
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. XX, XXX 2011 1

Face Tracking and Recognition at a Distance:
A Coaxial & Concentric PTZ Camera System
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Abstract—Face recognition has been regarded as an effective
method of subject identification at a distance because of its covert
and remote sensing capability. However, face images have a low
resolution when they are captured at a distance (say, larger than
5 meters) thereby degrading the face matching performance. To
address this problem, we propose an imaging system consisting of
static and PTZ cameras to acquire high resolution face images
up to a distance of 12 meters. We propose a novel Coaxial-
Concentric camera configuration between the static and PTZ
cameras to achieve the distance invariance property using a
simple calibration scheme. We also use a linear prediction model
and camera motion control to mitigate delays in image processing
and mechanical camera motion. Our imaging system was used to
track 50 different subjects and their faces at distances ranging
from 6 to 12 meters. The matching scenario consisted of these 50
subjects as probe and additional 10,000 subjects as gallery. Rank-
1 identification accuracy of 91.5% was achieved compared to 0%
rank-1 accuracy of the conventional camera system using a state-
of-the-art matcher. The proposed camera system can operate at
a larger distance (up to 50 meters) by replacing the static camera
with a PTZ camera to detect a subject at a larger distance and
control the second PTZ camera to capture the high resolution
face image.

Index Terms—Face recognition at a distance, PTZ camera,
coaxial, concentric, tracking.

I. INTRODUCTION

FACE recognition in surveillance environments is cru-
cial to identify potential terrorists and criminals on a

watch list. While the performance of face recognition has
improved substantially in the last decade [2], [3], the in-
trinsic (expression, aging, etc.) and extrinsic (illumination,
pose, etc.) variations are still the major bottlenecks in face
recognition. Face recognition at a distance of over 5 meters
introduces another challenge, namely the low image resolution
problem. Typical commercial face recognition engines require
face images with at least 60 pixels between the eyes (called
inter-pupillary distance) for successful recognition, which is
difficult to achieve in many surveillance systems. Fig. 1 shows
degradations in image resolution as the standoff between the
camera and subject increases.
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Existing approaches that have studied face recognition at
a distance can be essentially categorized into two groups: (i)
generating a super resolution face image from the given low
resolution image and (ii) acquiring high resolution face image
using a special camera system (e.g., a high resolution camera
or a PTZ camera). While reconstructing a high resolution face
image from its low resolution counterpart can improve image
quality and help the face recognition process, the performance
of this approach highly depends on the training data. High-
resolution cameras can potentially overcome the low resolution
problem, but either they expect the subject to be at a fixed
location/distance or the camera has to be manually focused
on the subject. The above mentioned limitations have lead to
the extensive use of Pan-Tilt-Zoom (PTZ) cameras, since PTZ
cameras provide an inexpensive way to automatically track and
obtain close-up face images of subjects of interest. However,
the field of view of PTZ cameras is severely limited when it
zooms into an object. Therefore, systems with paired static
and PTZ cameras have emerged as a promising method to
achieve tracking and zooming capability for wide surveillance
areas; the static camera provides the wide field of view and
then directs the PTZ camera to obtain high resolution images
of target objects. The main challenge faced by such a system
arises in registering the image coordinates of static camera
and the pan and tilt angles of the PTZ camera. Due to the
lack of depth information, the image coordinates of the static
camera are not in one to one correspondence with pan and tilt
angles of the PTZ camera. A direct estimation of the depth
using a 3D sensor or stereography method could be a possible
solution, but they are either too expensive or not sufficiently
accurate.

Dedeoglu et al. [33] recognized faces in low resolution

(a)

(b)

1m 3m 5m

Fig. 1. Images at three different distances (1∼5m): (a) images captured by
a webcam (Logitech, Pro9000, image size of 640×480) and (b) face images
cropped and resized. The inter-pupillary distances (IPDs) are 35, 12, and 7
pixels from left to right, respectively.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. XX, XXX 2011 2

TABLE I
A COMPARISON OF SURVEILLANCE SYSTEMS THAT USE PTZ CAMERA

Surveillance system
#Static
cam-
eras

#PTZ
cam-
eras

Tracking:
single (s) or

multiple
(m) persons

Prediction Speed
control Operating area (meters)

Face recognition (accuracy,
#images in probe, #images
in gallery, #subjects in probe,
#subjects in gallery)

Bernardin et al. (2007) [4] 0 1 m No Yes indoor (5 m) No
Mian et al. (2008) [5] 0 1 s No No indoor (N/A) No
Yang et al. (2008) [6] 0 1 s No No indoor (7.8 m) No

Kumar et al. (2009) [7] 0 1 s No No outdoor (N/A) No
Varcheie et al. (2009) [8] 0 1 s Yes Yes indoor (N/A) No

Venugopalan et al.
(2010) [9] - 1 s Yes Yes indoor (0.6∼1.5 m) No (Iris recognition)

Varcheie et al. (2011) [10] 0 1 m Yes No indoor (12 m) No
Everts et al. (2007) [11] 0 2 s No No indoor (N/A) No
Liao et al. (2009) [12] 0 2 m No No outdoor (N/A) No
Del et al. (2010) [13] 0 2 m Yes No outdoor (80 m) No
Liao et al. (2010) [14] 0 2 m Yes No N/A No

Wheeler et al. (2010) [15] 0 2 m Yes No outdoor (15∼20 m) (N/A, 30, 268, 9, 244)
Zhou et al. (2010) [16] 0 2 s No No in/outdoor (30∼100 m) No
Bodor et al. (2004) [17] 1 1 s No No in/outdoor (N/A) No

Marchesotti et al.
(2005) [18] 1 1 s No No outdoor (N/A) No

Funahasahi et al.
(2004) [19] 1 1 s No No indoor (1.5 m) No

Yoon et al. (2009) [20] 1 1 s No No indoor (1.5∼2.5 m) No
Amnuaykanjanasin et al.

