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Figure 1: Example image pairs of different demographic cohorts. The similarity scores below each row are obtained by a baseline method and our DebFace.
First row lists imposter pairs (false accepted by BaseFace) and second row lists genuine pairs (false rejected by BaseFace).

Abstract

We address the problem of bias in automated face recog-
nition algorithms, where errors are consistently lower on
certain cohorts belonging to specific demographic groups.
We present a novel de-biasing adversarial network that
learns to extract disentangled feature representations for
both unbiased face recognition and demographics estima-
tion. The proposed network consists of one identity clas-
sifier and three demographic classifiers (for gender, age,
and race) that are trained to distinguish identity and de-
mographic attributes, respectively. Adversarial learning is
adopted to minimize correlation among feature factors so as
to abate bias influence from other factors. We also design a
new scheme to combine demographics with identity features
to strengthen robustness of face representation in different
demographic groups. The experimental results show that
our approach is able to reduce bias in face recognition as
well as demographics estimation while achieving state-of-
the-art performance.

1. Introduction
Automated face recognition has achieved remarkable

success with the rapid developments of deep learning al-

gorithms. Despite the improvement in the accuracy of
face recognition, one topic is of significance. Does a face
recognition system perform equally well on different demo-
graphic groups? In fact, it has been observed that many face
recognition systems have lower performance for certain de-
mographic groups than others [21, 27]. Such face recogni-
tion systems are said to be biased in terms of demographics.

At the time when face recognition systems are being de-
ployed in real world for societal benefit, this type of bias 1

is not acceptable. Why does the bias problem exist in face
recognition systems? First of all, state-of-the-art (SOTA)
face recognition methods are based on deep learning which
requires a large collection of face images for training. In-
evitably the distribution of training data has a great impact
on the performance of the resultant deep learning models. It
is well understood that face datasets exhibit imbalanced de-
mographic distributions where the number of faces in each
cohort is unequal. Previous studies have shown that models
trained with imbalanced datasets lead to biased discrimina-
tion [4, 46]. Secondly, the goal of deep face recognition
is to map the input face image to a target feature vector
with high discriminative power. The bias in the mapping

1This is different from the notion of machine learning bias to mean “any
basis for choosing one generalization [hypothesis] over another, other than
strict consistency with the observed training instances” [13].
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function will result in feature vectors of the specific demo-
graphics with lower discriminative ability. Klare et al. [27]
shows the errors that are inherent to some demographics by
studying non-trainable face recognition algorithms.

To address the bias issue, data re-sampling methods have
been exploited to balance the data distribution by under-
sampling the majority [14] or over-sampling the minority
classes [7, 36]. Despite its simplicity, valuable informa-
tion may be removed by under-sampling, and over-sampling
may introduce noisy samples. Another common option
for imbalanced data training is cost-sensitive learning that
(i) assigns weights for different classes, (ii) samples based
on their frequency [22] or the effective number of sam-
ples [5, 10]. To eschew the overfitting of Deep Neural Net-
work (DNN) to minority classes, hinge loss is often used to
train classifiers that increase margins among classification
decision boundaries [19, 25]. The aforementioned methods
have also been adopted for face recognition and attribute
prediction on imbalanced datasets [23, 53]. However, such
face recognition studies only concern bias in terms of iden-
tity, rather than our focus of demographic bias.

In this paper, we propose a framework to address the
influence of demographic bias on face recognition perfor-
mance. In typical deep learning based face recognition
frameworks, face feature encoders are trained on ample
amounts of face data to generate a feature representation
for each image. The large capacity of DNN enables the
face representations to embed demographic details, includ-
ing gender, race, and age [2, 15]. Thus, the biased demo-
graphic information is transmitted from the training dataset
to the output representations. To tackle this issue, we as-
sume that if face representation does not carry discrimina-
tive information of demographic attributes, it would be un-
biased in terms of demographics.

