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Abstract—This paper presents a framework for component-
based face alignment and representation that demonstrates im-
provements in matching performance over the more common
holistic approach to face alignment and representation. This
work is motivated by recent evidence from the cognitive science
community demonstrating the efficacy of component-based facial
representations. The component-based framework presented in
this paper consists of the following major steps: (i) landmark
extraction using Active Shape Models (ASM), (ii) alignment and
cropping of components using Procrustes Analysis, (iii) repre-
sentation of components with Multi-Scale Local Binary Patterns
(MLBP), (iv) per-component measurement of facial similarity,
and (v) fusion of per-component similarities. We demonstrate
on three public datasets and an operational dataset consisting
of face images of 8,000 subjects, that the proposed component-
based representation provides higher recognition accuracies over
holistic-based representations. Additionally, we show that the
proposed component-based representations: (i) are more robust
to changes in facial pose, and (ii) improve recognition accuracy
on occluded face images in forensic scenarios.

Index Terms—face recognition, component-based face repre-
sentation, feature extraction, active shape model

I. INTRODUCTION

Studies in cognitive science suggest that both global and
local features are utilized for face perception and recogni-
tion [1], [2], [3], [4], [S], [6], [7]. However, despite these
findings, research in automated face recognition has seen a
disproportionate amount of attention spent developing sys-
tems that use holistic face descriptors to represent a face
image. For example, holistic face representations such as
densely sampled feature descriptors (e.g. Local Binary Pat-
terns (LBP) [8], Scale Invariant Feature Transforms (SIFT)
descriptors [9], biologically inspired features (BIF) [10]) and
appearance-based (or pixel-based) representations [11], [12],
[13] are commonly used in automated face recognition [14].
However, studies involving face recognition with component-
based representations (i.e., representations that extract features
per specific facial components') are found at a much lower
frequency in the literature, despite their demonstrated use in
human face processing (see 1 for illustration of methods). Even
methods which compute similarity measures at specific facial
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IFacial components are specific regions of the face, such as the nose, eyes,
eyebrows, and mouth.

landmarks, such as elastic bunch graph matching (EBGM)
[15], do not operate in a per-component manner.

The discourse in cognitive science and psychology contin-
ues to argue about the precise roles of holistic, configural and
component information in human face perception. However,
evidence points to the presence of all three in human face
perception [16], [17], [18], [2], [1], [19], [4], [3], [5], [6], [20],
[7]. The earliest paradigms providing support for component
processing created faces comprised of sets of components and
then asked subjects to make decisions about whether faces
were the “same” or “different”. Experimental results showed
that the number of components by which the two images
differed predicted subjects’ reaction times [1], [16], [2]. These
results suggest a part-by-part processing of the face. Smith
and Nielsen confirmed the presence of component processing
using a slightly different matching paradigm comprised of
schematic line drawings of faces presented with a delay of
one or four seconds [17]. More recently, Schwaninger, et
al. (2007) concluded that humans exhibit the capability to
recognize faces based on information drawn from isolated
features (i.e. components) [3]. In fact, Gold, et al. [21]
present evidence supporting the idea that face processing is
the result of the integration of individual component pro-
cessing. They compare human component integration with
an optimal Bayesian integrator that is based on component
recognition performance. The comparison demonstrates that
humans perform no better and perhaps slightly worse than the
prediction of the Bayesian framework [21]. This means that
for the purposes of human face recognition, holistic processing
provides no improvement over an integration of the individual
components of the face. Additional behavioral studies of
humans have shown that certain facial components (i.e. the
face outline, eyes and mouth) are more useful for perceiving
faces than other components and, similarly, the upper face is
more useful than the lower face [18], [22]. Moreover, humans
have shown an increased capacity to determine an identity
through a caricature sketch’? than a true portrait of a face,
which also suggests the importance of certain components
of the face over others [23], [24]. Finally, investigations into
the neural and physiological mechanisms of face processing
suggest a system comprised of processes that include both
holistic and face part (component) processing [7], [5].

As demonstrated by the literature in cognitive science, there
is a high likelihood of the presence of component processing
in human face perception. Yet, despite this strong evidence,

2Caricatures are drawings in which certain facial components and attributes
are exaggerated beyond a realistic appearance.
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representing faces in a per-component manner. When compared to a globally aligned holistic representation, and other representations found in the literature,
the component-based representation offers strong accuracy improvements in a number of face recognition scenarios.

computer vision and biometrics literature in face recognition
has focused heavily on holistic processing in which repre-
sentations are derived from globally aligned faces (we call
these holistic representations). Furthermore, the handful of
studies in automated face recognition that have approached
face recognition from the standpoint of component-based
processing are generally limited in their approach [25], [26],
[15], [27], [28], [29], [30], [31] (see Table I for a summary
of a selection of these methods). For example, many of
these methods use raw pixel-based representations, which
have proven to be less robust feature representations [14].
Moreover, many of the previous methods roughly extract
their facial components by cropping predefined regions of
globally aligned face images, instead of using more precise
methods that rely on facial landmark locations. Another similar
line of research involves block-based representations, which
break the face into blocks and create individual classifiers
for each block and finally fuse the individual classifiers [32],
[33]. While this paradigm is similar to a component-based
representation, in this case the faces are again globally aligned
and the blocks fail to take advantage of the concentration
of information in components due to their arbitrary nature.
Despite few contemporary component-based approaches to
face recognition, a number of recent studies have addressed
periocular recognition®, and have shown considerable success
in identifying a person by the periocular region of the face
alone [34], [35], [36]. These results bode well for modern
approaches to component processing of the face.

Based on (i) the strong evidence of component processing in
human face perception, and (ii) the lack of mature component-
based methods in automated face recognition research, a more

3Periocular recognition involves the identification of persons based on the
eyes and the local region of the face surrounding the eyes.

thorough investigation of the role of component-based process-
ing in automated face recognition is warranted. In the same
way that the field of cognitive science continues to investigate
the precise roles of component and holistic processing in
human face perception, automated face recognition algorithms
also need to explore the role that component processing could
have in leading to improved face recognition algorithms.

This work seeks to expand on the previous methods in
component-based automated face recognition. Using facial
components that are precisely extracted through automatically
detected facial landmarks, we demonstrate that descriptors
computed from these individually aligned components result in
higher recognition accuracies than descriptors extracted using
the more common approach of dense sampling from globally
aligned faces. Both of these approaches to face recognition are
detailed and compared in Figure 1. In addition to providing
a component-based framework, we also demonstrate that:
(i) component-based representations are relatively robust to
changes in orientation, (ii) such representations are also useful
in the presence of known occlusions, and (iii) the recognition
accuracies have the potential to be further enhanced by learn-
ing algorithms.

