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Abstract some sense, this is another reason we feel that MRFs will
also be good models for facial images.
The spatial distribution of gray level intensities in an im- The MRF models used here do not utilize high level fea-

age can be naturally modeled using Markov Random Field ;re extraction for the purpose of face detection. Indeed,
(MRF) models. We develop and investigate the performanceé,r aim here is to provide an initial low-level detection al-

of. face detection algorithms _derived from MRF consider- gorithm. In the post processing stage, algorithms based on
ations. For enhanced detection, the MRF models are de-¢;.ja) features can be utilized to finally decide if a face is

fined for every permutation of site indices in the image. We j,qeed present in the test image. For this reason, we put

find _the optimal permytatio_n that provides maximum dis- greater emphasis in developing algorithms with low face re-
criminatory power to identify faces from nonfaces. The ject rates in the detection framework.

methodolo resented here is a generalization of the face . .
9y’p 9 In order to achieve better detection rates, we seek an op-

detection algorithm in [1, 2] where a most discriminating . . o . .
Markov chain model was used. The MR models successy S PPttt S 2 2 e S TEe O ot e
fully detect faces in a number of test images in real time. : ’

) ; faces and nonfaces, it can turn out that a permutation of the
Key wordsand phrases. Markov Random Fields, face de- .~ . A -
. ) L L . sites in the image has better discriminatory power to distin
tection, maximum pseudolikelihood estimation, simulated

annealing guish between a face and a nonface compared to the origi-
' nal (unpermuted) sites. We call the resulting MRF the most

. discriminating MRF for detecting faces. Thus, the most dis-

1. Introduction criminating MRF approach is a generalization of the most

The use of Markov Random Fields (MRFs) to model spa- discriminating Markov Chain approach of 1, 2].

tial processes on lattices has been popular and widespread. Itis essential that low level detection algorithms be com-
By using MRF models, one is able to model the behaviour putationally efficient. For the most discriminating Markov
of spatial processes locally via conditional distribuiaf ~ Chain approach, this is definitely the case since sites can be
attributes. In this paper, we use certain MRFs as models forupdated sequentially utilizing the Markovian structutes |

the gray level intensities of facial images. Faces typjcall well known that the normalizing constant arising from MRF
correspond to changes in gray level intensities along someModels causes great difficulty in computations and may ac-
spatial direction or at some special sites in the image. Ourtually compromise the efficiency of the algorithm. For this
interest here is to determine whether MRFs capture thesd€ason, we avoid likelihoods resulting from MRF models.
local changes in intensities for typical face images. There Instead, we use pseudolikelihoods and pseudolikelihood ra
have been numerous attempts to detect faces in images ugdios for estimating model parameters and for subsequent de-
ing different techniques such as neural networks ([3, 4]), tection. The resulting reduction in computational time and
tree classifiers ([5]), distance from prototype criterig]([ ~ COMPlexity is significant.

and Markov Chains ([1, 2]). Although Markov Chains use The remainder of this paper is organized as follows. In
some notion of pixel dependence, this dependence is onlySection 2, we present the basic MRF models that we use.
allowed in one direction in space. For this reason, we feelIn Section 3, we discuss the procedures to train and cross
that MRFs will be viable models for face detection since validate the MRF models. We present MRFs defined via a
dependence can be captured along several spatial directionpermutation of sites in Section 4. The Chi-square criteria
for different sites in the image. MRFs have also been suc-to find an optimal permutation of sites for face detection is
cessfully used for texture modeling, see [7], for example. given. We also present cross validation results of our detec
Since facial images can be viewed as a type of texture intion algorithm in Section 4. Finally, the performance of our



detection algorithm on real images is illustrated in Sectio Tsn
5. Tsw T Tse
xss

2. Markov Random Field Models For

Figure 1: First order neighbors of siteand corresponding

Face Detection gray level intensities
LetS = {1,2,---, N} denote the collection of all sites in . .
a R x C image, whereN = RC'. For each sites in S, expansion (see [9)), given by
let 2, denote the gray level intensity at that site which is
an integer betweef and L — 1, both inclusive, and where exp § aToveran + Z BaTa
L is the number of gray levels. We will assume that the d

p(2) = 757

spatial distribution of gray level intensitie, = {z,,s €
S} on S follows a Markov Random Field (MRF) model. > Z exp ¢ aToverau + ZBde
For any MRF, there is an associated neighborhood system 21=022=0 an=0 2