Given this assumption, one common way to remove
demographic information from face representations is to
perform feature disentanglement via adversarial learning
(Fig. 2b). That is, the classifier of demographic attributes
can be used to encourage the identity representation to not
carry demographic information. However, one issue of this
common approach is that, the demographic classifier itself
could be bias (e.g., the race classifier could be biased on
gender), and hence it will act differently while disentan-
gling faces of different cohorts. This is clearly undesired
as it leads to demographic biased identity representation.

To resolve the chicken and egg problem, we propose to
jointly learn unbiased representations for both the identity
and demographic attributes. Specifically, starting from a
multi-task learning framework that learns disentangled fea-
ture representations of gender, age, race, and identity, re-
spectively, we request the classifiers of each task to act as
adversarial supervision for the other tasks (e.g., the dash
arrows in Fig. 2c). These four classifiers help each other
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Figure 2: Methods to learn different tasks simultaneously. Solid lines are
typical feature flow in CNN, while dash lines are adversarial losses.

to achieve better feature disentanglement, resulting in unbi-
ased feature representations for both the identity and demo-
graphic attributes. As shown in Fig. 2, our proposed frame-
work is novel and in sharp contrast to prior works in either
multi-task learning or adversarial learning.

Moreover, since the features are disentangled into the de-
mographic and identity, our face representations also con-
tribute to privacy-preserving applications. It is worth notic-
ing that such identity representations contain little demo-
graphic information, which could undermine the recogni-
tion competence since demographic features are part of
identity-related facial appearance. To retain the perfor-
mance on demographic biased face datasets, we propose
another network that combines the demographic features
with the demographic-free identity features to generate a
new identity representation for face recognition.

The key contributions and findings of the paper are:
� A thorough analysis of deep learning based face recog-

nition performance on three different demographics: (i)
gender, (ii) age, and (iii) race.
� A de-biasing face recognition framework, called Deb-

Face, that generates disentangled representations for both
identity and demographics recognition while jointly remov-
ing discriminative information from other counterparts.
� The identity representation obtained from the de-

biasing network (DebFace-ID) shows lower bias on differ-
ent demographic cohorts and also achieves SOTA face ver-
ification results on the cross-age face recognition and race-
unbiased face recognition.
� The demographic estimations through DebFace are

less biased across different.
� Combine ID with demographics to obtain robust fea-

tures for face recognition on biased datasets.

2. Related Work
Face Recognition on Imbalanced Training Data Previ-
ous efforts on face recognition aim to tackle the class im-
balance problem on training data. For example, in prior-
DNN era, Zhang et al. [59] propose a cost-sensitive learning
framework to reduce misclassification rate of face identifi-
cation. To correct the skew of separating hyperplanes of
SVM on imbalanced data, Liu et al. [31] propose Margin-



Based Adaptive Fuzzy SVM that obtains a lower gener-
alization error bound. In the DNN era, face recognition
models are trained on large-scale face datasets with highly-
imbalanced class distribution. Range Loss [58] learns a ro-
bust face representation that makes the most use of every
training sample. To mitigate the impact of insufficient class
samples, center-based feature transfer learning [56] and
large margin feature augmentation [53] are proposed to aug-
ment features of minority identities and equalize class dis-
tribution. Huang et al. [23] propose cluster-based large mar-
gin local embedding that reduces local data imbalance. De-
spite their effectiveness, these studies ignore the influence
of demographic imbalance issue on the face dataset, which
may lead to demographic bias. For instance, both [21]
and [27] show that face recognition algorithms consistently
perform worse on certain demographic cohorts. To uncover
deep learning bias, Alexander et al. [3] develop an algo-
rithm to mitigate the hidden biases within training data. To
our knowledge, no studies have tackled the challenge of de-
biasing DNN-based face recognition algorithms.

