the gallery size in (b) is 206 subjects.
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Fig. 6: (a) Heatmap of mean impostor similarity scores binned by different age groups, and (b) example image pairs of false accept errors
made by COTS-A in face verification. Higher mean similarity scores along the diagonal elements of the figure in (a) indicate that subjects
with similar ages are more likely to falsely match each other than subjects that are a couple years apart in age.

Newborn Face Database [6] which is captured in much more
constrained environment and required manual face cropping.

Longitudinal Recognition: Next, we are interested in the
performance on newborn and infant face images after time
lapse of a few months. For the subset NI-S2, we can look at
performance after the subjects have aged 4 months (Session 2
vs. Session 3) and 6 months (Session 2 vs. Session 4). For the
subset NI-S3, the performance is only for two months time
separation (Session 3 vs. Session 4). For both verification and
identification experiments, the gallery consists of the Session
2 images of the NI-S2 subjects and the Session 3 images of
the NI-S3 subjects, for a total gallery size of 107 subjects.
For verification experiments, the impostor distribution is kept
consistent and includes all impostor scores from comparing

the gallery to the remaining sessions of NI-S2 and NI-S3, a
total of 19,778 scores (after max fusion).

Fig. 7 shows the resulting performance. Because the im-
postor distribution is kept consistent for all three curves in
Fig. 7(a), higher performance for NI-S3 (pink dotted curve)
can be attributed to generally higher genuine similarity scores.
Conversely, one interesting observation is that NI-S3 perfor-
mance is the worst for identification scenario in Fig. 7(b). One
explanation for this peculiarity is that the impostor similarity
scores from only the NI-S3 comparisons are higher because
the probe images have only aged 2 months so they are more
similar in age to the gallery than the NI-S2 probe sets. Hence,
the ranks of the true mates (genuine scores) for NI-S3 tend to
be worse.
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Fig. 7: Longitudinal performance of COTS-A for (a) verification and (b) identification of the 66 and 41 newborns and infants in the NI-S2
and NI-S3 subsets, respectively, of the NITL face image database. The numbers in parentheses indicate the number of subjects (out of 66
or 41) that returned for each of the subsequent sessions. The number of impostor scores used in (a) is 19,778 scores (the same distribution
for each of the three ROC curves), and the gallery size in (b) is 107 subjects.

Age Group at
Enrollment (years)

[0, 1)
82

[1, 2)
34

[2, 3)
40

[3, 5)
64

TAR (%) @ 0.1% FAR
for 6 mos. �T 15.85 44.12 45.00 60.94

TABLE II: Verification rates for different age groups at enrollment.
Num. of subjects are shown in bold.

Lastly, we compare the performance for all subjects from
the NIT-S1 and NI-S2 subsets with two images at 6 months
elapsed time. The verification rates for different age groups
(determined by age at enrollment) are shown in Table II for
FAR of 0.1% computed from the same impostor distribution
of all subjects for all age groups. These results suggest that
face recognition beginning at 3 years or older may be feasible.

V. SUMMARY

We have investigated the feasibility of automatic face recog-
nition for newborns, infants, and toddlers to meet growing
needs for child recognition in a number of applications ranging
from newborn identification in hospitals to identification of
missing children. We introduced the Newborns, Infants, and
Toddlers Longitudinal (NITL) face image database, which
was collected by the authors at the Saran Ashram Hospital,
Dayalbagh, India. The database was partitioned to study
performance of a state-of-the-art COTS-A with respect to
the enrollment age of the child and the time gap between
enrolled and query face images. Our results can be summarized
as follows: (i) while same-session face recognition has very
high accuracy (TAR > 93% at 0.1% FAR), the cross-session
performance degrades significantly to 47.93% TAR at 0.1%
FAR after the children have aged just 6 months, (ii) the age at
enrollment (e.g. younger than 1 year vs. older than 1 year old)
has more influence on recognition performance than time lapse
of 6 or 12 months (Fig. 5), and (iii) as expected, as the age at
enrollment increases, the recognition performance improves

(see Table II). While automatic face recognition of young
children may be a useful investigative tool (with human in the
loop) to help identify, for example, sexually exploited children,
the overall accuracies currently do not meet the requirements
for most other applications that could benefit from automatic
child recognition, such as vaccination tracking and civil ID
programs. Future work will involve formal statistical analysis
of the longitudinal scores for child face images, following
the methodology in recent longitudinal studies of biometric
recognition [18], [19], [20].
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