This work is a study on feature representations, and not
a study on learning algorithms. While we do demonstrate in
Section III that the proposed component-based representations
can be improved by performing statistical feature extrac-
tions, the component-based representations are not tied to
any specific learning algorithm. Because the component-based
representations are able to consistently improve recognition
accuracy when compared to the commonly employed holistic
and block-based feature representations, any learning-based
method should benefit from the proposed component-based
representations.



The remainder of this paper is organized as follows. In
Section II we detail our approach for aligning and extract-
ing features from different facial components. In Section III
we discuss an approach to learning per-component feature
extractions. In Section IV the results of experiments using
component-based representations of frontal view face images
are discussed. Results from experiments on face images with
orientation changes and occlusions are also detailed and dis-
cussed. Finally, in Section V, the results are summarized and
some practical applications of the proposed representation are
discussed.

II. COMPONENT EXTRACTION AND REPRESENTATION

In order to align, crop and extract a feature vector from the
facial components, the following three steps are performed:

1) Extraction of facial landmarks

2) Per-component alignment (and cropping) using Pro-
crustes Analysis

3) Representation of components using Local Binary Pat-
terns

This section will provide details regarding how each of these
steps was performed.

A. Landmark Detection

The first step in aligning the facial components is to extract
a predefined set of 76 anthropometric landmarks*. For each
of the facial components (i.e., the eyebrows, eyes, nose, and
mouth), a subset of these anthropometric landmarks provides a
general outline of the component (see Figure 2). In this section,
we detail a method for automatic extraction of landmarks.

Given the variability in facial appearances, as well as
the variability caused by pose and expression changes, the
extraction of facial landmarks is often a difficult task. The use
of Active Shape Models (ASM) [38] is a common approach
for determining the location of facial landmarks. Due to
the structural constraints afforded by the face, ASM model-
based detection is able to handle minor variations in pose
and expression. However, ASMs are sensitive to the initial
placement of landmarks prior to the iterative updating of model
parameters. If this initial placement is not closely aligned to
the true landmark locations, then the ASM may converge on
an inaccurate set of landmarks. To help mitigate this problem,
a small subset of more stable landmarks (i.e., the center of the
two eyes and the tip of the nose) can first be detected before
applying the ASM.

Using PittPatt’s Face Recognition SDK [39], we first auto-
matically detected the center of the two eyes, and the center
of the nose. Because these three landmarks are also present
in the ASM, we initialized the ASM landmarks by (i) solving
the affine transformation from these three ASM points to the
corresponding PittPatt detected points, and (ii) applying this
transformation to the set of 76 ASM landmarks (representing
the mean face in the model). The result of this step is an initial
placement of facial landmarks that is well suited to correctly

4Facial anthropometry is the science around the measurement of the human
face.

converge on the proper locations. Indeed, we found this step (i)
greatly improves the accuracy of landmark detection, and (ii)
eliminates all failure to converge cases. Using this approach,
the only cases where landmark extraction failed were when
PittPatt was not able to detect the eyes and nose (this occurs
at a frequency of roughly 1 in 1,000 faces for the neutral
frontal view).

The ASM implementation used was provided through the
Stasm open source software [40].

B. Alignment and Cropping

Once the facial landmarks have been detected, each facial
components can then be aligned. Component alignment was
performed using Procrustes analysis [41], which finds the
rigid transformation that minimizes the mean squared error
between two ordered sets of coordinates. This step eliminates
variations in translation, scale, and rotation, which allows for
a more accurate similarity measure between facial components
than previous techniques which used pre-defined cropping
boundaries.
For a given component (e.g., the mouth), let P, =
(p:fapga o apfnpzl/ﬂpg?”' ap%)T be the set of n landmark
points for the i-th image. For a given image, let p7, p]y- be the
x and y-coordinates of the j-th landmark point. Further, let
pj = (v}, pg) Procrustes analysis (or alignment) is performed
by:
o Removing the translational component for each image
by subtracting the mean of the landmarks (i.e., p; <
Di — %22;1 Di)-

o Normalizing the scale for each image by dividing the
concatenated vector of points P; by its L, norm (i.e.,
Pi < Pi/||Fil[2).

o Removing rotational differences by using least squares
minimization to solve for the rotation matrix based on
the angle #; that minimizes the difference between P;
and a reference set of points P (P can simply be the
first image).

After performing Procrustes analysis on each component
in each face image, we obtain rotation, translation and scaling
parameters. Using these parameters, the facial components can
be rigidly aligned.

Cropping is accomplished by creating a bounding box
around the aligned landmarks. Consider the face on an xy-
plane. The bounding box is created by first finding the hori-
zontal cropping boundaries from the minimum and maximum
x values. The vertical cropping boundaries are determined
based on a ratio of the crop width (in order to maintain the
images aspect ratio). A small pixel border around each set
of landmarks is used to improve the subsequent descriptor
extraction.

Upon completion of these steps, the components are scaled
to the following sizes (and ratios):

o Eyebrows - 29x142
o Eyes - 29x156

o Nose - 114x161

e Mouth - 82x142



TABLE 1
A SUMMARY OF THE PREVIOUS STUDIES ON COMPONENT-BASED AUTOMATED FACE RECOGNITION.

Description Component Components Used Component Component Face Database
Extraction Alignment Representation
Method
Template Matching [25] Rigid* Eyes (including none Pixel representation, Private database (47
eyebrows), nose, mouth locally normalized pixel subjects, 188 images)
representation, gradient,
and Laplacian
Elastic Bunch Graphing EBGM N/A EBGM Gabor wavelet FERET (250 subjects,
Matching (EBGM) [15] (object-adapted (object-adapted coefficients 1500 images); Bochum
grid) grid) (108 subjects, 650
images)
Component-Based LDA Rigid* L. eye, R. eye, nose, R. none Pixel representation FERET (70 subjects per
Method with Component mouth, L. mouth experiment, 140 images
Bunches [27] in experiment 1, 420
images in experiment 2)
Component-Based Rigid* 4 overlapped regions none Pixel representation FERET (1,196 subjects,
Cascade LDA [28] (from the whole face) 2197 images)
Component-Based LDA Rigid* Set 1: 14 components none Pixel representation Extended Version 1
Face Description [31] across whole face; MPEG-7 (635 subjects,
Set 2: 5 components 3175 images); Altkom
(eyebrows- forehead, L. (80 subjects, 1200
eye- eyebrow, R. eye- images); XM2VTS
eyebrow, L. nose- mouth, (MPEG-7) (295 subjects,
R. nose- mouth) 2950 images); FERET
(875 subjects, 4000
images); Banca
(MPEG-7) (52 subjects,
520 images)
Framework for High Rigid* L. eye, R. eye, nose, none Pixel representation Private database (200
Resolution Face mouth, forehead skin, subjects, 1600 images);
Recognition [29] cheek skin, irregularities XM2VTS (295 subjects,
1180 images)
Part-Based Face Rigid* 10 components (focused none Local Binary Patterns Near Infrared (1000