Adversarial Learning and Disentangled Representation
Adversarial learning [41] has been well explored in many
computer vision applications. For example, Generative Ad-
versarial Networks (GANs) [16] employ adversarial learn-
ing to train a generator by competing with a discriminator
that distinguishes real images from synthetic ones. Adver-
sarial learning has also been applied to domain adaptation
problems [48, 49, 33, 45]. A problem of current interest is to
learn interpretable representations with semantic meaning.
There have been many studies that learn factors of varia-
tions in the data by supervised learning [29, 30], or semi-
supervised/unsupervised learning [26, 37, 32], referred as
disentangled representation. For supervised disentangled
feature learning, adversarial networks are utilized to extract
features that only contain discriminative information of a
target task. For face recognition, Liu et al. [30] propose
a disentangled representation by training an adversarial au-
toencoder to extract features that can capture identity dis-
crimination and its complementary knowledge. In contrast,
our proposed DebFace differs prior works in that the each
branch of a multi-task network act as both a generator and
discriminators of other branches (Fig. 2c).

3. Methodology

3.1. Problem Definition

The concept of unbiased face recognition is that given
a face recognition system, equal performances can be
achieved in different categories of face images. Despite
the research on pose-invariant face recognition that aims for
equal performance on all poses, we believe that it is inap-
propriate to define variations like pose, illumination, or res-
olution, as the categories. These are instantaneous image-

related variations with intrinsic bias. E.g., large pose or low
resolution faces are inherently harder to be recognized.

Rather, we would like to define subject-related proper-
ties such as demographic attributes as the categories. A face
recognition system is biased if it performs worse on cer-
tain demographic cohorts. For practical applications, it is
important to consider what demographic biases may exist,
and whether these are intrinsic biases across demographic
cohorts or algorithmic biases derived from the algorithm it-
self. This motivates us to analyze the demographic influ-
ence on face recognition performance and strive to reduce
algorithmic bias for face recognition systems. We aim to
learn a face representation that carries equal discriminative
information across demographic cohorts. One may achieve
this by training on a dataset containing uniform samples
over the cohort space. However, the demographic distribu-
tion of a dataset is often imbalanced that under-represents
demographic minorities while over-represents majorities.
Naively re-sampling training data may still induce bias
since the diversities of latent variables are different across
cohorts and the instances cannot be treated fairly during
training. To mitigate demographic bias, we propose a face
de-biasing framework that jointly reduces mutual bias over
all demographics and identities while disentangles face rep-
resentations into gender, age, race, and demographic-free
identity in the mean time.

3.2. Algorithm Design

The proposed network takes advantage of the relation-
ship between demographics and face identities. On one
hand, demographic characteristics are highly correlated to
face features. Some demographic attributes, e.g., gender
and race, are two of the factors that determine facial ap-
pearances and can provide identification-related informa-
tion. On the other hand, demographic attributes are hetero-
geneous in terms of data type and semantics [18]. Individual
attributes like race are fixed while age or gender may change
individually over time. Meanwhile, the three demographic
attributes are semantically independent. A male person, for
example, is not necessary to be a certain age or of a cer-
tain race. Accordingly, we present a framework that jointly
generates demographic features and identity features from
a single face image by considering both the aforementioned
attribute correlation and attribute heterogeneity in a DNN.

While our goal is to diminish demographic bias from
face representation, we observe that demographic estima-
tions are biased as well (see Fig. 8). How can we remove
the bias of face recognition when demographic estimations
themselves are biased? To increase fairness of all demo-
graphic classifiers and decrease bias of both face recogni-
tion and demographic estimations, we propose a de-biasing
network, DebFace, that disentangles the representation into
gender, age, race, and identity (DebFace-ID), respectively.
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Figure 3: Overview of the proposed the De-biasing face network. The dashed arrows represent adversarial training.

Using adversarial learning, the proposed method is capable
of jointly learning multiple discriminative representations
while ensuring that each classifier cannot distinguish among
classes through non-corresponding representations.

Though less biased, DebFace-ID loses demographic cues
that is useful for identification. In particular, race and gen-
der are two critical components that constitute face pat-
terns. Hence, we desire to incorporate race and gender with
DebFace-ID to obtain a more integrated face representation.
We employ a light-weight fully-connected network that is
trained to aggregate the representations into a face repre-
sentation with the same dimensionality as DebFace-ID.

