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Unconstrained Face Detection: State of the Art Baseline and Challenges

Jordan Cheney* Ben Klein*

Abstract

A large scale study of the accuracy and efficiency of face
detection algorithms on unconstrained face imagery is pre-
sented. Nine different face detection algorithms are stud-
ied, which are acquired through either government rights,
open source, or commercial licensing. The primary data
set utilized for analysis is the [APRA Janus Benchmark A
(IJB-A), a recently released unconstrained face detection
and recognition dataset which, at the time of this study,
contained 67,183 manually localized faces in 5,712 images
and 20,408 video frames. The goal of the study is to de-
termine the state of the art in face detection with respect
to unconstrained imagery which is motivated by the satu-
ration of recognition accuracies on seminal unconstrained
face recognition datasets which are filtered to only contain
faces detectable by a commodity face detection algorithm.
The most notable finding from this study is that top perform-
ing detectors still fail to detect the vast majority of faces
with extreme pose, partial occlusion, and/or poor illumina-
tion. In total, over 20% of faces fail to be detected by all
nine detectors studied. The speed of the detectors was gen-
erally correlated with accuracy: faster detectors were less
accurate than their slower counterparts. Finally, key con-
siderations and guidance is provided for performing face
detection evaluations. All software using these methods to
conduct the evaluations and plot the accuracies are made
available in the open source.

1. Introduction

The release of unconstrained face recognition datasets
such as the Labelled Faces in the Wild (LFW) [7] and
YouTube Faces [17] datasets represented a significant chal-
lenge to face recognition algorithms at the time of their re-
lease. However, recognition accuracy has recently begun to
saturate on these datasets [[15}/5,13]. At the same time, the
challenge of such unconstrained face datasets is diminished
by the fact that all faces are detectable by a commodity face
detection algorithm.

Recently, the IAPRA Janus Benchmark A (IJB-A) was
released, which consists of labelled face images that were
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Figure 1. Examples of different ranges of difficulty for automated
face detection and recognition. (a) Faces with limited pose varia-
tions. (b) Faces with a larger range of pose variation. (c) Full pose
variation.

all manually localized [9]. In addition to representing a sig-
nificantly more difficult recognition challenge, many of the
faces in this dataset cannot even be detected consistently.
As the early generation of unconstrained face recognition
datasets continue to saturate, and more unconstrained face
datasets emerge (i.e., images with manually detected faces),
face detection may become a bottleneck for face recogni-
tion. As such, it is critical to understand the state of the art
in face detection accuracy of stable, “off the shelf” detec-
tors.

While prior to the IJB-A dataset no manually localized
“media in the wild” face recognition dataset existed, several
manually localized unconstrained face detection databases
existed, such as FDDB [8] and AFLW [10]. Using such
datasets, a recent study demonstrated that significant chal-
lenges remain in unconstrained face detection [12]. Addi-
tionally, it was shown that detection protocols and evalua-
tions metrics can greatly influence measured detection accu-
racy. Finally, a comparison of two different algorithmic ap-
proaches, rigid templates [16] and deformable parts-based
models [4] was conducted, with the finding that both meth-
ods can yield top accuracy across multiple benchmarks. The
work in this paper compliments previous findings [12]], and
proceeds in orthogonal directions by: (i) measuring the ac-
curacy of the off the shelf detectors on a much larger scale
of test imagery, (ii) introducing additional evaluation con-
siderations when benchmarking face detection algorithms,
and (iii) offering several additional factors that still con-
found face detection algorithms.

The contributions of this study are as follows: (i) the
largest scale, off the shelf face detection evaluation in terms
of both number of detectors studied, nine, and dataset size,
(ii) an examination of both accuracy and speed, and (iii)



Name Abbreviation Domain
Commercial Detector I COTS-I Proprietary
Government Detector | GOTS-I Government
Government Detector 11 GOTS-1I Government
Government Detector III  GOTS-III Government
Academic Detector I MSU Academic
OpenCV \"2) Open Source
Dlib DLIB Open Source
PittPatt ver. 4 PP4 Government
PittPatt ver. 5 PP5 Government

Table 1. Face detection algorithms evaluated in this study.

identifying factors that still confound face detection accu-
racy. All code used to evaluate and plot the detection results
are provided in the open sourceﬂ

The remainder of the paper is organized as follows.
Section [2] provides information regarding the evaluation
methodology, datasets, and face detectors. Section E] con-
tains detection results on the IJB-A dataset, and Section [4]
contains results on the FDDB datatset. The computational
costs for each detector are presented in Section [5} Broad
analysis and observations are offered in Secton [6] Finally,
we summarize the observations of this study in Section[7]