N = {N;,s € S}, whereN; denotes the neighbors of site
s. We consider only the first order neighborhood structure
for the MRF models (see Figure 1). Toverall = Z z, and T, = Z Z TsTy
s
s~t

Markovian models are, in general, parameterized by a
certain number coefficients which govern the degree of spa-
tial correlation between sites. These coefficients are un-
known in typical applications and have to be estimated from
training samples. Itis well known that there is a conflict be-
tween the number of parameters estimated and reliability o
the overall model fit to the data. We present two classes of
MRFs for faces in this paper, with the number of parameters
in the two classes being 3 and 234, respectively. We inves- in gray level values in 2 spatial directions (ia andf.),

tigate the overall fit of these two classes of models for facesand the overall gray level image intensity (via It is well
and non-faces in the training samples. Finally, the trained known that the normalizing constant in the denominator of

models are used to detect faces in test images (2) is difficult to handle when estimating the parameters
' from data. For this reason, we will use pseudolikelihoods

(pseudolikelihood ratios), instead of likelihoods (likelod
21 Modd | ratios), for the face detection problem. The pseudolikeli-
-+ MO hood (PL) for Model I is the product of local characteristics

The first class of MRF models that we consider is a varia- @nd is given by
tion of the auto-model (see [8]) with the local charactérsst

(conditional distributions) at sitegiven by exp { az, + Z B84 Z v

L(Modell) H -
explazs+ Y Bady wew = Z exp aw+26dzmt
s~t

d={h,v} sy —

where

represent the overall average gray level intensity in the im
age and the overall product moment of neighboring gray
level intensities in the directiodh, respectively. Henceforth,
fthe class of models given by the conditionals in (1) and hav-
ing joint distribution (2) onS will be called the Model |
class of MRF models. Model | captures overall changes

plrs|z_s) = 1 ) - 3)
Z exp  ar + Z B4 Z T T
2=0 d={hw} _a,

(2) 2.2. Modd 11
where the sums < # is taken over all neighbors afin the
directiond, d = {h,v}, z_, denotes the gray level intensi-
ties of all sites except site, andS4,d = {h,v} represent
the strength of association along the horizontal and verti-
cal directions, respectively. Figure 1 showgsin relation
to its neighbors. The local characteristics specified in (1) p(zs|z_s) =Bin(L — 1, us( - |x_s, as, Bst, t € Ng) ),
uniquely determine a joint distribution o, via Brooks’ (4)

The second class of MRF models that we consider is mo-
tivated by the autobinomial MRF model (see [8]) with site
parameter$ag, 85, s,t € S), specified by the local char-
acteristics at each site



where

as + Z Bst T4

tEN,

exp {

exp {
and

,Us(0|~73—55 Qg, Bstat € Ns) = 1_/115(1‘37—55 as,ﬂstat € Ns)-

It follows again from Brooks’ expansion that the conditibna
distributions specified in (4) uniquely determine a joirg-di
tribution onS (provideds,; = f:5) given by

exp {Z QsTs + Z ﬂstxsxt
Z Bsts Ty

— s~t
ZZZ exp{Zasms—l— }
T1 T2 TN s s~t
(6)

wheres ~ t stands for all pairs of sites and¢ that are
neighbors inS. The form of the pseudolikelihood (PL) for
the autobinomial MRF model is given by

{

}

s+ Y Ba

tEN,

,Us(l‘xfsa asaﬂst) =

>

z={0,1}

}

(5)

p(z)

exp

QsTs + 5 Bst TsTy

N

PL(Autobinomia) = [] +— Len. .
s=1 Z exp {asx + Z ﬂst$$t}
z=0 tEN,

()
Our main reason for considering the autobinomial MRF in
(6) is to determine if the information present in specia@sit