Recognition [30] on regions with
eyebrows, eyes, nose,

mouth)

Component-Based Face
Identification using 3D
models [26]

Reference points
on 3D head
models

14 learned components

subjects, 10,000 images)

3D face database (100
subjects, 6,843 images)
[37]; Private database (10
subjects, 30 images)

3D Morphable
Models

Histogram equalized gray
values

* “Rigid” denotes the component extraction using a rigid alignment of the eyes (i.e., planar rotation and scaling), followed by component cropping using

predefined cropping boundaries

These sizes were determined by tuning the size of the pixel
border and horizontal cropping boundary per-component.
The same method for per-component Procustes alignment
can also be applied to the entire set of facial landmarks.
Thus, the entire set of facial landmarks is used for a single,
global alignment of the face. Referred to as holistic Pro-
custes alignment, our experiments will compare this more
common alignment technique to the proposed component-
based alignment. The mean components from both holistic (or
global) Procustes alignment and the proposed per-component
alignment are shown in Figure 3. Qualitatively, we see the per-
component alignment results in a more precise alignment of
each facial component (see Figure 3 (c)). In turn, this approach
will allow us to better understand the value of component-

based representations. For example, we will demonstrate in
Section IV that despite the common belief that the eyes
are the most accurate facial component in automated face
recognition, the mouth component offers nearly the same
recognition accuracy when properly aligned.

We originally applied the technique of aligning facial com-
ponents to study identical twins [42] and facial carvings [43].
However, these earlier studies were focused on determining
the distinctiveness of each component with respect to twins
and carvings. They did not consider whether or not this tech-
nique resulted in improved recognition accuracy over holistic
representations. The subsequent experiments in the paper
will demonstrate that per-component face representations do
indeed offer a significant improvement in recognition accuracy
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Fig. 2. The process for extracting facial components. Using automatically
detected landmarks, each facial component is individually aligned using
Procustes analysis. In this paper we demonstrate the value of using this
per-component alignment instead of the more common approach of globally
aligning the entire face.
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Fig. 3. Comparison of the mean mouth component image from (a) performing
the proposed per-component alignment method, and (b) cropping using glob-
ally aligned faces. The poor alignment of certain components using globally
aligned faces is observed from the mean globally aligned face (c). While most
previous component-based methods extract facial components using globally
aligned faces, this work aligns each facial component individually resulting
in better representations, as shown in (a).

over the more commonly applied holistic and block-based
representations.

C. Representation

Once each facial component has been aligned, we extract a
Multi-Scale Local Binary Patterns (MLBP) feature representa-
tion from each component. MLBP is the combination of Local
Binary Patterns (LBP) [8] descriptors with different radii, and
it is generally more effective for face recognition than LBP
alone. MLBP and LBP descriptors have been successfully used
in holistic-based approaches to automated face recognition by
representing regions of the face with a descriptor that encodes
the facial structure and shape [44].

Each facial component is divided into regions of d x d
pixels overlapping by m pixels (m < d). Within each region,
a histogram of LBP values is derived from comparisons at
each pixel. The LBP value, V, calculated at each pixel is
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Fig. 4. Computing LBP value at each pixel

TABLE II
PARAMETERS USED IN MULTI-SCALE LOCAL BINARY PATTERNS
REPRESENTATION
Eyebrows Eyes Nose  Mouth
Region Size 8x8 8x8 16x16  16x16
Amount Overlap 4 4 8 8
# Sample Points 8 8 8 4

computed using comparisons to P neighboring sample points
at a radius of length R: Vpr = Z;;_Ol s(gp — gc)2P where
gp represents the gray value at each of the p surrounding
pixels, g. represents the gray value at the center, and s(z) = 1
if x > 0 and 0, otherwise (see Figure 4). This creates a
histogram of dimensionality 27, though this can be further
reduced by mapping LBP values without “uniform patterns”
to the same value. A uniform pattern is an LBP binary string
which produces 2 or fewer bitwise transitions [44]. The MLBP
representation concatenates two or more LBP desriptors of an
image patch at different radius lengths.

The choice of parameters (i.e. region size, d; amount of
overlap, m; number of sampling points, P; radius, R; and the
use of uniform binary patterns) were tuned per-component. All
components use the radii combination, r = 1 and r = 3 and
employ uniform binary patterns. Table II provides details of
the remaining parameters used for each component.

III. COMPONENT-BASED DISCRIMINANT ANALYSIS

Linear Discriminant Analysis (LDA) was first used in
face recognition on pixel representations of faces by Bel-
humeur, et al. [45], and has become a common feature
extraction/reduction technique in face recognition. The goal of
LDA is to maximize the between subjects variance, Sy, and
minimize the within subjects variance, S,,, by solving the gen-
eralized eigenvalue problem: S, - ¥ = A-S,,- ¥ . However, as
facial representations have grown increasingly more complex,
improved LDA methods have been developed to address the
problem of high feature dimensionality in comparison to the
size of the training set (e.g. random sampling LDA (RS-LDA)
[46], direct LDA (D-LDA) [47] and regularized LDA (R-
LDA) [48]). By partitioning the face into components, the high
dimensionality problem is alleviated to some extent, however
RS-LDA is still employed to further address these concerns.

The RS-LDA approach requires the following steps for
training. First, the feature space is randomly sampled into &



TABLE III
PARAMETERS USED IN RANDOM SAMPLING LDA

Eyebrows Eyes Nose Mouth
% Features Sampled 0.5 0.5 0.5 0.5
# of Subjects 250 500 250 250
% Variance Retained .98 .95 .95 95
# Subspaces 25 7 25 7

subspaces, with each subspace sampling a fraction s (0 < s <
1) of the available features. For each of the & random sample
spaces, principal components analysis is performed in order
to retain e percent of the variance. Finally, K LDA subspaces
are learned from each of the PCA representations. Using these
trained subspaces, images can then be sampled into each of the
k random feature subspaces, projected into the corresponding
PCA and LDA subspaces; each of the k subspace vectors can
then be concatenated into a final feature vector. In addition
to feature sampling, RS-LDA also performs bagging on the
training subjects. That is, for each set of the k£ random samples,
ns subjects from the training set are randomly sampled from
the n total subjects available (ns < n).