2. Methodology
2.1. Detectors

Nine face detection algorithms were evaluated in this
study. These detectors were developed across commer-
cial, academic, and open source organizations. A listing
of all detectors can be found in Table [l The name of the
commercial off the shelf (COTS) detector has been with-
held due to licensing agreements with the vendor. How-
ever, this detector is from a face recognition system that
was in the upper echelon of the algorithms evaluated in
the recent NIST FRVT study[6l]. One important consider-
ation for COTS detectors is that they are generally tuned to
detect faces that are of recognition quality. Similarly, the
names of the three government off the shelf (GOTS) detec-
tors have been withheld; they were selected based on their
previously reported performance. Two open source face de-
tection algorithms are tested: OpenCV’s Viola Jones-based
detector [[16], and the detector provided in the Dlib library
(http://dlib.net/). It is important to note that for
OpenCV the pre-packaged alt2 model was used instead
of the default model, as it was found to be the most ac-
curate pre-packaged model (see Figure [7(b) for such com-
parison). For the OpenCV detector, the minNeighbors pa-
rameter was tuned and set to 5.

All of studied detectors were used as pre-trained detec-
tors. Because the IJB-A dataset was not released prior to
this study, it operates as sequestered data with which to eval-
uate these detectors. The technical approaches for each of

lopenbiometrics .0rg

Dataset Image Area (px) Face Size (px)  Faces / Image
IJB-A Images  4.04e6 £ 5.07e6  249.4 £277.4 29+3.2
IJB-A Frames  4.45e5 + 3.94e5 120.3 £ 88.5 1.7+1.7

FDDB 1.47e5 4 1.85e4 94.14+49.3 1.8+1.5

Table 2. Statistics of the three different image and video sets stud-
ied.

the studied detector are not always known as certain meth-
ods are proprietary. However, the following information is
known: The OpenCV detector represents an image using
Haar features and classifies as region using cascaded deci-
sion stump classifiers. The DLib detector uses a histogram
of oriented gradients (HOG) represetnation in conjunction
with a SVM classifier [3]. The MSU detector uses a normal-
ized pixel difference (NPD) representation in conjunction
with a cascaded regression tree classifier [11]. The other
detectors are proprietary and specific implemenation details
are not available.

2.2. Datasets

1JB-A Dataset The IJB-A is a recently released “media
in the wild” dataset that consists of 67,183 manually local-
ized faces across 5,712 images and 20,408 video I-frames
(sampled from 2,805 video clips) [9]. The IJB-A data was
manually collected from open source image and video col-
lections. Table (2] contains relevant statistics on the IJB-A
subsets and FDDB for reference. The primary purpose of
the dataset is to evaluate the accuracy of face recognition
(not detection) algorithms. As such, all images and videos
in the dataset are labelled with the subject identity of at least
one person, and the labelled subjects have manually anno-
tated landmarks for the center of the two eyes and the base
of the nose. However, a key feature of the IJB-A dataset is
that the location of all faces were manually localized and
annotated in order to develop face recognition algorithms
that are robust to the full variations in pose, illumination and
occlusion. As such, the IJB-A imagery is the first known
dataset that can be used for both face detection and recog-
nition. This report focuses solely on face detection.

FDDB 1In addition to the IJB-A dataset, detection results
on the FDDB (Face Detection Data Set and Benchmark) [8]]
are presented. The FDDB database consists of 2,845 images
containing a total of 5,171 faces. The images were collected
from news articles on the Yahoo website, and all faces were
manually localized for ground truth. The FDDB dataset has
been selected in this study because it is the most widely
used benchmark for unconstrained face detection, which al-
lows the off the shelf detectors in this study to be compared
against the academic self reported algorithms. Further, a
smaller scale evaluation of available face detectors was re-
cently conducted which evaluated some of the same face
detectors in this study on the FDDB benchmark [1]]. Most
notable from these distributions is that the image and face
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Figure 2. Output of the VJ detector at specific false positive rates.
(a) False positive rate of roughly 0.01 or 1 false positive per every
100 images. (b) False positive rate of roughly 0.1 or 1 false posi-
tive per every 10 images. As is shown in the figures a higher false
positive rate results in far more detections, but at the expense of
introducing false positives.

sizes are significantly smaller in FDDB than in IJB-A.

