
Identifying Missing Children: Face Age-Progression
via Deep Feature Aging (Supplementary Material)

In this supplementary material, we conduct thorough ex-
periments to show (a) why deep feature aging works, (b) the
effects of deep feature aging on face embeddings, and (c) abla-
tion on style-dimensionality. We include more implementation
details on our Feature Aging Module (FAM) and the Image
Generator used for aging face images. We also show additional
examples of aged faces.

I. WHAT IS FEATURE AGING MODULE LEARNING?

A. Age-Sensitive Features

In order to analyze which components of the face embed-
dings are altered during the aging process, we first consider
a decoder that takes an input a face embedding and attempts
to construct a face image without any supervision from the
image itself. That is, the decoder is a variant of the proposed
Image Generator without the style encoder. This ensures that
the decoder can only synthesize a face image from whatever
is encoded in the face feature only.

We then compute a difference image between a recon-
structed face image and its age-progressed version. We directly
age the input feature vector via our Feature Aging Module
as shown in Figure 1. We find that when a probe feature is
progressed to a younger age, our method attempts to reduce
the size of the head and the eyes, whereas, age-progression
enlarges the head, adds makeup, and adds aging effects such
as wrinkles around the cheeks. As we expect, only components
responsible for aging are altered, whereas, noise factors such
as background, pose, quality, and style remain consistent.

B. Why does Deep Feature Aging enhance longitudinal per-
formance?

In Figure 2, in the first row, we see that originally a state-
of-the-matcher, CosFace [1], wrongly retrieves the true mate
at Rank-37. Interestingly, we find that the top 5 retrievals
are very similar ages to the probe’s age (17 years). That is,
state-of-the-art matchers are biased towards retrieving images
from the gallery that are of similar ages as that of the probe.
With our Feature Aging Module (FAM), we age the feature in
the feature space of the matcher such that we can ‘fool’ the
matcher into thinking that the gallery is closer to the probe’s
age. In this manner, the matcher tends to utilize identity-salient
features that are age-invariant and can only focus on those
facial components. In row 2, we find that when we age the
gallery to the probe’s age, the top retrievals are all children.
This highlights the strength of our Feature Aging Module and
its ability to enhance longitudinal performance of matchers.
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Fig. 1: Differences between age-progressed and age-regressed features. Rows
1 and 3 show decoded aged images for two different individuals. Rows 2 and 4
show the areas that change from the probe (black color indicates no-changes).
For both progression and regression, our proposed Feature Aging Module
only alters face components responsible for aging while largely keeping other
covariates such as background, pose, quality, and style consistent.

Probe Rank 1 Rank 2 Rank 3 Rank 4 Rank 37
17 years 15 years 18 years 15 years 13 years 5 years

Probe Rank 1 Rank 2 Rank 3 Rank 4 Rank 5
17 years 5 years 7 years 7 years 15 years 13 years

Fig. 2: Row 1: CosFace wrongly retrieves the true mate at Rank-37. Top-5
retrievals include gallery images that are of similar ages as that of the probe.
Row 2: With the proposed Feature Aging Module, CosFace focuses only on
identity-salient features that are age-invariant and retrieves children in the top-
5 retrievals. In this scenario, our Feature Aging Module can aid CosFace in
retrieving the true mate at Rank-1.

C. Effect of Deep Feature Aging on Embeddings

To observe the effect of our module on the face embeddings,
we plot the difference between the mean feature vectors of all
subjects (in the test set) at the youngest age in the CFA dataset,
i.e. 2 years, and mean feature vectors at different target ages
(in the test set) (see Figure 3).



For a state-of-the-art face matcher, CosFace [1], the dif-
ferences between these mean feature vectors, over all 512
dimensions, increases over time lapse causing the recognition
accuracy of the matcher to drop for larger time lapses. How-
ever, with the proposed feature aging module, the difference
remains relatively constant as the time lapse increases. This
indicates that the proposed feature aging module is able to
maintain relatively similar performance over time lapses.
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Fig. 3: Difference between mean feature at age 2 years and different target
ages (denoted below each plot) with CosFace [1] and CosFace [1] with the
proposed feature aging module on the CFA dataset. The difference between
the mean features increases as the time lapse becomes larger but with the
proposed feature aging module the difference is relatively constant over time
lapse. This clearly shows the superiority of our module over the original
matcher.