(2005) [21] 1 1 s No No outdoor (5 m) No

Prince et al. (2006) [22] 1 1 m No No indoor (N/A) (100%, 100, 220, 100, 220)

Chen et al. (2008) [23] 1
(Omni) 1 m No No indoor (5 m) No

Scotti et al. (2005) [24] 1
(Omni) 1 m No No in/outdoor (N/A) No

Tarhan et al. (2011) [25] 1
(Omni) 1 s No No indoor (6 m) No

Lu et al. (2008) [26] 1 1 m No No indoor (N/A) No
Yao et al. (2009) [27] 1 1 s Yes Yes indoor (15 m) No

Sivaram et al. (2009) [28] 1 2 s No No indoor (6 m) No
Xu et al. (2010) [29] 1 2 m Yes Yes outdoor (80 m) No

Stillman et al. (1999) [30] 2 2 m No No indoor (N/A) No
Hampapur et al.

(2003) [31] 2 2 s No No indoor (6.25 m) No

Krahnstoever et al.
(2008) [32] 4 4 m Yes No outdoor (N/A) No

Proposed method 1 or 2 1 s & m Yes Yes indoor (12 m)

single person: (91.5%,
102978, 10150, 50, 10050)

multi-person: (93.4%,
36574, 10009, 3, 10003)

images using the super-resolution method. Park et al. [34]
proposed a stepwise reconstruction of a high-resolution facial
image based on the extended morphable face model. The
performances of their systems [33] [34] is highly dependent
on the training data and the recognition accuracy rapidly drops
when the image resolution is less than 16×16. Yao et al. [35]
used a high magnification static camera to capture face images
at long distances (50∼300 m). However, the camera does
not provide pan and tilt motion, resulting in a very small
field of view. Bernardin et al. [4] proposed an automatic
system for the monitoring of indoor environments using a
single PTZ camera. However, their system requires frontal

pose in every frame to properly control the PTZ camera and
the system has to zoom out when it fails to detect the face.
Scotti et al. [24] and Chen et al. [23] used an omnidirectional
camera for the monitoring of wide area. Everts et al. [11]
and Liao et al. [12] used PTZ cameras to monitor wide
areas in zoomed-out mode and used them to zoom-in and
capture high resolution images whenever possible. Marchesotti
et al. [18] used a pair of static and PTZ cameras to capture high
resolution face images. Hampapur et al. [31] used multiple
static cameras and a PTZ camera to accurately estimate the
3D world coordinates of a subject’s face and then zoom into
the face to capture a high resolution image. Stillman [30] used
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multiple static cameras to estimate the location of a person in
a calibrated scene, where the PTZ camera tracks the detected
face. Most of these systems rely on the reconstruction of 3D
world coordinates or a crude approximation of the calibration
between static and PTZ cameras. The 3D world coordinate
estimation is computationally expensive and is not suitable
for real time applications. Table I summarizes most of the
available approaches to recognize a face at a distance using
PTZ camera(s). These methods can be categorized in terms of
the number of static and PTZ cameras as below.

• Single PTZ camera: face location is first estimated in the
zoomed-out view and the camera is controlled to acquire
a high resolution face image. However, the single PTZ
camera needs to continuously zoom in and out, so it is
very easy to loose track of moving subjects.

• Single static camera and PTZ camera(s): The face loca-
tion is estimated in the static view and the PTZ camera is
controlled to capture a high resolution face image [22],
[17], [19], [24], [21], [22], [36], [23], [26], [29]. However,
due to the lack of depth information (Z coordinate), it
is difficult to accurately estimate the (p, t) values in the
static image. So, most of the automatic tracking systems
using PTZ cameras provide a limited operating range
and do not capitalize on the zooming feature of the PTZ
camera. The main challenge faced by such a system is
the camera calibration; image coordinates of static camera
are calibrated to obtain the pan and tilt angle values of
the PTZ camera.

• Dual (multiple) static cameras and PTZ camera(s) [31],
[32], [30]: multiple static views allow stereographic re-
construction to estimate the 3D world coordinates. How-
ever, the stereographic reconstruction is computationally
expensive and has a limited operating range. Multiple
static cameras are utilized primarily to increase the
surveillance coverage, while multiple PTZ cameras are
considered to track multiple subjects concurrently.

• Single static high resolution camera [35]: by using a
telescope attached to the camera, face image can be
acquired at long distances (indoor: 10∼16 m and outdoor:
50∼300 m), but the field of view is severely limited. By
using a high definition video camera, the field of view
is increased, but the operating distance becomes smaller
compared to the system using PTZ cameras.