2.3. Evaluation Harness

The evaluation and plotting functionality embedded
within the OpenBR project was used to analyze the face
detection accuracies reported in this study. Detector ac-
curacies are reported as receiver operating characteristics
(ROC). True accept rates for ROC curves are plotted as a
function of false accepts per image, which differs from the
FDDB benchmark which reports the total false accept rate.
For example, at 0.1 false accepts / image, an average of one
false accept occurs per every ten images. In this evalua-
tion, two false accept rates per image, 0.1 and 0.01, were
selected as being particularly relevant to operational appli-
cations. Figure [2] illustrates the difference between these
two operating thresholds. The reason for presenting false
accepts per image, instead of total false accepts, is that false
accepts per image is invariant to the number of images in
a given dataset. Thus, cross dataset comparisons are better
facilitated using this reporting metric, in addition to having
a more meaningful interpretation for readers.

2.4. Minimum Bounding Box Size

A key, and often overlooked, consideration when com-
paring face detection algorithms is the default minimum
bounding box size used by a given detector. If two al-
gorithms being compared use different minimum bound-
ing box sizes, then the detection results may not properly
convey which detector is more accurate. For example, if
the minimum bounding box size is smaller than the size
of ground truth face sizes, then searching for faces at such
smaller locations can only increase the false positive count,
and not the true positive count. Conversely, if the minimum
bounding box size is larger than the size of the ground truth

(a) (b) (©) (d)
Figure 3. Manually annotated faces from the IJB-A dataset with
bounding boxes that are (a) 12 pixels, (b) 20 pixels, (c) 36 pixels,
and (d) 72 pixels along their smallest side (height or width). The
results presented on the IJB-A dataset are on faces that are 36 pix-
els and above, and results on the FDDB dataset are on faces 20
pixels and above.

face sizes, then the true positive count will be restricted
from including such smaller faces in the data. Similarly,
false positive rates will vary if the minimum bounding box
size is set to a larger value.

Two different minimum box size sizes where used with
the IJB-A and FDDB datasets. For FDDB, a minimum
bounding box size of 20 was used, as this is the protocol
provided by this dataset. For the IJB-A dataset, faces have
been annotated as small as 12 pixels; however, the ground
truth was carefully filtered (see next paragraph) to only con-
tain 36 pixels or larger. The choice of 36 pixels is motivated
by our application of interest (face detection in conjunction
with face recognition). As demonstrated in NIST’s FRVT
evaluation released in 2014 [[14], the accuracy of most face
recognition algorithms precipitously decreases at an inter-
pupilary distance of 18 pixels, which roughly corresponds
to a bounding box size of 36 pixels. Thus, a minimum
bounding box size of 36 was set for all detectors when op-
erating on [JB-A. Examples of varying appearance of dif-
ferent sized faces can be found in Figure 3]

A naive implementation of this filter could just remove
bounding boxes from the ground truth and detector output
if they are smaller than the threshold. This method how-
ever, unfairly benefits algorithms that output larger bound-
ing boxes. As an example, consider a head-cropped (en-
compasses the entire head and not just the facial landmarks)
ground truth bounding box of size 36 and two detectors, one
which returns a crop around the head and one which returns
a crop around the facial landmarks. Using the naive method,
the facial crop would be filtered out if the threshold was set
to 36 pixels, while the head crop would remain, crediting
an incorrect false positive to the detector that output smaller
boxes. To avoid this, we introduce a second threshold, in-
troduced in [12]], for the predicted bounding boxes. This
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Figure 4. When evaluating pre-trained face detection algorithms,
different bounding box sizes may inappropriately influence mea-
sured accuracy. As such, bounding box sizes need to be normal-
ized on a per detector basis. The top row shows raw bounding box
results (a) VJ (in blue) and (b) PP4 (in red). In each image the
green box indicates the manually annotated ground truth. The bot-
tom row shows the boxes after applying the normalization which
fixes biases in different box sizes (a) and does not alter well aligned
boxes (b).

new threshold, 3, relates to the original threshold, «, such

that
B =+v0.5x%a? (1)

The purpose of 3 is to keep all predicted bounding boxes
that could overlap the ground truth by 50%, the minimum
overlap required for a detection to be considered a true pos-
itive. By introducing this second threshold, we are able to
more intelligently crop the output of each detector and avoid
the situation described above.