As discussed, RS-LDA has the following set of parameters:
the percentage of the original set of features to be sampled
during each stage (s), the number of subjects to use during
each stage (ns), the percentage of variance retained in each
stage (e), and the number of subspaces (k). As before, these
parameters are tuned per component. See Table III for the
parameter values used in this work.

Our use of RS-LDA in conjunction with the component-
based representation is to demonstrate the ability to improve
this representation with statistical learning. The component-
based representation is not tied to this particular discrimi-
native subspace technique, and instead the component-based
representation can conceivably be improved with any learning-
based technique.

IV. EXPERIMENTAL RESULTS

The following experiments were designed in order to ex-
plore the effectiveness of component-based representation in
face recognition. The primary baseline for these experiments is
a holistic face representation. As discussed, the term “holistic
representation” in this paper refers to densely sampled MLBP
feature descriptors from globally aligned face images, which
is one of the most common approaches in face recognition
research.

In this work, face images are aligned in two different
manners. The first alignment method is the common approach
of alignment using the centers of the two eyes. The face is
geometrically normalized using the eye locations to (i) perform
planar rotation so the angle between the eyes is 0 degrees, (ii)
scale the face so the inter-pupillary distance (IPD) between
eyes is 48 pixels, and (iii) crop the face to 128x128 pixels.
The second alignment method performs Procrustes alignment
on the full set of facial landmarks using the same procedure
that is performed on each facial component (see Section II).

Again the Procrustes-based method scales the face in order to
achieve an IPD of 48 pixels.

Once each face is geometrically normalized using these
two global alignment methods, MLBP feature descriptors are
densely sampled from patches of size 12x12 across the face,
with an overlap of 6 pixels. The parameters used for both
the alignment and the MLBP descriptors have been optimized
in a number of previous studies by our research group. Our
prior research has relied on such holistic representations, and
these parameters represent our best practices [49]. It is also
important to note that we are not able to improve the accuracy
of this holistic representation by increasing the size (or IPD)
of the face image.

A block-based representation was also used as a baseline
as it has appeared in recent research in face recognition [32],
[33]. In this representation the face is aligned using Procrustes
alignment on the full set of facial landmarks and then broken
into 3x3 blocks. Each individual block can then be treated as
a component to complete the rest of the representation and
recognition processes.

A. Component Representations

This section contains experiments conducted to investigate
the advantages of component-based representations, as op-
posed to the popular holistic representations. The experiments
intend to isolate the recognition accuracy up to the feature
representation stage, before any additional statistical learn-
ing (e.g. RS-LDA) is conducted. This deliberate decision to
isolate the feature representation stage of face recognition is
consistent with the primary goals and focus of this paper, to
provide novel and improved feature representation techniques.
These experiments were conducted on a large scale database of
frontal face images from the Pinellas County Sheriff’s Office
(PCSO), and unconstrained face images from the Labeled
Faces in the Wild (LFW) [50] dataset.

1) Component Representations - PCSO Database: The
PCSO dataset utilized for this experiment is comprised of pairs
of frontal view images of nearly 16,000 subjects, each with
one probe image and one gallery image (resulting in a total of
32,000 images). These images were randomly selected from
a larger image dataset of 1.5 million operational face images
from the PCSO. For our purposes, the dataset was partitioned
into two non-overlapping subsets: (i) a training set of 8,000
subjects, and (ii) a test set of 8,000 subjects. The training set is
not used in experiments that did not require training. For each
set, roughly 10 subjects were removed because their probe or
gallery image failed to enroll with the PittPatt SDK eye finder.

The component representations were created using the
method outlined in Section II and their similarity was mea-
sured using the cosine similarity measure. Sum fusion was
used to combine the component similarities after z-score
normalization. Figure 5 displays the performance of the raw
component representations. The True Accept Rate (TAR) at
a fixed False Accept Rate (FAR) of 1% for each individual
component is as follows: Eyebrows - 67.72%, Eyes - 66.63%,
Nose - 65.16%, Mouth - 64.83%. The TAR of the fused result
is 83.19%.
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Figure 6 compares the accuracy of the proposed fused
component representation to the more commonly employed
holistic representation. If the face images are globally aligned
using only the eye locations, then the holistic, densely sampled
MLBP features result in a TAR (at FAR=1.0%) of 63.78%.
If the face images are globally aligned using all the facial
landmarks>, then the TAR of the holistic representation im-
proves to 76.88%. The block-based representation results in
a TAR of 71.90%. In all these baseline cases the recognition
accuracies are significantly lower than the 83.19% accuracy
achieved using the proposed per-component representation.

5The same points used for individual components are combined in global
Procrustes alignment to create the set of points used to align the entire face.

2) Component Representations - LFW Database: The LFW
dataset utilized for this experiment is comprised of 6,000
image pairs (12,000 images). The dataset has been partitioned
into 10 folds as per the standard LFW protocol described in
[50]. While this protocol makes provisions for training and
testing sets, only the testing sets are used since there is no
training required for this experiment. The feature represen-
tation methods are applied on each individual fold and their
results are averaged to produce the results listed in Table IV.

The component representations were generated using the
same procedure described in Section IV-Al. In addition to
the holistic methods previously outlined (global eye alignment
and Procrustes alignment), the LFW Database provides images
aligned via commercial alignment and funneling. The holistic
representation method was applied to this prealigned images
to compare our method to other methods of alignment. Fur-
thermore, the block-based representation method described in
IV-Al is also employed to provide an additional comparison.
Roughly 15 subjects per fold of 600 subjects were removed
because their probe or gallery image failed to enroll.

The results of this experiment are listed in Table IV (TAR
at FAR = 10%). The performance on the LFW database
is significantly lower than that of PCSO, which is due to
the unconstrained nature of the LFW database. However, the
performance of the fused components from the component-
based method (31.39% TAR at FAR=10%) is observed to be
higher than the performance of alternate holistic and block-
based methods. This is consistent with the findings on the
PCSO database.

The holistic representation, which is aligned using the two
eye locations, has a higher accuracy on the LFW dataset
than the Procrustes aligned holistic representation. This differs
from the PCSO dataset, where the Procrustes aligned holistic
method had a markedly higher accuracy than the eye-aligned
holistic. These results suggests that the unconstrained nature
of the LFW database introduces errors into the automated
landmark extraction process. Thus, while the component-based
representation still achieves the highest accuracy when com-
pared to the baseline representations, improving automated
landmark extraction should further improve the effectiveness
of the component-based representation on unconstrained face
images.