3.3. Network Architecture

Figure 3 gives an overview of the proposed de-biasing
face recognition network. It consists of four components,
namely, the shared image-to-feature encoderEImg, the four
attribute classifiers (including genderCG, ageCA, raceCR,
and identityCID), the distribution classifierCDistr, and the
feature aggregation network EFeat.

We assume access to N labeled training samples
{(x(i), y

(i)
g , y

(i)
a , y

(i)
r , y

(i)
id )}Ni=1. Our approach takes an im-

age x(i) as the input of EImg . The encoder projects x(i) to
its feature representation EImg(x

(i)) with 4D dimension-
ality. The feature representation is then decoupled into four
D-dimensional feature vectors, gender f

(i)
g , age f

(i)
a , race

f
(i)
r , and DebFace-ID f

(i)
ID, respectively. Next, each attribute

classifier operates the corresponding feature vector to cor-
rectly classify the target attribute by optimizing parameters
of both EImg and the respective classifier C∗.

For a demographic attribute with K categories,
the learning objective is the standard cross entropy
loss function LCDemo

(x, yDemo;EImg, CDemo) =

−
∑K

k=1 I(k = yDemo) log
eCDemo(fDemo)k∑K
j=1 eCDemo(fDemo)j

, where

I(x = y) =

{
1 for x = y
0 for x 6= y

is an index func-

tion, yDemo = {yg, ya, yr}, CDemo = {CG, CA, CR},
and fDemo = {fg, fa, fr}. For the n−identity classi-

fication, we adopt AM-Softmax [50] as the objective
function LCID

(x, yid;EImg, CID) = −
∑n

k=1 I(k =

yid) · log es·CID(fID)k−m

es·CID(fID)k−m+
∑n

j=1,j 6=k es·CID(fID)j
, where s is

the feature scale, and m is the angular margin.
To de-bias all of the feature representations, adversarial

loss LAdv(x, yDemo, yid;EImg, CDemo, CID) is applied to
the above four classifiers such that each of them will not
be able to predict correct labels when operating irrelevant
feature vectors. Specifically, given a classifier, the remain-
ing three attribute feature vectors are imposed on it and at-
tempt to mislead the classifier by only optimizing the rep-
resentation parameters of EImg . To further improve the
disentanglement, we also reduce the mutual information
among the attribute features by introducing a distribution
classifier CDistr. CDistr is trained to identify whether an
input representation is sampled from the joint distribution
p(fg, fa, fr, fID) or the multiplication of margin distribu-
tions p(fg)p(fa)p(fr)p(fID) via a binary cross entropy loss
LCDistr

(x, yDistr;EImg, CDistr), where yDistr is the dis-
tribution label. Similar to adversarial loss, a factorization
objective function LFact(x, yDistr;EImg, CDistr) is uti-
lized to restrain the CDistr from distinguishing the real dis-
tribution and thus minimizes the mutual information of the
four attribute representations. Both adversarial loss and fac-
torization loss are described in more details in Sec. 3.4.

Altogether, the proposed de-biasing face network en-
deavors to minimize the joint loss function:

L(x, yDemo,yid, yDistr;EImg, CDemo, CID, CDistr) =

LCDemo
(x, yDemo;EImg, CDemo)

+ LCID
(x, yid;EImg, CID)

+ LCDistr
(x, yDistr;EImg, CDistr)

+ λLAdv(x, yDemo, yid;EImg, CDemo, CID)

+ νLFact(x, yDistr;EImg, CDistr),

(1)

where λ and ν are hyper-parameters determining how com-
pletely the representation is decomposed and decorrelated



in each training iteration.
The discriminative demographic features in DebFace-ID

are weakened by removing demographic information.
Fortunately, our de-biasing network preserves all pertinent
demographic features in a disentangled way. Basically, we
train another multilayer perceptron (MLP) EFeat to aggre-
gate DebFace-ID and the demographic embeddings into a
unified face representation DemoID. Since age generally
does not pertain to a person’s identity, we only consider
gender and race as the identity-informative attributes. The
aggregated embedding, fDemoID = Efeat(fID, fg, fr),
is supervised by an identity-based triplet loss

