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Abstract

The spatial distribution of gray level intensities in an im-
age can be naturally modeled using Markov Random Field
(MRF) models. We develop and investigate the performance
of face detection algorithms derived from MRF consider-
ations. For enhanced detection, the MRF models are de-
fined for every permutation of site indices in the image. We
find the optimal permutation that provides maximum dis-
criminatory power to identify faces from nonfaces. The
methodology presented here is a generalization of the face
detection algorithm in [1, 2] where a most discriminating
Markov chain model was used. The MRF models success-
fully detect faces in a number of test images in real time.
Key words and phrases: Markov Random Fields, face de-
tection, maximum pseudolikelihood estimation, simulated
annealing.

1. Introduction
The use of Markov Random Fields (MRFs) to model spa-
tial processes on lattices has been popular and widespread.
By using MRF models, one is able to model the behaviour
of spatial processes locally via conditional distributions of
attributes. In this paper, we use certain MRFs as models for
the gray level intensities of facial images. Faces typically
correspond to changes in gray level intensities along some
spatial direction or at some special sites in the image. Our
interest here is to determine whether MRFs capture these
local changes in intensities for typical face images. There
have been numerous attempts to detect faces in images us-
ing different techniques such as neural networks ([3, 4]),
tree classifiers ([5]), distance from prototype criteria ([6])
and Markov Chains ([1, 2]). Although Markov Chains use
some notion of pixel dependence, this dependence is only
allowed in one direction in space. For this reason, we feel
that MRFs will be viable models for face detection since
dependence can be captured along several spatial directions
for different sites in the image. MRFs have also been suc-
cessfully used for texture modeling, see [7], for example.
Since facial images can be viewed as a type of texture in

some sense, this is another reason we feel that MRFs will
also be good models for facial images.

The MRF models used here do not utilize high level fea-
ture extraction for the purpose of face detection. Indeed,
our aim here is to provide an initial low-level detection al-
gorithm. In the post processing stage, algorithms based on
facial features can be utilized to finally decide if a face is
indeed present in the test image. For this reason, we put
greater emphasis in developing algorithms with low face re-
ject rates in the detection framework.

In order to achieve better detection rates, we seek an op-
timal permutation of sites in the image for which the MRF
model has the best fit. In other words, for detection between
faces and nonfaces, it can turn out that a permutation of the
sites in the image has better discriminatory power to distin-
guish between a face and a nonface compared to the origi-
nal (unpermuted) sites. We call the resulting MRF the most
discriminating MRF for detecting faces. Thus, the most dis-
criminating MRF approach is a generalization of the most
discriminating Markov Chain approach of [1, 2].

It is essential that low level detection algorithms be com-
putationally efficient. For the most discriminating Markov
Chain approach, this is definitely the case since sites can be
updated sequentially utilizing the Markovian structure. It is
well known that the normalizing constant arising from MRF
models causes great difficulty in computations and may ac-
tually compromise the efficiency of the algorithm. For this
reason, we avoid likelihoods resulting from MRF models.
Instead, we use pseudolikelihoods and pseudolikelihood ra-
tios for estimating model parameters and for subsequent de-
tection. The resulting reduction in computational time and
complexity is significant.

The remainder of this paper is organized as follows. In
Section 2, we present the basic MRF models that we use.
In Section 3, we discuss the procedures to train and cross
validate the MRF models. We present MRFs defined via a
permutation of sites in Section 4. The Chi-square criteria
to find an optimal permutation of sites for face detection is
given. We also present cross validation results of our detec-
tion algorithm in Section 4. Finally, the performance of our
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detection algorithm on real images is illustrated in Section
5.

2. Markov Random Field Models For
Face Detection

Let S = f1; 2; � � � ; Ng denote the collection of all sites in
a R � C image, whereN = RC. For each sites in S,
let xs denote the gray level intensity at that site which is
an integer between0 andL � 1, both inclusive, and whereL is the number of gray levels. We will assume that the
spatial distribution of gray level intensities,X = fxs; s 2Sg on S follows a Markov Random Field (MRF) model.
For any MRF, there is an associated neighborhood systemN = fNs; s 2 Sg, whereNs denotes the neighbors of sites. We consider only the first order neighborhood structure
for the MRF models (see Figure 1).