3) Discussion: The superior performance of the fused
components over the baseline representations is likely due to
several factors. One of these factors is that the local alignment
of each facial component can more accurately measure the
similarity of the most identifiable regions of a face. Similarly,
the focus on these more identifiable areas of the face (i.e.
the eyebrows, eyes, nose and mouth), highlights the facial
regions with the highest degree of inter-person variability.
The portions of the face that are left out, such as the cheek
and forehead areas contain considerably less discriminative
information. Another facet to consider is that the parameters of
MLBP descriptors can be tuned to each individual component,
allowing for a better description of each individual component
and thus of the face overall.

While the component-based representation resulted in im-
proved recognition accuracies over the globally aligned holis-



TABLE IV
COMPONENT-BASED AND HOLISTIC RESULTS FOR LFW DATABASE
(FALSE ACCEPT RATE AT 10%)

Region TAR at FAR = 10%
Eyebrows 29.55%
Eyes 26.31%
Nose 24.37%
Mouth 23.59%
Fused 30.93%
Holistic 29.20 %
Holistic + Procrustes Alignment 28.94%
Holistic + Commercial Alignment 21.01%
Holistic + Funneling Alignment 21.22%
Block-Based 27.78%

Method Rank
Fused Components 3

Holistic Global 679

Method Rank
Fused Components 4

Holistic Global 1076

Probe

Holistic Ground Truth

Impostor

Fig. 7. Examples of face images from the PCSO database in which good
performance was obtained by the component-based method proposed in this
paper and poor performance was obtained by a globally aligned holistic
method.

tic representation, as shown in Figure 6, the fusion of these two
representations yielded the best accuracy (a TAR of 85.24%
at FAR=1.0%). Thus, there is complementary information pro-
vided by component-based and holistic facial representations.

Figure 7 displays face images in which the component-
based method performed well while the holistic method per-
formed poorly. The holistic impostors provide a relatively
good overall face match, but, especially in the case of the
woman, the overall face shape and hair appears to have had
a profound effect on the match. Similarly, Figure 8 displays
face images in which the holistic method performed well while
the component-based method performed poorly. Comparing
individual components, there does appear to be a similarity,
especially in the bottom example in which the impostor is a
woman even though the subject is a man.

An interesting result in these experiments is the accuracy
of the eyebrow and eye components. While they outperform
the nose and mouth, they only do marginally better. However,
in cognitive science and automated face recognition literature,
the eyes and/or eyebrows have generally been regarded as the
most useful component for recognition, while the nose and
mouth are regarded as being less informative [18], [22], [29],
[49].

A few considerations may explain our findings that the

Method Rank -
Fused Components 1224 R |
Holistic Global 16 \
Method Rank y
Fused Components 680
Holistic Global 1 ﬁ
Fused Ground Truth
Components
Impostor
Fig. 8. Examples of face images from the PCSO database in which good

performance was obtained by the globally aligned holistic method and poor
performance was obtained by the component-based method proposed in this

paper.

mouth and nose provide a similar level of discriminative
information as the eyes and eyebrows. The first is a significant
improvement in the alignment and cropping using ASM and
Procrustes analysis, particularly for the nose and mouth. In
previous works [25], [27], [28], [31], [29], [30], [26], the align-
ment was performed globally based on eye locations instead of
locally per component (see Figure 3 for the difference between
these two approaches). Due to the eye-based alignment, the
previous works reported significantly lower performance for
the nose and mouth components than what was achieved
with per-component alignment shown here. With the local
alignment method, components that are farther from the eyes
can be more accurately aligned.

A second contributing factor to the relatively even per-
formance of the eye and eyebrow regions and the nose and
mouth regions has to do with the cropping boundaries of
the components. Consider the eyes and eyebrows components
extracted by our method in Figure 2. In comparison to
previous component-based methods (e.g. [31], and Figure 9),
our components are smaller (i.e. the “eyes” component does
not include the eyebrows and the “eyebrows” component is
tightly cropped such that it does not include the forehead or
the eyes). The performance gap between the tightly cropped
eyes and the eyes containing eyebrow regions is shown in
Figure 10, demonstrating how the superiority of the “eye”
region can be restored by cropping in a similar fashion as
previous studies (see Figure 11 for example of larger cropping
region). However, the goal of this paper is to explore the use of
components. As components, the eyes and eyebrows do nearly
as well as the larger eye region but contribute a greater weight
to the overall component framework as two components than
they would as one.

B. RS-LDA

The following experiments were conducted to demonstrate
that the component-based approach to representing faces can
be further enhanced through learning algorithms. Both exper-
iments measure the component-based method using RSLDA
discriminative subspaces to boost performance. The first exper-



Fig. 9. An example of the global eye cropping from [31].
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Fig. 10. Comparison of the recognition accuracy for differently sized eye

components. The “Eye Region” refers to the eye and eyebrow area shown in
Figure 11 while the “Eyes” refers to a component consisting of solely the
tightly cropped eyes shown in Figure 2.

Fig. 11. Large cropping boundaries around the eyes is one factor for previous
studies concluding that the eye component is more informative than the nose
and mouth. Unlike the eye cropping shown here, if the eyebrows are removed
from the cropping of the eyes then the recognition accuracy is generally
similar to nose and mouth components which have been locally aligned.

TABLE V
COMPONENT-BASED PERFORMANCE AFTER RS-LDA TRAINING (FALSE
ACCEPT RATE AT 1.0%).

Region FAR = 1%
Eyebrows  79.36%
Eyes 83.20%
Nose 84.31%
Mouth 74.17%
Fused 94.84%
Holistic 90.43%

iment uses the PCSO database and the second leverages the
FERET database in order to make comparisons to previous
results for other local feature-based methods.

1) PCSO: The PCSO dataset described in Section IV-Al
was utilized for this experiment. RS-LDA subspaces were
learned using the training set (set 1), and then applied on
the testing set (set 2) as outlined in Section III. The similarity
between the extracted component features was measured using
the cosine similarity. The components were combined using
sum fusion of the component similarities after z-score normal-
ization. Figure 12 displays the performance of each individual
component, the fused component performance, and the holistic
performance. The TAR at FAR = 1.0% was: Eyebrows -
79.36%, Eyes - 83.20%, Nose - 84.31%, Mouth - 74.17%,
Fused - 94.84% (see Table V for a summary). This is compared
to the holistic performance of 90.43% using the RS-LDA
algorithm on the holistic representation in the same manner
detailed in [49]. The accuracy of 94.84% is significantly higher
than 83.19% when the component-based representation did not
go through RS-LDA training. As discussed previously, while
RS-LDA was utilized for this experiment, the learning method
was chosen simply to demonstrate the viability of applying
learning algorithms to the feature representation proposed by
this work. This work leaves open the problem of studying the
most appropriate learning algorithms for component represen-
tations. The authors believe that effective learning methods for
component-based descriptors (such as R-LDA [48], RS-LDA
[46], and ERE [51]) should be explored in future work.