LEFeat
= 1

M

∑M
i=1[‖f

(i)
DemoIDa − f

(i)
DemoIDp‖

2

2 −
‖f (i)DemoIDa − f

(i)
DemoIDn‖

2

2 + α]+, where M is
the number of hard triplets in a mini-batch, and
{f (i)DemoIDa , f

(i)
DemoIDp , f

(i)
DemoIDn} is the ith triplet

consisting of an anchor, a positive, and a negative DemoID
representation. [x]+ = max(0, x), and α is the margin.

3.4. Adversarial Training and Disentanglement

As discussed in Sec. 3.3, the adversarial loss aims to
minimize the task-independent information semantically,
while the factorization loss strives to dwindle the interfer-
ing information statistically. We employ both losses to dis-
entangle the representation extracted by EImg .

We introduce the adversarial loss as a means to learn a
representation that is invariant in terms of certain attributes,
which mitigates bias related to those attributes. Such a rep-
resentation is invariant if a classifier trained on it cannot
correctly classify the categories of the attribute using that
representation. We take one of the attributes, e.g., gen-
der, as an example to illustrate the adversarial objective.
First of all, for a demographic representation fDemo, we
learn a gender classifier on fDemo by optimizing the classi-
fication loss LCG

(x, yDemo;EImg, CG). Secondly, for the
same gender classifier, we intend to maximize the chaos
of the predicted distribution. It is well known that a uni-
form distribution has the highest entropy and presents the
most randomness. Hence, we train the classifier to pre-
dict the probability distribution as close as possible to a
uniform distribution over the category space by minimiz-
ing the cross entropy LG

Adv(x, yDemo, yid;EImg, CG) =

−
∑KG

k=1
1

KG
·(log eCG(fDemo)k∑KG

j=1 eCG(fDemo)j
+log eCG(fID)k∑KG

j=1 eCG(fID)j
),

where KG is the number of categories in gender 2, and
the ground-truth label is no longer an one-hot vector, but
a KG-dimensional vector with all elements being 1

KG
. The

above loss function strives for gender-invariance by finding
a representation that makes the gender classifier CG per-
form poorly. To this end, we minimize the adversarial loss
by only updating parameters in EImg .

2In our case, KG = 2, i.e., male and female.

We further decorrelate the representations by reducing
the mutual information across attributes. By definition,
the mutual information is the relative entropy (KL diver-
gence) between the joint distribution and the product dis-
tribution. To increase uncorrelation, we add a distribution
classifier CDistr that is trained to simply perform a bi-
nary classification using LCDistr

(x, yDistr;EImg, CDistr)
on samples fDistr from both the joint distribution and
dot product distribution. Similar to adversarial learn-
ing, we factorize the representations by tricking the clas-
sifier via the same samples so that the predictions are
close to random guesses LFact(x, yDistr;EImg, CDistr) =

−
∑2

i=1
1
2 log

eCDistr(fDistr)i∑2
j=1 eCDistr(fDistr)j

. In each mini-batch,

we consider EImg(x) as samples of the joint distribution
p(fg, fa, fr, fID). We then randomly shuffle the feature vec-
tors of each attribute in a batch, and re-concatenate them
into 4D-dimensional vectors, which are approximated as
samples of the product distribution p(fg)p(fa)p(fr)p(fID).
During factorization, we only update EImg to learn decom-
posed representations with minimum mutual information.

4. Experiments
4.1. Datasets and Pre-processing

Datasets: We utilize 15 face datasets in this work, for
learning the demographic estimation models, the baseline
face recognition model, the de-biasing face model as well
as for evaluating these models. To be specific, CACD [8],
IMDB [40], UTKFace [60], AgeDB [35], AFAD [38],
AAF [9], FG-NET 3, RFW [52], IMFDB-CVIT [42], Asian-
DeepGlint [1], and PCSO [11] are the datasets for train-
ing and testing models of demographic estimations; and the
datasets for learning and evaluating models of face verifi-
cation are MS-Celeb-1M [17], LFW [24], IJB-A [28], and
IJB-C [34].