Systems using static and PTZ cameras require a camera
calibration process to correlate the world coordinates, image
coordinates of static cameras, and parameters that control
the PTZ cameras. To facilitate this calibration process, we
propose a Coaxial-Concentric camera system that uses PTZ
and static cameras with a relative camera calibration scheme
between the image coordinate of static camera, (xi

s, y
i
s), and

PTZ camera parameters, (p, t, z). Compared to other camera
systems proposed in the literature, our approach has the
following advantages: (i) calibration process does not involve
the world coordinates, (ii) only one relative calibration process
is required and the calibrated system can be easily deployed at
a different location with no recalibration, (iii) face images can

be captured irrespective of the distance between the camera
and subject, and (iv) by predicting subject’s location and a
camera speed control scheme, we obtain a smooth PTZ camera
control capability.

The Coaxial-Concentric camera system developed by us was
evaluated in a face recognition test with 50 probe subjects and
10,050 gallery subjects. The probe images were captured at
distances ranging from 6 to 12 m whereas the gallery subjects
are typical mug shots captured at a distance of about 1 m.
A rank-1 identification accuracy of 91.5% was obtained in
case of single person tracking. For multi-person tracking in
four different scenarios with 3 subjects, a rank-1 accuracy of
93.4% was obtained.

II. CAMERA CALIBRATION

A. Problem Formulation

We first define the variables used to describe the proposed
camera system.

• wobj= (xobj , yobj , zobj): target (face) location in the real
world coordinate system

• wcalib= (xcalib, ycalib, zcalib): real world coordinate at
calibration distance (zcalib) corresponding to wobj

• ms= (xi
s, y

i
s): image coordinate of the ith static camera

• θptz= (p, t, z): pan, tilt, and zoom parameters to control
the PTZ camera; θpt represents (p, t)

• d= (dx, dy, dz): displacement vector from the focal point
of the static camera to the center of rotation of the PTZ
camera

Our objective is to drive the PTZ camera via the θptz
parameters towards the face location wobj to capture a high
resolution face image (inter-pupillary distance greater than 60
pixels). To determine the desired θptz, we can either try to
directly estimate wobj or use the relationship between ms

and θptz.

B. Coaxial-Concentric Camera Calibration

The conventional camera calibration process typically refers
to establishing the relationship between the world coordinate
and static image coordinate systems [37], [38]. The calibra-
tion process in PTZ camera systems for the high resolution
face image acquisition involves calculating the relationship
between the world coordinate and θptz parameters via the
image coordinates of static camera; the calibration between the
world coordinate and static image coordinate is not needed.
Therefore, the calibration process involves calculating the
mapping function from ms to θpt. The zoom (z) parameter
is obtained based on the estimated object (face) size (see
Sec. II-D). The mapping function F can be calculated by
a linear equation using a set of corresponding ground truth
values of θpt and ms as:

[
p
t

]
= F

⎡
⎣ xs

ys
1

⎤
⎦ =

[
l11 l12 l13
l21 l22 l23

]⎡⎣ xs

ys
1

⎤
⎦ (1)

We find a set of corresponding point pairs between ms

and θpt by manually driving the PTZ camera to a number
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(xobj, yobj, zobj)

err(p,t)

(xs, ys)

Center of rotation of PTZ camera

(dx, dy, dz)

Focal point of static camera

(0, 0, 0)

(xcalib, ycalib, zcalib)

(a) Non-Coaxial-Concentric configuration

err(p, t)=0

(xs, ys)

Focal point of static camera 

and center of rotation of PTZ camera

(dx, dy, dz)=0

(xobj, yobj, zobj)

(xcalib, ycalib, zcalib)

(b) Coaxial-Concentric configuration

Fig. 2. Schematics of (a) Non-Coaxial-Concentric and (b) Coaxial-Concentric camera systems. Targets (faces) at two different locations being projected to
the same spot on the image plane shares the same pan and title angles for the PTZ camera control in the proposed Coaxial-Concentric camera system.

(a)

(b)

5m 6m 7m 8m 9m 10m

Fig. 3. Facial images at a distance of 5 to 10 m. The PTZ camera was controlled by a static camera (a) in Non-Coaxial-Concentric configuration and (b) in
the proposed Coaxial-Concentric configuration (‖wcalib‖ = 5m). The IPDs are ∼60 pixels for images in row (b). Note that the proposed system keeps the
target face in the center of the image frame.

of different positions (15 in our case) in the static view. Even
though a non-linear mapping function gave smaller residual
error in our experiments, we chose to use the linear method
for computational efficiency.

Fig. 2(a) shows that the world coordinates of a target wobj

appearing at two different locations correspond to the same
image coordinate in the static view ms. As a result, the desired
θpt values obtained from the image coordinates of the static
view may not always give the correct pan and tilt values to
accurately capture the image of an object in the PTZ view. The
error between the desired and calibrated θpt values is defined

|| d ||

α

E
rr

(θ
p

t)

|| d ||

α

E
rr

(θ
p

t)

|| d ||

α

E
rr

(θ
p

t)

(a) ‖wcalib‖ = 5m (b) ‖wcalib‖ = 10m (c) ‖wcalib‖ = 15m

Fig. 4. Localization error (Err(θpt)) in degrees between the desired and
estimated directions of the PTZ camera with respect to the ratio (α) between
(wobj) and (wcalib) and the distance (d) between the static and PTZ
cameras. The error is minimized when α = 1 or ‖d‖ = 0.

as follows:

Err (θpt) = cos−1

(
(wobj − d) · (wcalib − d)

‖wobj − d‖ ‖wcalib − d‖
)

= cos−1

(
(αwcalib − d) · (wcalib − d)

‖αwcalib − d‖ ‖wcalib − d‖
)

∵ wobj = αwcalib

(2)

The condition to achieve the minimum error can be derived
as:

Err (θpt) = 0

⇔
(
(αwcalib − d) · (wcalib − d)

‖αwcalib − d‖ ‖wcalib − d‖
)

= 1

⇔ (α− 1)
2
{
(wcalib · d)2 − ‖wcalib‖2 ‖d‖2

}
= 0

⇔ (α− 1)
2 ‖wcalib‖2 ‖d‖2

(
cos2 θ(wcalib,d) − 1

)
= 0

⇔ α = 1 or ‖d‖ = 0

(∵ ‖wcalib‖ > 0 and

cos θ(wcalib,d) �= 1 unless wcalib × d = 0)

(3)

where θ(wcalib,d) is the angle between wcalib and d. The
expanded derivation of Eq. (3) is provided in the Appendix.