Markovian models are, in general, parameterized by a
certain number coefficients which govern the degree of spa-
tial correlation between sites. These coefficients are un-
known in typical applications and have to be estimated from
training samples. It is well known that there is a conflict be-
tween the number of parameters estimated and reliability of
the overall model fit to the data. We present two classes of
MRFs for faces in this paper, with the number of parameters
in the two classes being 3 and 234, respectively. We inves-
tigate the overall fit of these two classes of models for faces
and non-faces in the training samples. Finally, the trained
models are used to detect faces in test images.

2.1. Model I

The first class of MRF models that we consider is a varia-
tion of the auto-model (see [8]) with the local characteristics
(conditional distributions) at sites given byp(xs jx�s ) = exp

8<:�xs + Xd=fh;vg�dXs d�t xs xt9=;L�1Xx=0 exp

8<:�x+ Xd=fh;vg�dXs d�t xxt9=; ;
(1)

where the sums d� t is taken over all neighbors ofs in the
directiond; d = fh; vg, x�s denotes the gray level intensi-
ties of all sites except sites, and�d; d = fh; vg represent
the strength of association along the horizontal and verti-
cal directions, respectively. Figure 1 showsxs in relation
to its neighbors. The local characteristics specified in (1)
uniquely determine a joint distribution onS, via Brooks’

xsnxsw xs xsexss
Figure 1: First order neighbors of sites and corresponding
gray level intensities

expansion (see [9]), given byp(x) = exp

(�Toverall +Xd �dTd)L�1Xx1=0 L�1Xx2=0 : : : L�1XxN=0 exp

(�Toverall +Xd �dTd)
(2)

whereToverall =Xs xs and Td =Xs Xs d�t xsxt
represent the overall average gray level intensity in the im-
age and the overall product moment of neighboring gray
level intensities in the directiond, respectively. Henceforth,
the class of models given by the conditionals in (1) and hav-
ing joint distribution (2) onS will be called the Model I
class of MRF models. Model I captures overall changes
in gray level values in 2 spatial directions (via�h and�v),
and the overall gray level image intensity (via�). It is well
known that the normalizing constant in the denominator of
(2) is difficult to handle when estimating the parameters
from data. For this reason, we will use pseudolikelihoods
(pseudolikelihood ratios), instead of likelihoods (likelihood
ratios), for the face detection problem. The pseudolikeli-
hood (PL) for Model I is the product of local characteristics
and is given byPL(Model I) = NYs=1 exp

8<:�xs +Xd �dXs d�t xsxt9=;L�1Xx=0 exp

8<:�x+Xd �dXs d�t xxt9=;
(3)

2.2. Model II
The second class of MRF models that we consider is mo-
tivated by the autobinomial MRF model (see [8]) with site
parameters(�s; �st; s; t 2 S), specified by the local char-
acteristics at each sitesp(xs jx�s ) = Bin(L� 1; �s( � jx�s; �s; �st; t 2 Ns) );

(4)
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where�s(1jx�s; �s; �st) = exp

(�s + Xt2Ns �st xt)Xx=f0;1g exp

(�sx+ Xt2Ns �st xt)
(5)

and�s(0jx�s; �s; �st; t 2 Ns) = 1��s(1jx�s; �s; �st; t 2 Ns):
It follows again from Brooks’ expansion that the conditional
distributions specified in (4) uniquely determine a joint dis-
tribution onS (provided�st = �ts) given byp(x) = exp

(Xs �sxs +Xs�t �stxsxt)Xx1 Xx2 : : :XxN exp

(Xs �sxs +Xs�t �stxs xt) ;
(6)

wheres � t stands for all pairs of sitess and t that are
neighbors inS. The form of the pseudolikelihood (PL) for
the autobinomial MRF model is given byPL(Autobinomial) = NYs=1 exp

(�sxs + Xt2Ns �st xsxt)L�1Xx=0 exp

(�sx+ Xt2Ns �stxxt) :
(7)

Our main reason for considering the autobinomial MRF in
(6) is to determine if the information present in special sites
(for example, the location of eyes, nose and facial outline)
are actually used by the MRF when distinguishing between
a face and nonface. The importance of a site can be de-
termined by relative magnitudes of the site coefficients, (�s
and�st, t 2 Ns; s 2 S) in a typical face and nonface image.
However, estimating the coefficients in (6) is computation-
ally challenging because of difficulty in handling the nor-
malizing constant. This problem is not alleviated when the
pseudolikelihood in (7) is used since each parameter�st,
with �st = �ts, occurs in the conditional specifications of
more than one site. Thus, we make the following simplifi-
cation while retaining the ability to measure the importance
of special sites. For each sites, we consider a parameter�s
that measures the overall importance off�st; t 2 Nsg in a
face image. Thus, instead of (7), we consider the following
approximation for the pseudolikelihoodPL(Model II) = NYs=1 exp f�sUs + �sVsgL�1Xx=0 exp