2) FERET: The FERET dataset [52] is utilized as described
in Section 5.1.1 of [53]. The dataset is comprised of 1,194
persons (2,388 images, 2 images Fa/Fb per person). There are
two experiments based on this dataset: the first (FERET 1a)
divides the dataset into a training set of 250 subjects and a
testing set of 944 subjects; the second (FERET 1b) divides
the dataset into a training set of 497 subjects and a testing
set of 697 subjects. The component-based method is applied
as described in section IV-B1. Table VI reports the rank 1
accuracy of each individual component, the fused component
performance and the performance of other methods reported in
[53] (rank 1 accuracy is used here as opposed to ROC curves
in order to compare directly with the methods tested in [53]).
For both the smaller and larger training sets the component-
based method outperforms other methods, including other
local feature-based methods for both the smaller and larger
training sets.



TABLE VI
COMPONENT-BASED PERFORMANCE (RANK-1 ACCURACY) AFTER RS-LDA TRAINING ON FERET DATABASE.

Experiment Eyebrows Eyes Nose Mouth ~ Fused PCA* LDA* ERE* SIFT* PFD-SIFTM*  PFDM*
FERET la 99.68% 8538% 99.89% T77.86% 100%  83.16% 89.72%  94.81%  93.33% 97.67% 97.88%
FERET 1b 100% 85.94% 99.85% 79.20% 100%  85.80% 96.41% 97.13%  94.41% 98.42% 98.71%

*Results reported in [53]
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Fig. 12. Component-Based Performance (ROC) after RS-LDA training on

PCSO database.

C. Robustness to Changes in Facial Pose

State of the art automated face recognition performs well
in controlled situations, that is, when factors like illumination,
pose, expression and occlusion are eliminated. However, when
such variates cannot be constrained, automated face recog-
nition algorithms generally exhibit a decrease in recognition
accuracy. We demonstrate in this section and in Section IV-D
that the component-based approach has the potential to be
very useful in the presence of occlusions and changes in
facial pose. In addition to the holistic representations used
for previous experiments, the PittPatt Multi-Pose [39] and
FaceVACS [54] commercial off the shelf (COTS) face recog-
nition systems were also used for comparison. We also find
that the component-based method performs largely the same
as the holistic methods in the presence of changes in facial
expression though the fusion of holistic and component-based
representations can result in a boost in accuracy.

The following experiment explores the robustness of the
component-based approach for varying pitch values®. The
FERET database (with n = 200 subjects) was used for this
experiment [52]. In addition to the frontal view images for
200 subjects, the FERET database provides 8 additional face
images at different pitch values: +15°, +25°, £40°, +60°.
Facial landmarks are extracted automatically and used for

6Pitch rotation refers to rotations performed about the y-axis or specifically
in the case of faces, rotations performed by twisting the head to look left or
right.

alignment as described in Section II. The component-based
approach is compared to both the holistic approach with global
eye alignment and the holistic approach with global Procrustes
alignment. As before, the cosine similarity metric and sum
score fusion of z-score normalized similarities was used in all
cases. The recognition accuracies on this multi-pose dataset
are displayed in Table VII. For each pose, only subjects that
enrolled with both PittPatt and FaceVACS were used in all
cases. Thus, the number of subjects n varies in the extreme
poses.

For small changes in pose (close to pitch value 0°) the
performances of the commercial systems, the holistic ap-
proaches, and the component-based approaches are essentially
the same. However, for large changes in pose, each individual
component alone outperforms the holistic approaches, with the
exception of the nose (see Table VII and Figure 13). Given
the drastic difference in the appearance of the nose in the
side versus frontal face view, the low performance of the nose
is to be expected. We also observe relatively asymmetrical
performance (e.g., difference in accuracies between poses of
+60 and -60) but this is likely due to slight imprecision in
the actual pitch values of the subject’s face and the recorded
values (i.e., there is noise in the exact pose of the face).

As for the commercial systems, PittPatt’s multi-pose face
recognition system has traditionally been the strongest for
pose variation and that is also evident in our results. PittPatt
provides the best individual performance on face recognition
for extreme poses, followed by the proposed technique of
fused components. When fusing PittPatt and the proposed
component-based representation (using sum of scores fusion),
the recognition accuracy improved to over 78% for +60°
pitch values. This performance is significantly higher than
the performance of PittPatt alone, indicating additional and
complementary discriminating information is captured in the
proposed component-based representation. Overall, the use
of a component-based face representation shows tremendous
potential to help decrease the within-subject variation caused
by changes in pose.

There is some difficulty in automatically detecting land-
marks for the extreme poses variations. The previous results
are presented for those images which can be commonly en-
rolled between our holistic and component-based approaches,
and the commercial systems, Face VACS and PittPatt (see Table
VII). We will address these issues from a forensic recognition
perspective in Section I'V-F.

D. Robustness to Occlusion

A distinct advantage of the proposed component-based rep-
resentation is in forensic recognition scenarios, where analysts
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Recognition accuracies (TAR at FAR=1%) on multi-pose images from the FERET dataset. The more traditional approach of performing holistic

face alignment results in severely degraded recognition accuracy as the pose of the face changes. By contrast, the proposed component-based approach
remains relatively robust across pose variations. Without leveraging any training data, the proposed component-based method even surpasses one of the
most accurate commercial face recognition systems, FaceVACS. When fusing the component-based representation with PittPatt’s commercial face recognition

system, state-of-the-art accuracies are achieved.

TABLE VII
RECOGNITION ACCURACIES (TAR AT FAR=1%) ACROSS POSE VARIATIONS.