In order to minimize the error in θpt, at least one of the
following conditions must be satisfied: (1) the object must be
observed at the calibrated distance (α = 1) or (2) the focal
point of static camera and center of rotation of PTZ camera
coincide (‖d‖ = 0). In case an object is located at farther
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(xs, ys)      h      
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Horizontal camera

image plane

(xobj, yobj, zobj)
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Y
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Vertical camera

image plane

(xs, ys)     
h

      

v
 

Coaxial camera

image plane

Horizontal 

global view

Vertical

global view

Close-up view

(a) Schematic of the proposed camera system with two cameras (b) Actual implementation of the proposed system described in (a)

X

(xobj, yobj, zobj)

X

Z
Y

tp

Beam splitter

(xs, ys)

Coaxial & Concentric

camera image plane

ppp

Z

Y
Global view

Close-up view

(c) Schematic of the proposed camera system with a beam splitter (d) Actual implementation of the proposed system described in (c)

Fig. 5. Schematic of the proposed Coaxial-Concentric camera systems and the corresponding face images obtained at global and close-up views: (a) two
static cameras are placed above and beside the PTZ camera to generate the virtual camera in a coaxial position w.r.t. the PTZ camera and (c) beam splitter
divides a beam of light into the static and PTZ cameras. (b) and (d) are the images of the actual camera system corresponding to (a) and (c), respectively,
and their static and PTZ views.

or closer distance than the calibrated distance, the object will
not be in the center of the PTZ camera’s field of view, as
shown in Fig. 3(a). The first condition is difficult to satisfy in
practice because the object can appear at any distance from
the camera independent of the calibrated distance. However,
the second condition can be satisfied using the proposed
camera configuration, which we call the Coaxial-Concentric
camera configuration. Fig. 4 shows the simulation results of
the amount of error with different values of α and ‖d‖. It can
be seen that the error is always zero when α = 1, regardless
of ‖d‖ or ‖wcalib‖. The error also increases with ‖d‖ at
fixed α and ‖wcalib‖. The overall error decreases as ‖wcalib‖
increases.

The proposed Coaxial-Concentric configuration of static
and PTZ cameras has the following properties: (i) coaxial;
the axes of both the cameras are parallel so that the views
of static and PTZ cameras overlap and (ii) concentric; focal
point of static camera and center of rotation of PTZ camera
coincide (‖d‖ = 0). Due to the infeasibility of designing
such a hardware system1, we propose two types of camera

1The concentric configuration requires two different cameras physically
overlapped.

systems that effectively satisfy the requirements of coaxial and
concentric camera configurations as follows.

1) Camera system with dual static cameras: We configure
two static cameras, one above (horizontal camera), and one
beside (vertical camera) the PTZ camera, so that the X
coordinate (Y coordinate) of the horizontal (vertical) camera’s
focal point coincides with the X coordinate (Y coordinate) of
the PTZ camera’s center of rotation as shown in Fig. 5(a) [1].
All cameras are also configured to have parallel camera axes.
The mapping function F from the static image coordinate
to the pan-tilt parameters can thus be estimated as (p, t) =
F (xh

s , y
v
s , 1) from the coordinates of the horizontal and vertical

static cameras. However, this configuration is computationally
demanding since it has to estimate corresponding points in the
two static camera images.

2) Camera system with a beam splitter: A beam splitter
is an optical device that splits a beam of light into two. We
configure a hexahedral dark box with one of its side tilted
by 45 degrees and attached to a beam splitter as shown in
Figs. 5(d) and 6. The inside of the hexahedral box also needs
to be sufficiently dark to get sharp images. PTZ camera is
configured inside the dark box and the static camera is placed
outside the box. The incident beam is split at the beam splitter
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Dark box Beam splitter

Static cameraPTZ camera

Target

Global view

Close-up view

Fig. 6. Cross-sectional diagram of the proposed camera system using a beam
splitter.

and captured by both PTZ and static cameras to provide almost
the same image2 to both the cameras. All the camera axes
are effectively parallel in this configuration. This configuration
enables the use of a single static camera to estimate the pan
and tilt parameters of the PTZ camera.

Fig. 3 shows the effectiveness of the proposed Coaxial and
Concentric system over the Non-Coaxial-Concentric system.
In Fig. 3, the mapping function F is calculated at ‖wcalib‖ =
5m, the resolution of the PTZ camera images is 640×480, the
zoom is controlled to capture the target face with ∼70 pixels
of IPD, and the face images are captured from five to ten3

meter range. The Coaxial-Concentric system captures the face
in the center of the image at all distances, while the Non-
Coaxial-Concentric system (‖d‖ = 35cm) is not even able
to capture the face as the distance increases. The proposed
Coaxial-Concentric camera system can also be operated at a
distance of less than 5 m or larger than 12 m. However, for
distances larger than 12 m the static camera used in our system
(with a resolution of 1280×720) cannot reliably detect the
subject and his face location4.