Finally, it is important to note that by default, the min-
imum bounding box size was different for each detection
algorithm. In order to properly compare these detectors,
these values had to be manually set. While some detectors
expose this parameter as minimum bounding box size, oth-
ers specify this value as a percentage of image width: thus,
care needed to taken with all nine detectors to ensure the
minimum bounding box size was properly set.

2.5. Bounding Box Normalization

An output from a given detector is considered to match a
ground truth face location if the two bounding boxes overlap
by at least 50%. When analyzing pre-trained face detectors,
variations in bounding box sizes across detectors is another
factor that needs to be considered in order to properly com-
pare multiple detectors. For example, the top row of Fig-
ure[d]shows the bounding boxes calculated by two detectors
(V] and PP4), as well as the ground truth locations for the
face images. While the bounding box dimensions of certain
detectors are closely aligned with the ground truth (in this
example, PP4), others are consistently of different shape
and localization (in this example, VJ). Without consider-
ing these differences, a detector that is not closely aligned
with the ground truth dimensions will be reported as being
less accurate when instead it could be an issue of the differ-
ent bounding box formats causing certain face detections to

have less overlap with the ground truth.

In order to properly compare the detectors, bounding box
normalization was applied to each predicted bounding box.
Bounding boxes in this study are defined in terms of the top
left corner, given as an x and y coordinate, and a width and
height. The goal of the normalization algorithm is to de-
termine four coefficients, d X, dY, dWidth, and dHeight,
for each detector. These values correspond to fixed scale
and translation transformations that can be applied to each
bounding box output such that each box is scaled to more
closely match the ground truth.

The following algorithm is applied to the output of each
detector individually at evaluation time to properly normal-
ize faces. First, two sets of rectangles R/ and R/, are gen-
erated, where R/ corresponds to ground truth faces, and

'> corresponds to the predicated output by the detector.
From these two sets, two new sets, R and Rp, are gener-
ated which contain the boxes that have a minimum overlap
of at least 7,0 < 7 < 1. We chose 7 = 0.3 based on
empirical examination. The overlap of two rectangles was
measured by dividing the area of intersection between the
two rectangles by the area of the union of the two rectan-
gles. The i-th ground truth and predicted box are denoted
as Ry (i) and Rp(i), respectively, where 1 < ¢ < n. Next,
we compute the n-dimensional vector of differences x;, x,
x4, and xp, which correspond to the width normalized dif-
ference between the left, right, top, and bottom dimensions
of the ground truth and predicted rectangles. That is:

Rr(i).l — Rp(i).l

u(i) = O @
(i) = RT(i;Z(_i)éj(i)‘r 3)
i) — RT<iJ)éi(_i)§;<i).t "
(i) = RT(i;l;(_i)éj(i)'b Q)

where *.w denotes rectangular width, *.I denotes the left
boundary coordinate, *.7 the right, *.t the top, and *.b the
bottom. Finally, we normalize each predicated box location
into the normalized set R (%) as:

x1(@) - Rp(i).w

Ry(i)l = Rp(i).l+ - ©)
Ry(i)r = Rp(i).r+M o
Ry(i)t = RP@HM )
Ry(i)b = Rp(i).b-s-m ©

The bottom row of Figure [ shows these boxes after ap-
plying our normalization algorithm. As demonstrated, the
normalization causes successful detections to more closely
align with the ground truth.



Detector FAR=0.01 FAR=0.1
PP4 0.28 0.78
PP5 0.25 0.75
COTS-1 0.21 0.48
GOTS-1 0.03 0.38
GOTS-II 0.19 0.52
GOTS-III 0.14 0.37
\"2l 0.17 0.38
DLIB 0.18 0.52
MSU 0.31 0.50

Table 3. Detector performance on the entire IJB-A Dataset. Listed
are true accept rates (TAR) at false accept rates (FAR) of 0.01
(corresponding to one falsely accepted face per 100 images) and
0.1 (corresponding to one false accepted face per 10 images).