Pitch n Holistic Holistic Eyebrows Eyes Nose Mouth  Fused Fused Com-  FaceVACS PittPatt  PittPatt+
Value sub- Global Procrustes Com- ponents w/o Fused
jects Alignment Alignment ponents  Nose Components

+60° 141 3.31% 9.45% 22.69% 1243%  637%  3630% 40.00%  52.16% 8.60% 58.53%  78.39%
+40° 199 17.32% 45.06% 51.81% 45.07%  21.52% 79.41%  82.20%  85.37% 69.10% 95.59%  99.62%
+25° 200 62.33% 87.15% 81.68% 8535% 59.63% 90.48%  98.09%  97.83% 99.68% 98.91% 100.00%
+15° 200 93.88% 99.24% 93.88% 93.71%  98.01%  93.77%  99.50%  98.11% 100.00% 99.81% 100.00%
—15° 200 99.53% 98.86% 98.18% 94.50%  98.08%  92.95%  100.00% 99.23% 100.00% 100.00%  100.00%
—20° 200 72.94% 91.98% 83.97% 84.05%  66.83% 89.48%  96.86%  97.80% 98.22% 97.25%  99.87%
—40° 198 20.41% 44.79% 47.03% 5295%  20.22%  67.45%  74.04%  79.99% 58.62% 90.04%  97.01%
—60° 174 7.55% 5.86% 16.01% 22.03%  5.75%  4033% 3470%  46.72% 5.41% 6439%  87.21%

submit face queries and examine retrieval results [S5]. In this
section we will consider the case of face occlusions, which
many criminals use to evade identification. When representing
faces using facial components, an analyst could simply choose
to omit occluded facial regions.

The robustness of the component-based approach to occlu-
sion was explored using a subset of the AR database (with n =
136 subjects) [56]. The AR database contains frontal views of
faces under varying expression, illumination and occlusion.
Frontal views under occlusion (i.e. faces wearing sunglasses
and faces wearing scarves) were utilized in this experiment.
The frontal view faces were represented using a holistic
approach with global eye alignment, a holistic approach with
global Procrustes alignment and the proposed component-
based approach. Again, we used the cosine similarity metric

to compare facial representations. The individual components
in the component-based approach were combined using sum
of scores fusion but did not include occluded components (i.e.
for faces wearing sunglasses, fusion is only done for nose and
mouth and for faces wearing scarves, fusion is only done for
eyebrows, eyes and nose). As discussed above, this replicates
a common scenario in forensic face recognition, where an
analyst would be able to provide the missing information (in
this case the location of the occlusion) to improve face retrieval
accuracy.

Table VIII provides a summary of the recognition results
for the proposed component-based and holistic approaches
excluding images that fail to enroll. The column labelled
n indicates the number of images which were successfully
enrolled. Because matching for the fused component-based



TABLE IX
OCCLUSION: COMPARISON OF COMPONENT-BASED APPROACH TO TWO
COMMERCIAL SYSTEMS (TAR AT FAR=1%)

Occlusion Type n Fused Components  FaceVACS  PittPatt
Wearing Sunglasses 63 72.77% 20.66% 15.53%
Wearing Scarf 111 97.43% 99.11% 89.86%

approach is based on components that are not occluded, we
observe a marked increase in performance over the holistic
approach, especially for the faces wearing sunglasses. Notably,
in the case of the sunglasses, the performance of the mouth
alone outperforms the fused performance of the nose and
mouth. This result is likely due to the fact that the presence
of the sunglasses near the nose actually decreases the quality
of the landmark extraction. However, in forensic applications,
automatic extraction of these landmarks is not essential - if
a person’s face is occluded in a way that interferes with
landmark extraction for visible components, law enforcement
personnel could mark these landmarks manually and likely
produce an improved annotation (see Section IV-F for further
discussion). Manual annotation is also a mitigating procedure
for those face images for which automatic extraction of facial
components fails. Table IX displays results for our component-
based approach in comparison to commercial systems for
face recognition on commonly enrolled images. Because the
images must be successfully enrolled in both the commer-
cial system and our component-based system, the number
of available subjects to make this comparison is somewhat
reduced. The proposed component-based approach achieves
accuracies similar to PittPatt and FaceVACS on faces occluded
by a scarf. However, the fused component approach for faces
with sunglasses improves accuracy nearly fourfold over the
commercial systems. This result continues to demonstrate the
potential of the component-based system in the presence of
occlusion although further validation may be necessary given
the relatively small number of commonly enrolled subjects.

E. Facial Expression

This experiment investigates the robustness of the
component-based approach to facial expression using a subset
of the AR database (n = 136 subjects) [S56]. As previously
described, the AR database contains frontal views under
varying expression, illumination and occlusion. The neutral
images were used as the gallery and the images with varied
expressions (smile, anger, and scream) were used as the probe
set. As before, each image was represented using a holistic
approach with global eye alignment, a holistic approach with
global Procrustes alignment and the proposed component-
based approach. In each of the experiments 2-3 images were
removed due to ASM extraction failure. The cosine similarity
metric was used to measure the similarity between repre-
sentations. All four components were fused together using
sum of scores fusion. Table X provides a summary of the
results. The fused component method performs comparably to
the holistic methods for the given expressions (smile, anger,

and scream). Fusing together the component-based similarities
with the holistic global alignment results in a very slight
boost to performance for smile and anger, which are already
near 100% TAR at FAR = 1%. However, for the scream
expression this fusion results in a 10% boost in the TAR.
Though the component-based method is comparable or slightly
worse than the holistic methods for facial expressions, these
results indicate that the component-based method might be
leveraged in addition to the holistic method in order to boost
the overall accuracy of a face recognition method.

F. Manual Landmark Annotation to Mitigate Poor/Failed Au-
tomated Landmark Detection

One of the weaknesses of the proposed algorithm is that it
hinges on the ability to detect and align individual components
of the face. The results displayed in Sections IV-C and
IV-D demonstrate that in the presence of occlusion and pose
variations, ASM sometimes fails to converge on a set of facial
landmarks, or results in highly inaccurate landmarks. This
was true especially for sunglasses occluding the eyes and
poses with pitch values of £40° and £60°. In the case of
inaccurate facial landmarks the matches are very poor, and
in the case of landmark detection failure, recognition cannot
be performed. In order for the component-based approaches
to be robust under various types of noise, a process for
addressing these failures and inaccuracies is crucial. In typical
forensic applications of face recognition, automatic extraction
of landmarks is preferred but not mandatory; an analyst could
be easily trained to manually annotate the landmarks for the
images in which automatic detection fails [55]. This section
will demonstrate that the use of manual landmarks is a viable
procedure when automatic detection fails.

For occlusion it was determined that the automatic landmark
detection was consistently poor especially near the occlusions.
Thus, for this occlusion experiment, we utilized the same three
images (neutral frontal, with sunglasses, and with scarf) from
the 136 subjects in the AR database as in Section IV-D. Some
images are missing for the 136 subjects, resulting in 135
gallery neutral frontal images, 135 images with sunglasses
and 136 images with scarves. The automatically detected
landmarks were used for all of the neutral frontal views as
ASM is extremely effective for these cases. All images with
occlusions caused by sunglasses or a scarf were manually an-
notated to produce sets of landmarks. After the automatically
detected landmarks and the manually generated landmarks are
produced, the procedure continues beginning at the alignment
step as previously outlined in Section II.