(a) (b)

(c) (d)

Fig. 7. Object detection: (a) background image, (b) input image, (c)
background subtraction to obtain blobs, and (d) detected objects.

C. Subject Tracking

We use a conventional background subtraction method [39],
followed by morphological operations to obtain the “blob”
associated with the subjects in the field of view (Fig. 7(c)).

2Images are slightly different due to the differences in camera optics (e.g.,
lens, charge-coupled device, etc.).

3Our system can handle objects up to 12 meters.
4This is the highest image resolution static and PTZ type of cameras

available in the market with regular video frame rate (=30).

Background subtraction method is a commonly used technique
to segment an object from the background. However, the
segmentation often fails when the color of the object is similar
to the background as shown in Fig. 7(c). Thus, we utilize a
heuristic clustering method to combine nearby blobs as shown
in Fig. 7(d) to improve the segmentation.

Typical blob tracking processes utilize the size of overlap-
ping area [40], or other blob features such as color or distance
between the blobs. A combination of various blob features
(e.g., color, distance, etc.) are also used to create the so-called
matching matrices [41]. In many cases, Kalman filter is used
to predict the position of the blob in a frame and match it with
the closest blob [42]. The use of blob trajectory [42] or blob
color [40] helps to solve occlusion problems.

After the blob detection, we compare the detected blobs in
each frame to associate an ID with smooth spatio-temporal
continuity. Given a captured image, Ii, i = 1, . . . , N , detect
blobs Bi

o,v, v = 1, . . . , V in each image. Let Vi represent
the number of blobs, V , in the ith image. Then, the addition
or removal of a blob (person) can be decided by comparing
Vi−1 and Vi. The blobs in the ith image can be associated
with those in (i − 1)th image by comparing the similarities
between Bi−1

o,v and Bi
o,v . This person tracking is essentially

associating the membership of blobs detected in each image,
Ii, i = 1, . . . , N , or in successive images, Ii−1 and Ii. Rather
than comparing Bi−1

o,v and Bi
o,v , we introduce the predicted

blob, Bi
p,r, r = 1, . . . , R and compare Bi

p,r and Bi
o,v . The

predicted blob, Bi
p,r, is computed using B1

o,v ,. . . ,Bi−1
o,v . The

prediction starts after a minimum number (= Cw) of frames
are captured. Algorithm 1 summarizes the person tracking
algorithm.

Algorithm 1 Blob tracking algorithm
for i = 1→ N do

if i ≤ Cw then
Bi

p,r,← Bi
o,v

else
Bi

p,r,← predict(B1
o,v ,. . . ,Bi−1

o,v )
Associate membership of Bi

o,v with Bi−1
o,v

based on s(Bi
p,r, B

i
o,v).

end if
end for

In order to calculate of the similarity between blobs in
successive frames, we use three different attributes of each
blob, head coordinates, color, and size. These attributes are
represented by Bi,head

o,v , Bi,color
o,v , and Bi,size

o,v , for the vth

blob in the ith image. The location of the head is estimated
using the height of the blob; the height of head is empirically
estimated as one seventh the height of a blob . The prediction
of a blob property is calculated by using a linear prediction
model. Let xi−1 and yi−1 denote the location of a blob in
the (i− 1)th frame and ti−1 be the time (ms) of observation
of xi−1 and yi−1. Then, the predicted head position (xi, yi),
in the ith image can be computed from a number (=Cw)
of previously estimated values using the following two-step
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1 2 3 1 2 3
c a b

ti−8 ti−1 ti

(a) (b)

Features 1 2 3

Head position (241, 182) (384, 180) (537, 178)

Color (43, 32, 33) (69, 66, 63) (119, 103, 107)

Size (37, 107) (56, 169) (69, 206)

Features a b c

Head position (384, 184) (535, 181) (240, 185)

Color (90, 88, 85) (125, 111, 114) (50, 37, 39)

Size (77, 167) (58, 207) (47, 106)

(c) (d)

a b c

1 0.82 0.63 0.99

2 0.99 0.81 0.82

3 0.80 0.99 0.63

a b c

1 0.79 0.68 0.97

2 0.91 0.80 0.90

3 0.91 0.97 0.73

a b c

1 0.78 0.70 0.98

2 0.96 0.89 0.81

3 0.88 0.98 0.70

a b c

1 0.51 0.30 0.95

2 0.87 0.58 0.60

3 0.65 0.95 0.32

(e) (f) (g) (h)

Fig. 8. Example of person tracking with three features (head position, color, and size) in static view: blobs in (a) are from previous image frames
(ti−8 and ti−1) and (b) current image frame (ti); (c) features of predicted blobs at ti; (d) observed blobs at ti; (e) scores based on head positions; (f) scores
based on the color of torsos; (g) scores based on the size; (h) final scores obtained by combining scores in (e), (f), and (g). The symbols 1, 2, and 3 are used
for identified blobs (subjects) and a, b, and c are used for unidentified blobs. The tracking process finds the correct association of a, b, and c with 1, 2, and 3.

recursive update

Mi−1 =

[
b1 b2
b3 b4

]

= Di−1Ki−1
T
(
Ki−1Ki−1

T
)−1

where Di−1 =

[
xi−1 . . . xi−Cw

yi−1 . . . yi−Cw

]

and Ki−1 =

[
ti−1 . . . ti−Cw

1 . . . 1

]
.