Pre-Processing: All face images are detected by
MTCNN [57]. Each face is cropped and resized to 112×112
pixels using a similarity transformation based on the de-
tected five landmarks.

4.2. Implementation Details

We train the proposed de-biasing network on a cleaned
version of MS-Celeb-1M [12], using the ArcFace architec-
ture [12] with 50 layers for the encoderEImg . Since there is
no demographic labels in MS-Celeb-1M, we first train three
demographic estimation models for gender, age, and race,
respectively. For age estimation, the model is trained on the
combination of CACD, IMDB, UTKFace, AgeDB, AFAD,
and AAF datasets. The gender estimation model is trained
on the same datasets except CACD which contains no gen-
der labels. We combine AFAD, RFW, IMFDB-CVIT, and

3https://yanweifu.github.io/FG_NET_data

https://yanweifu.github.io/FG_NET_data


PCSO for race estimation training. All the demographic
models use ResNet [20] with 34 layers for age, 18 layers
for gender and race.

We predict the demographic labels of MS-Celeb-1M
with the well-trained demographic models. Our DebFace
is then trained on the re-labeled MS-Celeb-1M using SGD
with a momentum of 0.9, a weight decay of 0.01, and a
batch side of 256. The learning rate starts from 0.1 and
drops to 0.0001 following the schedule at 8, 13, and 15
epochs. The model is trained for 30 epochs. The dimen-
sionality of the embedding layer of EImg is 4 × 512 so
that each attribute representation (gender, age, race, ID) is
a 512-dim vector. We keep the hyper-parameter setting of
AM-Softmax as [12]: s = 64 and m = 0.5. The feature
aggregation network EFeat comprises of two linear resid-
ual units with P-ReLU and BatchNorm in between. EFeat

is trained on MS-Celeb-1M by SGD with a learning rate of
0.01. The triplet loss margin α is 1.0. The disentangled
features of gender, race, and DebFace-ID are concatenated
into a 3× 512-dim vector, which is the input of EFeat. The
network is then trained to output a 512-dim feature repre-
sentation for face recognition on biased datasets.

4.3. De-biasing Face Verification

Baseline: We compare DebFace with a regular face rep-
resentation model which has the same architecture as the
shared feature encoder of DebFace. Referred as BaseFace,
this baseline model is also trained on MS-Celeb-1M, with
the representation dimension of 512.

To show the efficacy of DebFace on bias mitigation in
face recognition, we evaluate the verification performance
of both DebFace and BaseFace on faces from each demo-
graphic cohort separately. There are 48 total cohorts given
the combination of demographic attributes including gen-
der (male, female), race (Black, White, East Asian, In-
dian), and age group (0-12, 13-18, 19-34, 35-44, 45-54, 55-
100). We combine IMDB, CACD, AgeDB, and CVIT as
the testing set. Overlapping identities among these datasets
are removed. Pre-defining a False Accept Rate (FAR) and
comparing the corresponding True Accept Rate (TAR) may
be biased due to the limited number of images in minor-
ity classes. Besides, the thresholds derived from FAR are
susceptible to errors of the identity labels, especially to mi-
norities. Therefore, we report the Area Under the Curve
(AUC) - Receiver Operating Characteristics (ROC) that in-
volves FAR from zero to one for each demographic group.
We define the degree of bias, termed biasness, as the stan-
dard deviation of performance across cohorts.