(for example, the location of eyes, nose and facial outline)
are actually used by the MRF when distinguishing between
a face and nonface. The importance of a site can be de

termined by relative magnitudes of the site coefficients, (
andgs:, t € Ng, s € S)in atypical face and nonface image.
However, estimating the coefficients in (6) is computation-
ally challenging because of difficulty in handling the nor-
malizing constant. This problem is not alleviated when the
pseudolikelihood in (7) is used since each paramger
with 85, = [, occurs in the conditional specifications of
more than one site. Thus, we make the following simplifi-
cation while retaining the ability to measure the importanc
of special sites. For each siiggwe consider a parametgy
that measures the overall importance{6f;,t € N} ina
face image. Thus, instead of (7), we consider the following
approximation for the pseudolikelihood

p{asUs + B;Vs}
8

N
PL(Model Il) = [] ———

s=1 Z exp

z=0

{asm + Bs Z TT;

teN,

where
Us=x2, and V,= Z TsTt

tEN,

representthe gray level intensity of pixednd the joint mo-
ment of neighboring gray level intensities, respectivélye
pseudolikelihood in (8) is obtained by taking;, = 3, for

t € Ny in (7). For each site, 5, measures the “average”
correlation ofz; with its neighbors. Thus, the approximate
MRF model can assess the relative importance ofssita

as andgs in discriminating between a face and a nonface.
The parameters in (8) can be maximized separately for each
site s which entails great reduction in computational com-
plexity. This is not available for (7). Henceforth, the das
of models in (8) will be referred to as Model Il.

3. Training the MRF Models and

Cross Validation Results

The MRF models given in Section 2 are trained using a
database of faces and nonfaces. Face examples are gener-
ated by extracting gray level values from@x 15 window
(which contains the central part of the human face in the
case of positive examples). Each gray level value in the
image is stored as one byte, and hence th¢16= 16)
possible values of gray levels can vary from- 15. The
nonface examples are generated from images that resemble
aface but are not actually so. The training database censist
of 7,200 and 8,422 images of faces and nonfaces, respec-
tively. Figures 2 and 3 each give 6 examples of face and
nonface images in the training database. We fit each class
of models (I and II) for faces and nonfaces training sam-
ples. We estimate the unknown parameters in each model
by the Maximum Pseudolikelihood (MPL) method, that is,

by maximizing the pseudolikelihoods given in (3) and (8),

with respect to the unknown parameters.

3.1. Detection Algorithm

This is the next step once the parameters have been esti-
mated using the training data set. We classify a test image
as a face if
> 0.
)

N ~
Z |Og < Apface(xs |£E,S)
=1 Pnonface (ws | T—g

Otherwise, the test image will be classified as a nonface.
In (9), p(zs | z_s) stands for the estimated value of the lo-
cal characteristics at site after the parameters have been
estimated. The criteria stated in (9) is in terms of the sum
of logarithms of pseudolikelihood ratios for faces and non-
faces, and will be called the log pseudolikehood (LPL) cri-
teria.

(9)



Figure 2:Examples of faces in the training dag(x 15 im- Figure 3:Examples of nonfaces in the training da2a (x 15
ages with 16 gray levels). images with 16 gray levels)

3.2. Cross Validation Results conditional specifications for Model | class, one can simi-

Two types of errors can arise when using the MRF models larly define local characteristics for a given permutation

for face detection. Type | error is made when the detection by
procedure fails to detect a true face whereas Type Il error

refers to detecting a false face. We view Type | error as the

more serious of the two, since a post processing stage which EXp q aTx. + Z Ba Z T Tme
detects facial features can eliminate most of the falsely de P(@n, |Tn ) = ¢ st

tected faces. We use cross validation to obtain estimates of L-1

Type | and Type Il errors for each model as follows. Both Z exp { azr + Z Ba Z T T,

the training data set of faces and nonfaces are randomly di- z=0 d ol

vided into two groups, the first group for training the MRF (10)

models, and the second group for detection. Using the train-which gives rise to the joint probability density
ing images (faces and nonfaces) from the first group, the op-

timal permutation and the corresponding parameters of the . .
MRF model is found. The LPL criteria for face detection is exp § Toueran + Z BaT;
used on the remaining training face and nonface images to p(z) = d

obtain estimates of Type | and Type Il errors, respectively. ex T n T
The results of the cross validation procedure is given in Ta- ; ; o ; P& overat ; PaTi
bles 1 and Tables 2. A measure of overlap between the two (11)
histograms (faces and nonfaces) is given by whereT’” .. andT7 given by
2 T T
D(fag):/l; (V f($)— vg(l')) dz overall :Zmﬂ's and Td zzzwﬂ'swﬂ't

d
s~t
for f andg being the estimates of face and nonface densities ) )
from cross validation. It can be shown tifaK D(f, g) < are the counterparts &fo,cron @and 7y in Section 2 for a
2, with D(f,g) = 0iff f = g, andD(f,g) = 2if fand  9VEN permutation. _

g are completely separated. Small valuegxih the fourth _ _Slmllarly, for a given permutation, the local character-
column of Tables 1 and 2 indicate the the distributions of iStics of the Model Il class becomes

face and nonface are not well separated.