3. I)JB-A Dataset Results

This section provides the detection accuracies results for
the nine commercial, government, and open source detec-
tors that were evaluated on the IJB-A dataset. The detection
performance of all detectors on IJB-A are contained in Fig-
ure [5} Table [3]contains the corresponding accuracies at key
operating thresholds for the entire image corpus. Because
the IJB-A dataset consists of two distinct subsets, still im-
ages and video frames, Figure [5| contains plots for both the
entire dataset, as well as each subset individually. All re-
sults shown are based on a minimum bounding box size of
36 pixels. Thus, each detector was set to not search for
smaller faces, and any face smaller than 36 pixels was re-
moved from the ground truth. Finally, the outputs from
all detectors were normalized using the normalization al-
gorithm described in Section

Key observations from these results are as follows. The
two PittPatt detectors (PP4 and PP5) exhibit the best detec-
tion performance at high FARs (> 0.1) by a wide margin.
Additionally, PittPatt 4 performs better than PittPatt 5 at all
FARs (this will be discussed in more detail later). The open
source VJ detector is one of the worst detectors at all oper-
ating points. The DLIB detector, which is also open source,
shows much better performance. GOTS-I is the worst de-
tector by a wide margin at low FARs but shows rapid im-
provement as FAR increases. At higher FAR values (> 0.1)
it is a top performing detector. The MSU detector is the
best at low FARs. At higher FARs its performance is lower
relative to other detectors.

At least one face in each image and video frame in the
IJB-A dataset has landmarks denoting the center of the eye
sockets and base of the nose annotated using crowdsourced
labor from Amazon Mechanical Turk. Such information
was collected for the labelled person of interest in each im-
age as the dataset is also used for evaluating face recogni-
tion. In the context of face detection, this information can be
used to coarsely categorize the pose of certain faces. Specif-
ically, we consider two cases: (i) both eyes are visible, and
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Figure 6. Detector performance on (a) subjects with one eye visi-
ble and (b) subjects with both eyes visible
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(ii) only one eye is visible. When both eyes are visible, this
roughly corresponds to yaw ranges of —45° and 45°. Faces
without landmark annotations (i.e. faces not belonging to
the identity labelled subject in the image) were marked with
an IGNORE flag. This means that successful detections of
these faces did not count as false positives for the detectors,
and unsuccessful detections did not count as true negatives.

Figure[6]shows that pose still has a massive effect on the
performance of all face detectors. Further, the PittPatt de-
tectors were top performers on both more frontal and more
extreme pose variations. GOTS-I was the best non-PittPatt
detector on the extreme pose bins at all FARs. On frontal
pose bins it was the worst performer at lower FARs, but ex-
hibited strong relative improvement as FAR increased. This
is the same trend that the detector showed on the full IJB-A
dataset. MSU performed in the top half of detectors on ex-
treme pose bins and was the best detector at low FARs on
frontal pose bins. Again, this mirrors the behavior on full
IJB-A. V] performs in the bottom half of detectors on both
pose bins, and again performs worse than an open source
alternative (DLIB) at all FARs.

4. FDDB Dataset Results

This section contains the detection performance for the
nine detectors on the FDDB dataset. Because many of the
evaluated detectors do not disclose which datasets they were
trained on, it is important to consider that certain detectors
may have been trained on FDDB (which would increase
their reported accuracy). All detectors were evaluated with
a minimum bounding box size of 20 pixels, which is the
smallest ground truth bounding box reported in FDDB. The
output from each detector was normalized using the nor-
malization algorithm described in Section [2.5]

Figure[7(a) shows the ROC curves for the evaluated de-
tectors on the FDDB dataset. The accuracies observed us-
ing the alt2 VJ model and the accuracies reported on the
FDDB benchmark (most likely using the 1bp model) are
quite different. As such, Figure[7(b) shows the ROC curves
for the detection performance of different OpenCV models
compared to the reported results from FDDB. The differ-
ence in accuracy is mostly attributed to the different model
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Figure 5. Detector performance on IJB-A dataset. Plots shows true accept rate (TAR) vs. false accepts per image for (a) still images, (b)

video frames, and (c) images and videos combined.

file used. Figure [7(c) shows the ROC curves for the top
six self-reported results in the published literature compared
against the top six evaluated detectors on the FDDB dataset
in this study. At the time of publication, the best perform-
ing algorithm on FDDB was the joint cascade approach [2].
One important note is that the self-reported detectors were
evaluated outside of the evaluation harness used in this pa-
per. The methodology for that evaluation is specified in the
FDDB evaluation standard and differs from the evaluation
methodology of this paper.

The most notable observation is that top off the shelf de-
tectors perform at roughly the same level as academic self
reported algorithms. This may be partially due to certain
algorithms having been trained on FDDB as these are all
pre-trained detectors.

Key observations from these results are as follows. The
PittPatt detectors were the top performers on FDDB, with
PP4 once again outperforming PP5. COTS-I is the third
highest performing detector, this is a higher relative perfor-
mance than was shown on IJB-A. GOTS-I performs much
better at low FARs on FDDB than on IJB-A and is a top
performing detector at all FARs. VI is the lowest perform-
ing detector on FDDB. The performance shown however is
much higher then was self reported on the FDDB website.
This is due to a different model file being used, see Figure
[7[b). MSU exhibits lower relative performance on FDDB
than on IJB-A.