(4)

The predicted position of the head is[
xi

yi

]
= Mi−1

[
ti
1

]
. (5)

The color and size can be similarly predicted by Eqs. (4)
and (5). The predicted blob properties, Bi,head,color,size

p,r , are
averaged with the observed properties in the previous image,
Bi−1,head,color,size

o,r , to smooth noisy estimates. The predicted
blob properties are finally used to calculate the similarity
between each blob in successive images.

We define the similarity score between the rth predicted
and vth observed head positions in the ith frame as

shead(Bi,head
p,r , Bi,head

o,v ) = 1−
∥∥Bi,head

p,r −Bi,head
o,v

∥∥
‖(width, height)‖ (6)

where width and height are horizontal and vertical length of
static camera images.

When a subject is moving, his limbs are often fragmented,
whereas the torso part is rather stable. Furthermore, the color
of the torso is more stable than that of, e.g., his shirt sleeve’s.
Therefore, we estimate the torso region with respect to the ratio
of height and width of the blob and compute the similarity

between blobs based on the average RGB colors of the torso
regions as

scolor(Bi,color
p,r , Bi,color

o,v ) = 1−
∥∥Bi,color

p,r −Bi,color
o,v

∥∥
‖(255, 255, 255)‖ (7)

where the component values of RGB color are stored as integer
numbers in the range [0, 255].

We also consider the size of blobs in terms of their width
and height as

ssize(Bi,size
p,r , Bi,size

o,v ) =
∏

d∈(w,h)

(
1−

∣∣Bi,size
p,r −Bi,size

o,v

∣∣
L(d)

)

where L(w) = width and L(h) = height.
(8)

This method shows better performance than using the diag-
onal length of a blob because the diagonal length can have the
same value for two different blobs with different shapes. The
final similarity score is calculate by taking the summation of
three scores as

s(Bi
p,r, B

i
o,v) = ω1 · shead(Bi,head

p,r , Bi,head
o,v ) +

ω2 · scolor(Bi,color
p,r , Bi,color

o,v ) +

ω3 · ssize(Bi,size
p,r , Bi,size

o,v ),

(9)

with equal weights. Fig. 8 shows an example of the blob
similarity comparison process. For each blob being tracked, a
random ID is assigned to differentiate it from the other blobs.
When a blob is identified in the high resolution face images
captured by the proposed system, the blob is assigned with a
permanent ID.
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D. Zoom Control

The height of detected objects in static camera images is
used for zoom control. We manually measure ten magnifica-
tion factors of the PTZ camera to ensure that the distance
between the two eyes is at least 100 (60) pixels in the PTZ
view with a resolution of 1280×720 (640×360) pixels and
their corresponding blob heights from a set of training data.
A quadratic mapping function between the height (h) of the
blob and zoom values (z) of the PTZ camera is obtained by

z =
[
a1 a2 a3

] [
h2 h 1

]T
. (10)

E. System Configuration

There are two different implementations of the proposed
system: (1) System without a beam splitter: two Sony EVI-
HD1 cameras are used as static cameras to obtain the vertical
and horizontal global views and one Sony EVI-D100 camera
is used as a PTZ camera to track and acquire high resolution
face images at a distance. The image resolutions are 720×360
and 720×486 pixels for the static and PTZ views, respectively.
(2) System with beam splitter: two Sony EVI-HD1 cameras
set to 1280×720 pixel resolution are used as static and PTZ
cameras. All image acquisition and processing modules are
implemented in C++ and utilize the OpenCV Library [43].
The PTZ camera is controlled using the standard RS-232 serial
port. The tracking and camera control components run in real
time (8 fps) on a quad core Intel 2.8 GHz machine.

The system is decomposed into static camera processing
and dynamic camera control modules (Fig. 9). The former
includes image capture, background subtraction, and object
and head tracking. The latter performs face location prediction
and camera control (i.e., pan-tilt and speed control). The static
processing module sends target locations of faces in each
frame to the dynamic camera control module. The PTZ camera
control module adjusts pan-tilt angles to observe the target(s)
in the field of view.

III. CAMERA CONTROL FOR SMOOTH TRACKING

There are two components in the PTZ camera control
module: the pan and tilt parameter controller (PTC) and the
motion velocity controller (MVC). The PTC predicts the next
head location given the previous head trajectory. The estimated
head location is converted to pan and tilt values. Given a set
of pan and tilt values, the MVC controls the velocity of pan
and tilt motion. While there have been a few previous studies
on the static image processing part [44], no systematic study
has been reported on the dynamic camera control part.

A. Pan and Tilt Controller

The objective of the camera control is to keep the subject
being tracked in the center of the PTZ camera view. By
setting the head location to the center of the PTZ camera
view, the possibility of losing track of the face in the next
frame is minimized. Controlling the camera with the current
location of the head and its corresponding pan and tilt values
does not provide robust tracking capability due to delays in

Static Camera Process

PTZ Camera Process

Target location

prediction

Dynamic camera

image acquisition

Pan, tilt, and 

velocity estimation

Pan, tilt, and

velocity control

Static image

acquisition

...
...

Head

detection

Head

tracking

Static image

acquisition

Head

detection

Head

tracking

Static image

acquisition

Head

detection

Head

tracking

...