(�sx+ �s Xt2Ns xxt) :
(8)

where Us = xs and Vs = Xt2Ns xsxt
represent the gray level intensity of pixels and the joint mo-
ment of neighboring gray level intensities, respectively.The
pseudolikelihood in (8) is obtained by taking�st = �s fort 2 Ns in (7). For each sites, �s measures the “average”
correlation ofxs with its neighbors. Thus, the approximate
MRF model can assess the relative importance of sites via�s and�s in discriminating between a face and a nonface.
The parameters in (8) can be maximized separately for each
site s which entails great reduction in computational com-
plexity. This is not available for (7). Henceforth, the class
of models in (8) will be referred to as Model II.

3. Training the MRF Models and
Cross Validation Results

The MRF models given in Section 2 are trained using a
database of faces and nonfaces. Face examples are gener-
ated by extracting gray level values from a20� 15 window
(which contains the central part of the human face in the
case of positive examples). Each gray level value in the
image is stored as one byte, and hence the 16(L = 16)
possible values of gray levels can vary from0 � 15. The
nonface examples are generated from images that resemble
a face but are not actually so. The training database consists
of 7,200 and 8,422 images of faces and nonfaces, respec-
tively. Figures 2 and 3 each give 6 examples of face and
nonface images in the training database. We fit each class
of models (I and II) for faces and nonfaces training sam-
ples. We estimate the unknown parameters in each model
by the Maximum Pseudolikelihood (MPL) method, that is,
by maximizing the pseudolikelihoods given in (3) and (8),
with respect to the unknown parameters.

3.1. Detection Algorithm

This is the next step once the parameters have been esti-
mated using the training data set. We classify a test image
as a face ifNXs=1 log

� p̂fae(xs jx�s)p̂nonfae(xs jx�s)� > 0: (9)

Otherwise, the test image will be classified as a nonface.
In (9), p̂(xs jx�s) stands for the estimated value of the lo-
cal characteristics at sites after the parameters have been
estimated. The criteria stated in (9) is in terms of the sum
of logarithms of pseudolikelihood ratios for faces and non-
faces, and will be called the log pseudolikehood (LPL) cri-
teria.
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Figure 2:Examples of faces in the training data (20 � 15 im-
ages with 16 gray levels).
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Figure 3:Examples of nonfaces in the training data (20 � 15
images with 16 gray levels).

3.2. Cross Validation Results
Two types of errors can arise when using the MRF models
for face detection. Type I error is made when the detection
procedure fails to detect a true face whereas Type II error
refers to detecting a false face. We view Type I error as the
more serious of the two, since a post processing stage which
detects facial features can eliminate most of the falsely de-
tected faces. We use cross validation to obtain estimates of
Type I and Type II errors for each model as follows. Both
the training data set of faces and nonfaces are randomly di-
vided into two groups, the first group for training the MRF
models, and the second group for detection. Using the train-
ing images (faces and nonfaces) from the first group, the op-
timal permutation and the corresponding parameters of the
MRF model is found. The LPL criteria for face detection is
used on the remaining training face and nonface images to
obtain estimates of Type I and Type II errors, respectively.
The results of the cross validation procedure is given in Ta-
bles 1 and Tables 2. A measure of overlap between the two
histograms (faces and nonfaces) is given byD(f; g) = ZR (pf(x)�pg(x))2 dx
for f andg being the estimates of face and nonface densities
from cross validation. It can be shown that0 � D(f; g) �2, with D(f; g) = 0 iff f = g, andD(f; g) = 2 if f andg are completely separated. Small values ofD in the fourth
column of Tables 1 and 2 indicate the the distributions of
face and nonface are not well separated.