(@, [r_, ) = BIN(L = 1, ps (- [wn_,, o5, Bst)  (12)

4. Most Discriminating MRF Models  yhere
via Permutations

For better detection purposes, we investigate if the MRF exp {as + tZN Bsx, x’”}
models are a better fit to @ermutationof the sites in the  us(1|zx_,,as,Bst) = €
image, instead of the natural ordering. We consider the Z exp { asr + Z Bst xx
class of all permutations of sitdsto N, and choose that N ° Py e
permutation which gives maximum discriminatory power ’ ’ (13)

for detecting faces. One argument for considering permuta-gnq

tions of site indices is that the joint associationf and

., for a permutationr, may be better at discriminating 15 (0lz_, a5, Bst) = 1= ps(Uar_,, s, Bst)-

between faces and nonfaces compared;tandz;. Thus,

following the construction of joint MRF models ghusing The joint MRF model specified by the local characteristics



Table 1: Crossvalidation results for Model | (natural Geble 2: Crossvalidation results for Model Il (natural or-

der) der)
RunNo. TypelError Typell Error D Run No. Typel Error  Type Il Error D
1 0.3817 0.4483 0.29 1 0.1587 0.1007 0.92
2 0.3433 0.4883 0.27 2 0.1553 0.1067 0.91
3 0.3400 0.4900 0.26 3 0.1753 0.0960 0.93
4 0.3567 0.4900 0.25 4 0.1573 0.0987 0.94
5 0.4117 0.4683 0.26 5 0.1420 0.1080 0.91

Table 3: Crossvalidation results for Model | (permutetgble 4: Crossvalidation results for Model Il (permuted)

RunNo. TypelError Typell Error D Run No. Typel Error Type Il Error D
1 0.0750 0.1317 1.19 1 0.0920 0.0787 1.24
2 0.0783 0.1217 1.23 2 0.0947 0.0767 1.22
3 0.0900 0.0967 1.18 3 0.1027 0.0780 1.20
4 0.0850 0.1350 1.16 4 0.1060 0.0773 1.22
5 0.1064 0.1400 1.12 5 0.0907 0.0767 1.26
in (12) becomes we would want the distance between the parameter val-
ues for face and nonface to be furthest apart for maxi-
exp {Z O, + ngt% xm} mum discrimination. Equivalently, we require that the dis-
(z) = st tance betwee(F soce (17, 0n1)s Erace(T])), to be furthest
Pz away from(Eponface (T7erai)s Enontace(T])) according
Z Z Z exp {Z Oslr, + Z Bstwﬁswm} to some measure of distance. In [1] and [2], the Kulback-
T w3 st Leibler distance between two distributions was chosen in

L ) ) ) (14) the case of Markov chains. However, since the likelihoods
Similarly, the approximate PL for the autobinomial model 4 gifficult to handle in the case of MRFs, we resort to a

is given by different distance measure, namely, the Chi-square distan
N exp {07 + 4.V given by
L(Model 1) H : B (TT E T 2
1 - ( Model | ) { fﬂCE( overall) — nonface( overall)}
Z exp < asr + ﬂs Z 3733? Eface (T:vera,ll)
=0 teEN, T\ ?
(15) Z {Erace(T]) — nonface(Td )}2 _ (16)
whereUT andV" given by My Eface(T )
Ur =z, and V= Z T, Tr, Since the quantities involved in (16) are unknown, we esti-
{eN, mate them using the training data set. Thus, for each permu-

tationz, we estimate s q..(T7,.,.,;) by the overall average

re th nterpar n in ion 2 for iven .
are the counterparts &f; andV; in Sectio oragve gray level intensity over the face training data,

permutationr.
Nf N

4.1. Chi-square Metric for Model | Eface (Tlyeran) ZZ Ty

For Model |, the statistic§’" ..., andT],d = {h,v} are here th h h ILI N he f -
sufficient for the model parametes, 34,d = {h,v}). where the sum ranges through allimages in the face training