Using these manual annotations there is a small performance
decline for images occluded by a scarf, 91.85% compared
to 95.59% (TAR at FAR=1%). However, there is a marked
improvement for the face images occluded by sunglasses,
93.84% compared to 72.19% (see Tables VIII and XI). This
boost in performance demonstrates the viability of manual
annotation for probe images in a component-based system.
Furthermore, the performance on the sunglasses occluded
images in comparison to commercial face recognition systems
(see Table IX) is the overwhelming evidence in support of
value of properly aligned components in face recognition.



TABLE VIII
ROBUSTNESS TO OCCLUSION (TAR AT FAR=1%) IN THE FERET DATABASE

Occlusion Type n subjects  Holistic Holistic Eyebrows Eyes Nose Mouth ~ Fused
Global Procrustes Components
Alignment Alignment
Wearing Sunglasses 102 36.39% 44.75% 1.04%* 5.68%* 40.37%  85.30%  72.34%
Wearing Scarf 117 92.19% 70.74% 89.57% 91.50%  90.95%  0.85%*  96.67%
* These components were not included in fusion.
TABLE X

FACIAL EXPRESSION (TAR AT FAR=1%) IN THE AR DATABASE

Expression  n subjects  Fused Components  Holistic Global Alignment  Holistic Procrustes Alignment  Holistic Global Alignment + Fused
Smile 134 98.60% 99.18% 98.03% 99.20%
Anger 133 99.27% 99.33% 100% 100%
Scream 133 74.36% 75.22% 71.06% 86.10%
TABLE XI
OCCLUSION: MANUAL ANNOTATION (TAR AT FAR=1%) IN FERET DATABASE
Occlusion Type Holistic Global Alignment  Holistic Procrustes Alignment  Eyebrows Eyes Nose Mouth  Fused Components
Wearing Sunglasses 56.29% 53.22% 3.92%* 2.45%*  66.38%  93.98% 95.00%
Wearing Scarf 94.35% 90.19% 91.52% 94.59%  84.93% 1.71%* 97.30%

* These components were not included in fusion.

Facial component extraction for extreme pose variations is
very successful for the FERET database except for the extreme
poses at pitch values of £40° and +60°. In general, when the
automatic extraction procedure succeeds on a face image with
an extreme pose the localization of the inner components is
acceptable, but the outer face landmarks (denoting the face
outline) are not. For our purposes it is sufficient for only the
inner landmarks to be accurate because these are the landmarks
which both the holistic and component approaches utilize (i.e.,
alignment is based solely on these inner landmarks). However,
extraction does fail in the cases where PittPatt fails to detect
the eyes and nose. In these failure to enroll cases we manually
marked the landmarks. Once the automatic landmarks (for
faces that are properly enrolled) and manual landmarks (for
failure to enroll faces) have been extracted, the verification
procedure described in Section IV-C was then repeated for all
face images at pitch values of +40° and £60° (see Table XII).

We observe a comparable performance in this experiment
using a combination of manually annotated and automatically
extracted landmarks. That is, the faces that we needed to
manually annotate matched with the same accuracy as those
faces where automatic landmark extraction was successful.
This result supports the viability of manual annotation for
face images under pose variation, and, thus, for forensic face
recognition applications. There are some differences between
the matching performance for the face images at +60° pitch,
though we would expect them to be largely symmetrical. This
could be due in large part to the fact that the automatic
extraction failed for face images at +60° pitch significantly
more (approximately double) than at —60° pitch. Thus, manual

annotation is performed on significantly more of these images,
thereby causing differences in performance. However, we
observe that this increased manual annotation for the +60°
face images does not decrease performance but appears to
have improved the performance. This asymmetrical enrollment
failure may be due to differences within the image set or biases
in the automatic extraction method that favor one orientation
over the other.

V. CONCLUSIONS

Motivated by studies in cognitive science literature, the
main objective of this work is to demonstrate the poten-
tial of component-based representations in automated face
recognition. In the previous studies on this topic, the diffi-
culties in extracting individual facial components prevented
the effective use of component-based approaches in automatic
face recognition. However, using more precise approaches
for face alignment, it is possible to effectively align and
extract such components. Indeed, face recognition accuracies
using our proposed component-based representations greatly
exceed the accuracy using similar holistic (or globally aligned)
representations. Further, we demonstrated the effectiveness
of the proposed component-based approach when addressing
facial occlusions and variations in orientation.

There are a number of practical advantages of component-
based approaches to face recognition. The use of face recog-
nition systems by law enforcement agencies is not a fully
automated endeavor for all scenarios [55]. The ability to ex-
clude certain facial components and more generally to analyze
the per-component similarity in face comparisons could be



TABLE XII

POSE VARIATION: MANUAL ANNOTATION (TAR AT FAR=1%) IN AR DATABASE

Pitch Holistic Global  Holistic Procrustes  Eyebrows Eyes Nose Mouth  Fused Fused Components
Value Alignment Alignment Components w/o Nose

+60° 3.31% 9.16% 18.74% 11.99%  7.16%  3521% 47.03% 55.55%

+40° 17.26% 41.38% 51.24% 49.66% 21.17%  78.11%  84.33% 85.94%

—40° 20.16% 40.58% 46.25% 5291% 19.81% 66.71%  75.26% 78.44%

—60° 7.51% 9.63% 16.74% 2691%  6.80%  40.46%  31.75% 45.71%

extremely useful to law enforcement personnel and biometric  [6]
analysts. As previously demonstrated, it might allow the user

of the system to exclude the eyes when a person is wearing (7]
sunglasses, or the mouth when they are wearing a scarf (for
example). Furthermore, if the automated landmark extraction
fails or is not ideal for the desired components, a user could
mark components manually resulting in an improved set of
landmarks.

Having demonstrated the improvement in recognition accu-
racy yielded from component-based representations, a viable
future research topic is a dedicated study on how to best tailor [10]
learning-based methods to component-based representations.
While existing algorithms can readily be applied to these [y
representations (as we demonstrated using RS-LDA), nuances
of this representation may afford further performance increases
by specially tailored learning algorithms.

In conclusion, we have demonstrated the potential of [13]
component-based alignment and representations towards im-
proving automated face recognition algorithms. Given similar |4
evidence in the cognitive science domain, it is important
that component-based face representations be considered as
a viable strategy in designing automated face recognition
systems.
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