4. Most Discriminating MRF Models
via Permutations

For better detection purposes, we investigate if the MRF
models are a better fit to apermutationof the sites in the
image, instead of the natural ordering. We consider the
class of all permutations of sites1 to N , and choose that
permutation which gives maximum discriminatory power
for detecting faces. One argument for considering permuta-
tions of site indices is that the joint association ofx�s andx�t , for a permutation�, may be better at discriminating
between faces and nonfaces compared toxs andxt. Thus,
following the construction of joint MRF models onS using

conditional specifications for Model I class, one can simi-
larly define local characteristics for a given permutation�
byp(x�s jx��s ) = exp

8<:�x�s +Xd �dXs d�t x�s x�t9=;L�1Xx=0 exp

8<:�x+Xd �dXs d�t xx�t9=;
(10)

which gives rise to the joint probability densityp(x) = exp

(�T �overall +Xd �d T �d )Xx1 Xx2 : : :XxN exp

(�T �overall +Xd �d T �d )
(11)

whereT �overall andT �d given byT �overall =Xs x�s and T �d =Xs Xs d�t x�sx�t
are the counterparts ofToverall andTd in Section 2 for a
given permutation�.

Similarly, for a given permutation�, the local character-
istics of the Model II class becomesp(x�s jx��s ) = Bin(L� 1; �s( � jx��s ; �s; �st) (12)

where�s(1jx��s ; �s; �st) = exp

(�s + Xt2Ns �stx�s x�t)Xx=f0;1g exp

(�sx+ Xt2Ns �st xx�t)
(13)

and �s(0jx��s ; �s; �st) = 1� �s(1jx��s ; �s; �st):
The joint MRF model specified by the local characteristics
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Table 1: Crossvalidation results for Model I (natural or-
der)

Run No. Type I Error Type II Error D

1 0.3817 0.4483 0.29
2 0.3433 0.4883 0.27
3 0.3400 0.4900 0.26
4 0.3567 0.4900 0.25
5 0.4117 0.4683 0.26

Table 2: Crossvalidation results for Model II (natural or-
der)

Run No. Type I Error Type II Error D

1 0.1587 0.1007 0.92
2 0.1553 0.1067 0.91
3 0.1753 0.0960 0.93
4 0.1573 0.0987 0.94
5 0.1420 0.1080 0.91

Table 3: Crossvalidation results for Model I (permuted)

Run No. Type I Error Type II Error D

1 0.0750 0.1317 1.19
2 0.0783 0.1217 1.23
3 0.0900 0.0967 1.18
4 0.0850 0.1350 1.16
5 0.1064 0.1400 1.12

Table 4: Crossvalidation results for Model II (permuted)

Run No. Type I Error Type II Error D

1 0.0920 0.0787 1.24
2 0.0947 0.0767 1.22
3 0.1027 0.0780 1.20
4 0.1060 0.0773 1.22
5 0.0907 0.0767 1.26

in (12) becomesp(x) = exp

(Xs �sx�s +Xs�t �stx�sx�t)Xx1 Xx2 : : :XxN exp

(Xs �sx�s +Xs�t �stx�sx�t)
(14)

Similarly, the approximate PL for the autobinomial model
is given byPL(Model II) = NYs=1 exp f�sU�s + �sV �s gL�1Xx=0 exp

(�sx+ �s Xt2Ns xx�t ) :
(15)

whereU�s andV �s given byU�s = x�s and V �s = Xt2Ns x�sx�t
are the counterparts ofUs andVs in Section 2 for a given
permutation�.

4.1. Chi-square Metric for Model I
For Model I, the statisticsT �overall andT �d ; d = fh; vg are
sufficient for the model parameters(�; �d; d = fh; vg).
Also, there is a one-to-one correspondence between the pa-
rameter values(�; �d; d = fh; vg) and the expected val-
ues ofT �overall andT �d ; d = fh; vg. Thus, if a face cor-
responds to the valuesfae = f�f ; �d;fg, and a non-
face corresponds to the valuesnonfae = f�nf ; �d;nfg,

we would want the distance between the parameter val-
ues for face and nonface to be furthest apart for maxi-
mum discrimination. Equivalently, we require that the dis-
tance between(Efae(T �overall),Efae(T �d )), to be furthest
away from(Enonfae(T �overall), Enonfae(T �d )) according
to some measure of distance. In [1] and [2], the Kulback-
Leibler distance between two distributions was chosen in
the case of Markov chains. However, since the likelihoods
are difficult to handle in the case of MRFs, we resort to a
different distance measure, namely, the Chi-square distance,
given by�2( Model I ) = fEfae(T �overall)�Enonfae(T �overall)g2Efae(T �overall)+ Xd2fh;vg fEfae(T �d )�Enonfae(T �d )g2Efae(T �d ) : (16)