II. EFFECT OF STYLE DIMENSIONALITY

In this section, we evaluate the effect of increasing or
decreasing the dimensionality of the style vector obtained
via the proposed Style Encoder. Given a style vector of k-
dimensions, we concatenate the style vector to a d-dimensional
ID feature vector extracted via an ID encoder. For this experi-
ment, we consider a 512-dimensional ID embedding obtained
via CosFace [1].

We evaluate the identification rate when the gallery is
aged to the probe’s age as well simply reconstructing the
gallery to its own age. We train our proposed framework on
ITWCC training dataset [2] and evaluate the identification
rate on a validation set of CLF dataset. Note that we never
conduct any experiment on the testing sets of either ITWCC

nor CLF datasets. In Figure 4, we observe a clear trade-
off between reconstruction accuracy and aging accuracy for
k = 0, 32, 128, 512, 1024. That is, for larger values of k, the
decoder tends to utilize more style-specific information while
ignoring the ID feature (which is responsible for aging via
FAM). In addition, the gap between reconstruction and aging
accuracy narrows as k gets larger due to the decoder ignoring
the identity feature vector from the ID encoder. In Figure 5,
we can observe this trade-off clearly. Larger k enforces better
perceptual quality among the synthesized images, with lesser
aging effects and lower accuracy. Therefore, we compromise
between the visual quality of the synthesized and accuracy of
aged images and decided to use k = 32 for all our experiments.
Note that, k = 0, can achieve nearly the same accuracy as
the feature aging module alone, however, the visual quality
is compromised. Therefore, an appropriate k can be chosen,
depending on the security concerns and application.

Fig. 4: Trade-off between identification rates from reconstruction and aging.
For our experiments, we choose k = 32.

III. IMPLEMENTATION DETAILS

All models are implemented using Tensorflow r1.12.0. A
single NVIDIA GeForce RTX 2080 Ti GPU is used for
training and testing.

A. Data Preprocessing

All face images are passed through MTCNN face detec-
tor [3] to detect five landmarks (two eyes, nose, and two
mouth corners). Via similarity transformation, the face images
are aligned. After transformation, the images are resized to
160 × 160 and 112 × 96 for FaceNet [4] and CosFace [1],
respectively.

a) Feature Aging Module: For all the experiments, we
stack two fully connected layers and set the output of each
layer to be of the same d dimensionality as the ID encoder’s
feature vector.

b) Image Generator: All face images are cropped and
aligned via MTCNN [3] and resized to 160× 160. The style-
encoder is composed of four convolutional layers and a fully
connected layer in the last stage that outputs a k-dimensional
style feature vector. In all our experiments, k = 32. The
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Fig. 5: Trade-off between visual quality and aging. For our experiments, we
choose k = 32.

decoder first concatenates the k-dimensional style vector and
the d-dimensional ID vector from the ID encoder into a (k+d)-
dimensional vector followed by four-strided convolutional
layers that spatially upsample the features. All convolutional
and strided convolutional layers are followed by instance
normalization with a leaky ReLU activation function. At the
end, the decoder outputs a 160×160×3 image (for FaceNet)
and 112 × 96 × 3 image (for CosFace). We emperically set
λID = 1.0, λpix = 10.0, and λtv = 1e− 4.

We train the proposed framework for 200,000 iterations with
a batch size of 64 and a learning rate of 0.0002 using Adam
optimizer with parameters β1 = 0.5, β2 = 0.99. In all our
experiments, k = 32.

IV. VISUALIZING FEATURE AGING

In Figures 6 and 7, we plot additional aged images via our
proposed aging scheme to show the effectiveness of our feature
aging module and image generator.
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Fig. 6: Aged face images from the proposed aging scheme using CosFace [1] to specified target ages on ITWCC dataset.



2 years 6 years 10 years 18 years 20 years4 years 12 years 15 years

8 
ye

ar
s

3 
ye

ar
s

9 
ye

ar
s

3 
ye

ar
s

4 
ye

ar
s

5 
ye

ar
s

12
 y

ea
rs

5 
ye

ar
s

Fig. 7: Aged face images from the proposed aging scheme using CosFace [1] to specified target ages on CFA dataset.