5. Runtime

In any operational deployments, the face detection accu-
racy is not the only consideration for overall performance.
Other factors, such as memory usage, computational ef-
ficiency, and (especially) detection time are also critical.
Applications such as face detection in cameras on mobile
phones often prioritize speed over detection accuracy, while
security applications might find value in the detection of ev-
ery face, at the expense of real-time operation. For these

reasons, the following section will provide computational
benchmarks for each detector.

All detectors were run in a single threaded environment.
Time measurements were performed on randomly selected
splits from both the still images and video frames subsets of
the IJB-A dataset, where each split contained 200 images
and the splits had non-overlapping imagery. Non-detection
overhead, such as opening an image or writing an image
to disk, was handled outside of the profiling and did not
effect the measurements. Results are reported as average
face detection time per image.

Figure[8fa) shows the average time per image for all ran-
dom splits of the video frames subset of ITB-A. Figure [§[b)
shows the detection performance at a false positive rate of 1
false positive per 10 images measured against the computa-
tional performance.

The tradeoff between detection performance and the
computational performance can be summarized as follows.
The detectors fell into two tiers of speed, with the slower tier
having the most accurate detectors. PP4 was the most accu-
rate detector and was in the middle of the slower tier. PP5
was the second most accurate detector and was the fastest
detector in the slow tier. This speed increase could explain
the accuracy difference between PP4 and PP5. MSU was
the fastest overall detector and also the most accurate de-
tector in the faster tier. GOTS-I was one of the worst per-
formers and was the slowest detector. GOTS-II and DLIB
performed very similarly. They were average in both per-
formance and speed in the slower tier. VJ was the second
fastest detector but also one of the worst performers.

6. Analysis and Observations

Pose was observered as the most important factor in de-
tector performance. This was evident by the results shown
in Figure[6] However, additional qualitative analysis of fail-
ure cases further demonstrates this trend. For example, Fig-
ure E] show faces that were detected by all detectors, and
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Figure 7. (a) Detector performance on the FDDB dataset. Tick marks at 28.45 and 284.5 correspond to false accept rates of 0.01 and 0.1,
respectively. (b) Performance of different OpenCV models with self-reported results on FDDB dataset. (c) Comparison of top evaluated
results and top self-reported results on FDDB dataset. Off the shelf detectors exhibit more false accepts than self reported algorithms,
which may be due to self reported methods ignoring smaller bounding box sizes.

face detected by none of the detectors. While these were
carefully selected to demonstrate a range of variates that
cause all detectors to fail, the dominance of pose was clear
when inspecting all of the 13,872 faces (or 20.65%) that
failed to be found by all detectors. As shown in Figure [9]
other predominant factors that impact face detection accu-
racy are partial occlusion, and poor illumination.

Computational speed is a strong indicator of detector
performance. The most accurate detectors are in a slower
tier (in general) then the less accurate detectors.

Image resolution plays a very large factor in detector per-
formance and computational speed. High resolution images
will generate a significantly higher false positive rate. This
is shown in the general shift to the right for detector perfor-
mance between Figure [5[a) and Figure [5[b). Additionally,
higher resolution imagery will slow down the detector as
there is far more area to search. As such, understanding res-
olution and the average size of faces in the target imagery
can help lower computation time and raise detection perfor-
mance by adjusting minimum bounding box size.

The fusion of multiple was studied in this research, how-
ever the top detector (PP4) did not benefit from being fused
with any other detector.

7. Conclusions

An evaluation of nine different face detection algorithms
was performed. The detectors were sourced from indus-
try, government, open source and academia. Both the accu-
racy and efficiency of these algorithms were measured on
two datasets, one containing over 67,183 faces (the [JB-A
dataset) and the other used as a common benchmark in aca-
demic research. From this evaluation it is clear that while
significant progress has been made in face detection, several
challenges still remain. Most notable of these challenges is
robustness to facial pose.

With over 20% of the faces in IJB-A failing to be de-
tected by any one of the nine detectors, it is clear that more
novel approaches to face detection are needed to advance
state of the art in face recognition. Such approaches will
need to range across both face representations and learning
algorithms. We may potentially have to use several face
detectors trained on sets of faces containing more homoge-
neous poses.
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