Fig. 9. Schematic of the process flow in the proposed camera system.

image processing and mechanical camera motion. To solve
this problem, we use a linear prediction model similar to
the prediction model used in the blob tracking process (see
Sec. II-C).

(a) p
 (

º)

(b)

|∆
p
|

(c)

|∆
p
|

(d)

(s)

|∆
p
|

Fig. 10. Motion velocity-time graphs: (a) ground truth pan value-time graph
of a PTZ camera during the tracking process, (b) ground truth velocity-time
graph and simulated velocity-time graph by using (c) fixed velocity and (d)
average velocity.

B. Motion Velocity Controller

The PTZ camera in our system provides 24 levels of pan
speeds from 2 to 300 degrees/sec and 20 levels of tilt speeds
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from 2 to 125 degrees/sec. In typical PTZ camera systems, a
fixed speed is used at each camera control command. However,
the fixed speed strategy can cause non-smooth control of the
camera, resulting in a higher probability of losing the subject
or resulting in a blurred image. In our system, the PTZ camera
speed is calculated based on the current and the next predicted
head location (average speed). Fig. 10 shows a comparison of
the two different camera velocity control methods: (i) fixed
velocity and (ii) average velocity. Fig. 10(a) indicates ground
truth pan values of a PTZ camera in tracking a moving object,
extracted from a 30-second static video (60 fps) and Fig. 10(b)
is the ground truth pan velocity-time graph. Assuming that
the speed of PTZ camera is controlled once every second,
Figs. 10(c) and 10(d) show simulated results of pan velocity-
time graph for fixed velocity and average velocity methods.
While the fixed speed method shows discontinuous speed
profile, the average speed method shows a smoother profile
that is more similar to the ground truth pan velocity-time
graph.

IV. APPLICATION TO FACE RECOGNITION

In order to verify the face recognition capability of the
proposed system in surveillance applications, we conducted
face recognition tests at a distance of up to 12 meters. We
compared the face identification accuracies using both the
conventional static camera and the proposed camera systems
to show the effectiveness of the proposed system. All the
data were collected using the two-camera system with a
beam splitter because of its lower computational complexity
compared to the three-camera system. Our earlier results with
the three-camera system can be found in [1].

A. Experimental Data

We captured probe images of subjects by using the proposed
system with a beam splitter in two different surveillance
scenarios as follows.

1) Single person tracking: We captured videos of 50 sub-
jects at a distance ranging from 6 to 12 m using both static
(Fig. 11(c)) and PTZ cameras (Fig. 11(b)). All the video
data were collected indoors at Korea University campus; the
subjects were Korea university students. Each subject was
asked to walk starting at about 12 m from the camera up to

(a)

(b)

(c)

Fig. 11. Gallery and probe images captured by the proposed system: (a)
frontal, left and right facial images for gallery and probe images captured by
(b) PTZ camera and (c) static camera.

about 6 m distance by making an S-shaped path to evaluate
the tracking capability of the proposed system. The average
duration of each video is about 25 seconds at 30 fps.

2) Multi-person tracking: We captured 40 videos of 3
subjects at a distance ranging from 5 to 10 m in 4 different
scenarios as shown in Fig. 12: (1) people are not moving, (2)
people are moving without overlap, (3) people are crossing
each other, and (4) people are passing each other in the same
direction. After 200 frames have been captured for a subject,
the camera system automatically moves towards other subjects
not yet identified. Each video is manually segmented according
to the subjects in the field of view to establish the ground truth
to evaluate the face recognition performance.

TABLE II
FACE RECOGNITION ACCURACY OF CONVENTIONAL STATIC AND

PROPOSED PTZ CAMERA SYSTEMS

Approach
Rank-1 accuracy(%)
Single
person

Multi-
person

Static view
(conventional surveillance system) 0 0

PTZ view, 1 frame,
(coaxial camera system) 55.1 42.6

PTZ view, 1 frame, tr=0.31 63.1 50.0

PTZ view, 1 frame, tr=0.45 68.2 64.7

PTZ view, fusion of 2 frames, tr=0.45 79.9 78.0

PTZ view, fusion of 5 frames, tr=0.45 88.3 89.0

PTZ view, fusion of 10 frames, tr=0.45 91.5 93.4

The gallery data consists of three images per subject
captured at about 1 m distance from the camera at three
different poses (Fig. 11(a)). Additional 10,000 images of
10,000 subjects from the MORPH database [45] were added
to the gallery to increase the complexity of face recognition
in the identification mode.5

B. Results and Analysis

We performed face recognition experiments using all the
frames in the collected video data set as probe; 102,978
(36,574) images of 50 subjects and 10,150 (10,009) images of
10,050 (10,003) subjects as gallery for single person (multi-
person) tracking. A commercial face recognition engine, Face-
VACS [46], was used for face detection and recognition.
We rejected probe images with matching scores less than
0.31 and 0.456 in the PTZ view to compare the results of
previous experiments with dual static cameras. The range of
matching scores provided by FaceVACS is [0,1]. The probe
images from static views show almost complete failure of face
recognition and the rejection scheme did not help in improving
the identification accuracy. Table II shows the Rank-1 face
identification accuracies obtained from the static and PTZ

5Even though the face images in MORPH are different from the faces in
probe videos in terms of pose, overall face size, and ethnicity, it is the only
large scale public domain face image database available.