Also, there is a one-to-one correspondence between the paQIata setandVy is the number for training face images. We

rameter valuega, 84,d = {h,v}) and the expected val- estimatefsace (T7) by
ues ofTr .., andT7.d = {h,v}. Thus, if a face cor- R L

responds to the valuegace = {ay,B4}, and a non- Eace(T7) = > Y. > alFla®
face corresponds to the valuesn face = {anf, Banys},



In a similar fashion, the estimates corresponding to the non 4.3. Finding the Best Permutation using the

face training data set is Chi-square Criteria
Nos N Since the space of all permutations is extremely large,
5 (T™ 1 Z 20 (O(N!), for N sites), we resort to simulated annealing (SA)
nonsace(Touerat) " Ny — to find the best permutation according to (16) and (17) for

Models I and Il, respectively. The SA algorithm ([11]) is
and described as follows. Start with an initial permutatiag,
and initial temperaturel’ = ¢y, say. Randomly select two
sites for interchange and obtain the updated permutation,
Emmface T Z Z Z T ’2) m . Formy, calculate the Chi-square distance between faces
and nonfaces in the training set. If this distance is larger
than the initial Chi-square distance fog, accept the new
whereN,,; is the total number of nonfaces in the training permutation;. Otherwise, accept the new permutation,
data set. 71, with probability €, whered is the difference in (16) (or
(17)) betweenr, andmy. The acceptance-rejection scheme
. ) is carried out for a large number of runs. Subsequeftly,
4.2. Chi-square Metric for Model I1 reduced to, say,, and the above algorithm is repeated for
the temperature;. The SA procedure reaches a solution
that is close to the global optimal solution whEns small.
The acceptance-rejection scheme for each temperatute leve
was carried out forn, = 1000 times. The cooling schedule
was taken to b& = T % 0.97.

For the approximate PL in (8), the relevant site statisties a
given byUT and VT for each sites. We use the following
Chi square criteria for discrimination

N T T\12
x*(Model ll) = Z {Bace(UF) = Enonsace(U)} Once the best permutation was found, the parameters of
—1 Eface(Us) the MRF for faces and nonfaces were estimated using the
Maximum Pseudolikelihood (MPL) method.
_ T\12 . .
Z {Bsace (Vi) = Enonace (V1)) (17)  4.4. Detection Algorithm
EfaCE(V )

For the optimal permutation;°?*, and the corresponding
The unknown quantities in (17) are estimated from the face €stimated parameters (for both the face and nonface MRF
and nonface training data set. For every permutaticthe models), an image is classified as a face if

estimate ofEy, (UT) is N D face (@ gort | 3 pom)
> log : > 0. (18)
1 Nm o—1 pnonface(x opt ‘1‘ OP”)
En(U]) = 5= D o)
M= Otherwise, the test image will be classified as a nonface.
In (18), p(zont | 7,0 ) stands for the estimated value of
for M = {face,non face} andJ7\rfM_ = {Ny, Nug}accord-  the ocal characteristics at siteafter the optimal permuta-
ingly, and the estimate df, (V") is tion 7°P* has been found and the parameters have been esti-
mated. This is again the log pseudolikelihood (LPL) créeri
1 for the permuted sites.
Eu(V) =, 2 2 o
Nu = &%,

45. CrossValidation Results

for M andN,, as before. The results of the cross validation procedure for permuted
Using the likelihood ratio as a discrimination criteria is sites are given in Tables 3 and Tables 4 for the permuted
not feasible in the case of MRF models, since the normaliz- MRF models. The cross validation procedure is run 5 times
ing constants cannot be broken down in simpler sum com-for Model | and 5 times for Model Il to ascertain the vari-
ponents as was done in the case of the Markov chain modelability of both kinds of errors.
Using the ratio of pseudolikelinoods is easier compared to It is clear from Tables 3 and 4 that Model Il has more
the full likelihood but it is still computationally time cen  consistent detection properties compared to Model I. The
suming. Therefore, we resort to the estimated Chi-squareaverage Type | and Type Il error probabilities for Model Il
discrimination criteria that we discussed above when usingare 9% and 7%, respectively, whereas for Model I, the range
MRF models for face detection problems. of Type | and Type Il error probabilities are from 7%-11%