Since the quantities involved in (16) are unknown, we esti-
mate them using the training data set. Thus, for each permu-
tation�, we estimateEfae(T �overall) by the overall average
gray level intensity over the face training data,Êfae(T �overall) = 1Nf NfXk=1 NXs=1 x(k)�s
where the sum ranges through all images in the face training
data set andNf is the number for training face images. We
estimateEfae(T �d ) byÊfae(T �d ) = 1Nf NfXk=1 Xs Xs d�t x(k)�s x(k)�t
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In a similar fashion, the estimates corresponding to the non-
face training data set isÊnonfae(T �overall) = 1Nnf NnfXk=1 NXs=1 x(k)�s
and Ênonfae(T �d ) = 1Nnf NnfXk=1 Xs Xs d�t x(k)�s x(k)�t ;
whereNnf is the total number of nonfaces in the training
data set.

4.2. Chi-square Metric for Model II

For the approximate PL in (8), the relevant site statistics are
given byU�s andV �s for each sites. We use the following
Chi square criteria for discrimination�2( Model II ) = NXs=1 fEfae(U�s )�Enonfae(U�s )g2Efae(Us)+ NXs=1 fEfae(V �s )�Enonfae(V �s )g2Efae(V �s ) : (17)

The unknown quantities in (17) are estimated from the face
and nonface training data set. For every permutation�, the
estimate ofEM (U�s ) isÊM (U�s ) = 1NM NMXk=1 x(k)�s
forM = ffae; nonfaeg andNM = fNf ; Nnfg accord-
ingly, and the estimate ofEM (V �s ) isÊM (V �s ) = 1NM NMXk=1 Xt2Ns x(k)�s x(k)�t
for M andNM as before.

Using the likelihood ratio as a discrimination criteria is
not feasible in the case of MRF models, since the normaliz-
ing constants cannot be broken down in simpler sum com-
ponents as was done in the case of the Markov chain model.
Using the ratio of pseudolikelihoods is easier compared to
the full likelihood but it is still computationally time con-
suming. Therefore, we resort to the estimated Chi-square
discrimination criteria that we discussed above when using
MRF models for face detection problems.

4.3. Finding the Best Permutation using the
Chi-square Criteria

Since the space of all permutations is extremely large,
(O(N !), forN sites), we resort to simulated annealing (SA)
to find the best permutation according to (16) and (17) for
Models I and II, respectively. The SA algorithm ([11]) is
described as follows. Start with an initial permutation,�0,
and initial temperature,T = t0, say. Randomly select two
sites for interchange and obtain the updated permutation,�1. For�1, calculate the Chi-square distance between faces
and nonfaces in the training set. If this distance is larger
than the initial Chi-square distance for�0, accept the new
permutation,�1. Otherwise, accept the new permutation,�1, with probability eÆ, whereÆ is the difference in (16) (or
(17)) between�1 and�0. The acceptance-rejection scheme
is carried out for a large number of runs. Subsequently,T is
reduced to, say,t1, and the above algorithm is repeated for
the temperature,t1. The SA procedure reaches a solution
that is close to the global optimal solution whenT is small.
The acceptance-rejection scheme for each temperature level
was carried out forn = 1000 times. The cooling schedule
was taken to beT = T � 0:97.

Once the best permutation was found, the parameters of
the MRF for faces and nonfaces were estimated using the
Maximum Pseudolikelihood (MPL) method.

4.4. Detection Algorithm
For the optimal permutation,�opt, and the corresponding
estimated parameters (for both the face and nonface MRF
models), an image is classified as a face ifNXs=1 log

 p̂fae(x�opts jx�opt�s )p̂nonfae(x�opts jx�opt�s )! > 0: (18)

Otherwise, the test image will be classified as a nonface.
In (18), p̂(x�opts jx�opt�s ) stands for the estimated value of

the local characteristics at sites after the optimal permuta-
tion�opt has been found and the parameters have been esti-
mated. This is again the log pseudolikelihood (LPL) criteria
for the permuted sites.

4.5. Cross Validation Results
The results of the cross validation procedure for permuted
sites are given in Tables 3 and Tables 4 for the permuted
MRF models. The cross validation procedure is run 5 times
for Model I and 5 times for Model II to ascertain the vari-
ability of both kinds of errors.