Figure 4 shows the face verification results of BaseFace
and DebFace on each cohort. That is, for a particular face
representation (e.g., DebFace), we report its AUC on each
cohort within that demographic and put the number in the
corresponding cell. For example, on the female heatmap,
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Figure 4: Face Verification AUC in each demographic cohort. The cohorts
are chosen based on the three attributes, i.e., gender, age, and race. To
fit the results into a 2D plot, we show the performance of male and female
separately. Due to the limited number of face images in some cohorts, their
results are gray cells. The biasness of BaseFace and DebFace are 0.0726
and 0.0638, respectively.
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Figure 5: The overall performance of face verification AUC on the gender,
age, and race, respectively. The biasness of BaseFace and DebFace on
gender is 0.0025 and 0.0020; 0.0631 and 0.0555 on age; 0.0574 and
0.0449 on race.

the first cell represents the performance of BaseFace on
faces of white female, aging from 0 to 12. From these
heatmaps, we can observe that both DebFace and BaseFace
present the bias issue in face verification, where the per-
formance in some cohorts are significantly worse than oth-
ers, especially the cohort of black children and elder peo-
ple. Compared to BaseFace, DebFace suggests less bias
and the difference of AUC on the cohorts is smaller, where
the heatmap exhibits smoother edges. Note that the overall
performance of DebFace declines compared to BaseFace.
This is because part of the identity-related information like
gender and race is disentangled from identity so that the
discriminativeness of Debface-ID deteriorates.

Figure 5 shows the performance of face verification on
12 cohorts based on three demographic categories. Both
DebFace and BaseFace present similar relative accuracies
across cohorts. For example, both algorithms performs
worse on the children cohort than the adults; and the perfor-
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Figure 6: Face Verification AUC in each demographic cohort. The com-
parison is between the finetuned BaseFace and DebFace. The biasness
of Finetune and DebFace on gender is 0.0037 and 0.0020; 0.0439 and
0.0449 on race

mance on the Indian cohort is significantly higher than the
other races. DebFace decreases the bias from demographics
by gaining discriminative features of minorities in spite of
the reduction in the performance of majorities.

To further demonstrate the intrinsic bias in different co-
horts, we also finetune BaseFace using face images that
only belong to a specific cohort. Since age is not infor-
mative in terms of identity, we only finetune BaseFace on
six cohorts of gender and race separately. Figure 6 shows
the performance of the finetuned models versus DebFace.
Compared to BaseFace, the AUC increases on most of the
cohorts by finetuning except female. However, there are
still bias even after finetuning on each cohort. Our DebFace
cannot do no better than finetuned models in terms of de-
biasing the race influence. For gender groups, on the other
hand, bias between male and female increases by finetun-
ing, suggesting that the de-biasing factors in DebFace are
capable of mitigating the gender bias in face verification.

4.4. De-biasing Demographic Estimation

Baseline: We further explore the bias of demographic
estimation and compare DebFace with baseline estimation
models. We train three demographic estimation models,
namely, gender estimation (BaseGender), age estimation
(BaseAge), and race estimation (BaseRace). For fairness,
all three models have the same architecture and training
dataset as the shared layers of DebFace. All the demo-
graphic estimations are mapped as classification problems,
so classification accuracy is used as the performance metric.

We combine the four datasets mentioned in Sec. 4.3 with
Asian-DeepGlint as the global testing set. Note that not
all of the datasets include labels of all three demographics.
Thus, we again employ the demographic models that were
trained to label MS-Celeb-1M. For the dataset without cer-
tain demographic labels, we simply use the corresponding
model to predict the labels.

As shown in Fig. 8, all demographic estimations present
significant bias. For gender estimation, both algorithms per-
form worse on the White and Black cohorts than the East

Table 1: footnotesizePerformance on LFW and IJB-A, with verification
accuracy on LFW and TAR@0.1% FAR on IJB-A.