(a) (b) (c) (d) (@) (b) (€) (d)

Figure 4: Permutations of sites. (a) Face example, (b) lE(I_:gu re 5: Parameter values for faces and nonfaces.{¢ajt

muted face, (c) Nonface example, (d) Permuted nonface. for faces, (b){f,} for faces, (c){a.} for nonfaces, (d)/,}

for nonfaces.

Original image Modulo 16 reduction Scaled Image

and 9% - 14%, respectively. Model | sometimes performs -
better than Model Il for true face images but Model | always s

gives more false alarms compared to Model Il. We see from .
the fourth column entries of Tables 3 and 4 that the distri- §
butions are better separated compared to the case when th:2
sites were not permuted.

For Model Il it is interesting to see how the optimal per-
mutation rearranges gray level intensities in an image- Fig Figure 6: Effects of Blocking and Scaling
ure 4 (a) shows a typical face image from the training data
base. The optimal permutation is applied to the face image
and the resulting image is presented in Figure 4 (b). It is converted to th@ — 15 range by division modulo 16. Some
clear that the optimal permutation forms two distinct clus- blocking effect in the original image is observed after per-
ters of gray level intensities, one cluster of low gray level forming this step (see Figure 6). In order to fit a face in
intensities while another cluster of higher gray level mte  these images into o0 x 15 detection frame, we scale (up
sities. The relative positions of these clusters in a face im or down) the original image so that the faces approximately
age are also fixed for different face images. No such clusterfit into the detection frame. Then, we slid&@ x 15 win-
forms when a nonface image is considered. See Figures 4low in a raster scan fashion over the rescaled image. The
(c) and 4 (d), for example. LPL values are calculated for each position of the detection

We also display the site coefficientsy;} and{3;}, of window. If an LPL value is greater than 0, a face frame
Model Il for faces and nonfaces. The image plots are ob- (red frame) is placed over the window. Several threshold
tained first by rescaling the coefficients to the255 range, ~ values, other than 0 (in (18)), such as 5 and 10, are also
and then reordering the permuted sites back to the naturatonsidered. Possible faces correspond to high positive LPL
order. Figures 5 (a) and (b) show the relative magnitude of values. Both models detect all the faces in the four test im-
the {a,} and{3;}, respectively, for a face image. Observe ages with single and multiple faces. Some spurious faces
that the{3,} image extracts the distinguishing features of a are detected and they disappear when the threshold level is
face, namely the face outline, and the positions of the eyesraised. In general, Model Il performed better at detecting
and nose. Since the eyes and nose are relatively darker refaces compared to Model I. This was also established based
gions compared to the surrounding sitg$, } at the bound- ~ on cross validation results. For test images, we empiyicall
aries of the eyes, nose and face outlines capture this changdetermine a good value of the threshold. Figure 7 show
in gray level intensity. Since the intensities change in op- the results of the detection algorithm based on Model Il for
posite directions (from lighter to darker, or vice vershjst ~ some of the images. The detection algorithm was written in
is reflected in the{3;} coefficients by their low negative ~MATLAB and was run on a PC with a 750 Mhz Pentium
values. Il processor. The detection times (in seconds) for these im

ages ((a),(b),(c) and (d)) are 8, 10, 67 and 300, respegtivel

5. Face Detection for Real I mages

We apply the face detection algorithm based on (permuted)
Models | and Il to real images. We consider images of arbi- We have presented two Markov models for face detection.

6. Summary and Conclusions

trary sizes with gray level intensities ranging from 255. Better detection properties are obtained for a permutation
These images (see Figure 7) consists of one or more face¢he sites, instead of the natural ordering. Model |l results
of an arbitrary size. smaller error probabilities of detection compared to Model

First, the gray level intensities of the original image are |. Moreover, Model Il distinguishes faces from nonfaces by
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Figure 7:Sample input images and detection results. Image size€8@ay 170, (b) 270 x 150, (c)410 x 450, (d) 350 x 550
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