It is clear from Tables 3 and 4 that Model II has more
consistent detection properties compared to Model I. The
average Type I and Type II error probabilities for Model II
are 9% and 7%, respectively, whereas for Model I, the range
of Type I and Type II error probabilities are from 7%-11%
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Figure 4: Permutations of sites. (a) Face example, (b) Per-
muted face, (c) Nonface example, (d) Permuted nonface.
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Figure 5: Parameter values for faces and nonfaces. (a)f�sg
for faces, (b)f�sg for faces, (c)f�sg for nonfaces, (d)f�sg
for nonfaces.

and 9% - 14%, respectively. Model I sometimes performs
better than Model II for true face images but Model I always
gives more false alarms compared to Model II. We see from
the fourth column entries of Tables 3 and 4 that the distri-
butions are better separated compared to the case when the
sites were not permuted.

For Model II, it is interesting to see how the optimal per-
mutation rearranges gray level intensities in an image. Fig-
ure 4 (a) shows a typical face image from the training data
base. The optimal permutation is applied to the face image
and the resulting image is presented in Figure 4 (b). It is
clear that the optimal permutation forms two distinct clus-
ters of gray level intensities, one cluster of low gray level
intensities while another cluster of higher gray level inten-
sities. The relative positions of these clusters in a face im-
age are also fixed for different face images. No such cluster
forms when a nonface image is considered. See Figures 4
(c) and 4 (d), for example.

We also display the site coefficients,f�sg andf�sg, of
Model II for faces and nonfaces. The image plots are ob-
tained first by rescaling the coefficients to the0�255 range,
and then reordering the permuted sites back to the natural
order. Figures 5 (a) and (b) show the relative magnitude of
thef�sg andf�sg, respectively, for a face image. Observe
that thef�sg image extracts the distinguishing features of a
face, namely the face outline, and the positions of the eyes
and nose. Since the eyes and nose are relatively darker re-
gions compared to the surrounding sites,f�sg at the bound-
aries of the eyes, nose and face outlines capture this change
in gray level intensity. Since the intensities change in op-
posite directions (from lighter to darker, or vice versa), this
is reflected in thef�sg coefficients by their low negative
values.

5. Face Detection for Real Images
We apply the face detection algorithm based on (permuted)
Models I and II to real images. We consider images of arbi-
trary sizes with gray level intensities ranging from0� 255.
These images (see Figure 7) consists of one or more faces
of an arbitrary size.

First, the gray level intensities of the original image are
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Figure 6: Effects of Blocking and Scaling

converted to the0� 15 range by division modulo 16. Some
blocking effect in the original image is observed after per-
forming this step (see Figure 6). In order to fit a face in
these images into our20� 15 detection frame, we scale (up
or down) the original image so that the faces approximately
fit into the detection frame. Then, we slide a20� 15 win-
dow in a raster scan fashion over the rescaled image. The
LPL values are calculated for each position of the detection
window. If an LPL value is greater than 0, a face frame
(red frame) is placed over the window. Several threshold
values, other than 0 (in (18)), such as 5 and 10, are also
considered. Possible faces correspond to high positive LPL
values. Both models detect all the faces in the four test im-
ages with single and multiple faces. Some spurious faces
are detected and they disappear when the threshold level is
raised. In general, Model II performed better at detecting
faces compared to Model I. This was also established based
on cross validation results. For test images, we empirically
determine a good value of the threshold. Figure 7 show
the results of the detection algorithm based on Model II for
some of the images. The detection algorithm was written in
MATLAB and was run on a PC with a 750 Mhz Pentium
III processor. The detection times (in seconds) for these im-
ages ((a),(b),(c) and (d)) are 8, 10, 67 and 300, respectively.

6. Summary and Conclusions
We have presented two Markov models for face detection.
Better detection properties are obtained for a permutationof
the sites, instead of the natural ordering. Model II resultsin
smaller error probabilities of detection compared to Model
I. Moreover, Model II distinguishes faces from nonfaces by
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Figure 7:Sample input images and detection results. Image sizes (a)200� 170, (b) 270� 150, (c)410� 450, (d) 350� 550
identifying regions that form the outlines of the eyes, nose
and the face. For future work, we plan to investigate mul-
tiple MRF models for faces and extend our detection algo-
rithm to color images.
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