6The matching scores 0.31 and 0.45 correspond to the smallest non-zero
score and a score with 40% rejection rate, respectively.
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10 m

7.5 m

5 m

1st

2nd

3rd

1st

2nd

3rd

3rd

2nd

1st

3rd

2nd

1st

(a) (b) (c) (d)

Fig. 12. Four different scenarios to evaluate the tracking capability with multi-person tracking: (a) subjects are stationary, (b) subjects are moving without
overlap, (c) subjects are crossing each other while moving into different directions, and (d) subjects are passing each other while moving in the same direction.

views. The single person recognition results in Table II are
slightly lower than those in [1] because of the increase in the
gallery size (from 10,020 to 10,050) and different populations
in probe data set (from 20 to 50 subjects). The threshold score
used for rejection is indicated by tr. While the identification
accuracy of the PTZ view is 55.1% (42.6%) in single (multi)
person tracking, that of the static view is no better than random
guess. Frame level fusions using the score-sum method [47]
with contiguous 2, 5, and 10 frames after rejection scheme
(tr = 0.45) shows further improvement of 23.3% (28.7%) in
the identification accuracy. For example, in the fusion with 5
frames, the matching scores of the probe image at time t to
all the gallery images are summed with those of probe images
at time t− 1, . . ., t− 4. The identity is decided based on the
summed scores. Figs. 14 and 13 show example probe images
that were successfully matched and not successfully matched
at rank-1. Major reasons of the failures are (i) inability to track
a face, (ii) off-frontal facial pose, (iii) motion blur, and (iv)
non-neutral facial expression.

V. CONCLUSIONS AND FUTURE WORK

We have proposed a novel Coaxial-Concentric camera sys-
tem that can capture and track high resolution face images
(with inter-pupillary distance of about 100 pixels) at any
distance in the range of 6 to 12 meters for face recognition.
The Coaxial-Concentric camera configuration provides a large
operating distance to track moving persons and recognize them
with high accuracy. We have introduced a linear prediction
model and a pan and tilt motion velocity control method for
robust tracking. The face recognition results show the effec-
tiveness of the proposed system for fully automatic subject
tracking and identification at a distance of up to 12 meters.

The limitations of the current system are as follows: (i)
the static and PTZ cameras have to be manually adjusted7

to satisfy the Coaxial-Concentric conditions because the focal
point and center of rotation cannot be directly handled from
outside the cameras; (ii) the operating distance is limited to
∼12 m due to the limitation of object detection in static
camera; and (iii) the system can recognize a face only when it
is close to the frontal pose, which is an inherent limitation
of the state of the art face matchers. We plan to seek a
more efficient method of calibration between static and PTZ
cameras in the Coaxial-Concentric configuration. We also plan
to extend the operating distance beyond 12 meters by using

7The manual adjustment is required only once at the initial system setup.
The complete system can be deployed to other places with no further manual
adjustment.

(a) (b)

(c) (d)

Fig. 13. Example probe images successfully matched at rank-1.

(a) (b)

(c) (d)

Fig. 14. Example probe images that could not be matched at rank-1 due to
(a) tracking failure, (b) off-frontal pose, (c) motion blur and (d) non-neutral
expression.

either a high definition static camera or multiple PTZ cameras
to employ multi-stage zooming process. In limited scenarios,
manual control of the PTZ camera can also be considered to
increase the operating distance.

APPENDIX

The condition to minimize the error between the desired
and calibrated θpt values in Eq.( (3)) is derived as:

Err (θpt) = 0

⇔ cos−1

(
(αwcalib − d) · (wcalib − d)

‖αwcalib − d‖ |wcalib − d|
)

= 0

⇔
(
(αwcalib − d) · (wcalib − d)

‖αwcalib − d‖ ‖wcalib − d‖
)

= 1

⇔ (αwcalib − d) · (wcalib − d) =

‖αwcalib − d‖ ‖wcalib − d‖ .

(11)
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Expand the right hand side by the definition of vector norm,

(αwcalib − d) · (wcalib − d) =√
(αwcalib − d) · (αwcalib − d)·√
(wcalib − d) · (wcalib − d).

(12)

By squaring both sides,

{(αwcalib − d) · (wcalib − d)}2 =

{(αwcalib − d) · (αwcalib − d)} ·
{(wcalib − d) · (wcalib − d)} .

(13)

By expanding brackets and simplifying,{
α ‖wcalib‖2 − (α+ 1) (wcalib · d) + ‖d‖2

}2

=(
α2 ‖wcalib‖2 − 2α (wcalib · d) + ‖d‖2

)
·(

‖wcalib‖2 − 2 (wcalib · d) + ‖d‖2
)

⇔ 2α ‖wcalib‖2 ‖d‖2 + (α+ 1)
2
(wcalib · d)2 =(

α2 + 1
) ‖wcalib‖2 ‖d‖2 + 4α (wcalib · d)2

⇔ (α− 1)
2
{
(wcalib · d)2 − ‖wcalib‖2 ‖d‖2

}
= 0

⇔ (α− 1)
2 ‖wcalib‖2 ‖d‖2

(
cos2 θ − 1

)
= 0

⇔ α = 1 or ‖d‖ = 0

(∵ ‖wcalib‖ > 0 and

cos θ(wcalib,d) �= 1 unless wcalib × d = 0)

(14)

where θ(wcalib,d) is the angle between wcalib and d. There-
fore, the overall error is minimized when α is equal to one
or d is a zero vector; the first condition cannot be satisfied
in practice because the object can appear at any distance, but
the second condition can be satisfied by using the proposed
Coaxial-Concentric configuration.
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