Method LFW (%) Method IJB-A (%)

DeepFace+ [44] 97.35 DR-
GAN [47]

53.9± 4.3

CosFace [51] 99.73 Yin et
al. [55]

73.9± 4.2

L2-Face [39] 99.78 Cao et al. [6] 90.4± 1.4
ArcFace [12] 99.83 Multicolumn [54]92.0± 1.3
PFE [43] 99.82 PFE [43] 95.3± 0.9

BaseFace 99.38 BaseFace 90.2± 1.1
DebFace 98.97 DebFace 87.6± 0.9
DemoID 99.50 DemoID 92.2± 0.8

Asian and Indian cohorts. In addition, the performance on
young children is significantly worse than adults. In gen-
eral, the race estimation models perform better on the male
cohort than female. Compared to gender, race estimation
shows higher bias in terms of age cohorts. Both the base-
line method and DebFace perform worse on cohorts with
age between 13 to 44 than other age groups. Similar to
race, age estimation still achieves better performance on the
male cohort than female. Moreover, the white cohort shows
dominant advantages over other races in age estimation. In
spite of the existing bias in demographic estimations, the
proposed DebFace is still able to diminish the bias derived
from algorithms. Compared to Fig. 8a, 8b, 8c, cells in
Fig. 8d, 8e, 8f present more uniform colors.

4.5. Face Verification on Public Protocols

We compare the face verification performance of the pro-
posed method with SOTA methods, on three public bench-
marks: LFW, IJB-A, and IJB-C. All three datasets exhibit
imbalanced data distribution in terms of demographics.

Ablations: We report the performance of three different
settings, using 1) BaseFace, the same baseline in Sec. 4.3, 2)
the ID representation output by DebFace, and 3) the fused
representation DemoID.

As shown in Tabs. 1, 2, the ID representation of Deb-
Face is less discriminative than BaseFace, or DemoID, since
race and gender are essential components of identity-related
face features. Thus, the performance improves by simply
concatenating race and gender features with DebFace-ID.
On the other hand, re-introducing race and gender features
to the face representation through the aggregation model
may inevitably lead to demographic bias. In the sense of
de-biasing, it is preferable to concatenate race and gender
directly with the de-biased ID. However, if we prefer to
maintain the overall performance across all demographics,
we can still aggregate all the relevant information. It is an
application-dependent trade-off between accuracy and de-
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Figure 7: Feature distribution of the representation output by BaseFace and DebFace.
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Figure 8: Classification accuracy of the demographic estimations on faces
of different cohorts, for the baseline models and DebFace. The biasness of
the baseline model and DebFace is 0.1238 and 0.1022 on gender; 0.1458
and 0.1000 on race; 0.1083 and 0.0761 on age.

biasing. Fortunately our algorithm design offers the flexi-
bility in handling this trade-off.

4.6. Qualitative Analysis of Disentanglement

To demonstrate the feature disentanglement by DebFace,
we plot the distribution of the nearest neighbors of the face

Table 2: Verification performance on IJB-C.

Method TAR @ FAR (%)
0.001% 0.01% 0.1%

Yin et al. [55] - - 69.3
Cao et al. [6] 74.7 84.0 91.0
Multicolumn [54] 77.1 86.2 92.7
PFE [43] 89.6 93.3 95.5

BaseFace 80.2 88.0 92.9
DebFace 82.0 88.1 89.5
DemoID 83.2 89.4 92.9

images in the feature space. For example, Fig. 7g illustrates
the gender distribution of the nearest neighbors of all the
female faces in the dataset. In the feature space of Deb-
Face, there are 3, 362 points that are nearest to the females
faces belong to the female cohorts, and 2, 803 points be-
long to the male cohorts. As shown in Fig. 7, the DebFace
representation presents more uniform distribution compared
to BaseFace, indicating that faces within different demo-
graphic groups are converged together and the demographic
information is disentangled from the face representation.

5. Conclusion

We present a de-biasing face recognition network (Deb-
Face) to mitigate demographic bias in face recognition.
DebFace adversarially learns the disentangled representa-
tion for gender, race, and age estimation, and face recog-
nition simultaneously. We empirically demonstrate that not
only DebFace can reduce bias in face recognition but in de-
mographic estimation as well. Our future work will explore
an aggregation scheme to combine race, gender, and iden-
tity without introducing algorithmic and dataset bias.
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