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Abstract—Face recognition is a widely used technology with numerous large-scale applications, such as surveillance, social media
and law enforcement. There has been tremendous progress in face recognition accuracy over the past few decades, much of which
can be attributed to deep learning based approaches during the last five years. Indeed, automated face recognition systems are now
believed to surpass human performance in some scenarios. Despite this progress, a crucial question still remains unanswered: given a
face representation, how many identities can it resolve? In other words, what is the capacity of the face representation? A scientific
basis for estimating the capacity of a given face representation will not only benefit the evaluation and comparison of different face
representation methods, but will also establish an upper bound on the scalability of an automatic face recognition system. We cast the
face capacity estimation problem under the information theoretic framework of capacity of a Gaussian noise channel. By explicitly
accounting for two sources of representational noise: epistemic (model) uncertainty and aleatoric (data) variability, our approach is
able to estimate the capacity of any given face representation. To demonstrate the efficacy of our approach, we estimate the capacity
of a 128-dimensional state-of-the-art deep neural network based face representation, FaceNet [1], and that of the classical Eigenfaces
[2] representation of the same dimensionality. Our numerical experiments indicate that, (a) our capacity estimation model yields a
capacity upper bound of 1 x 1012 for FaceNet and 1 x 10° for Eigenface representation at a false acceptance rate (FAR) of 5%, (b) the
capacity of the face representation reduces drastically as you lower the desired FAR (for FaceNet representation, the capacity at FAR
of 0.1% and 0.001% is 2 x 107 and 6 x 102, respectively), and (c) the performance of the FaceNet representation is significantly below

the theoretical limit.

Index Terms—Face Recognition, Face Representation, Channel Capacity, Gaussian Noise Channel, Bayesian Inference

1 INTRODUCTION

Face recognition has witnessed rapid progress and wide
applicability in a variety of practical applications: social
media, surveillance systems and law enforcement. Fueled
by copious amounts of data, ever growing computational re-
sources and algorithmic developments, current state-of-the-
art face recognition systems are believed to surpass human
capability in certain scenarios [3]. Despite this tremendous
progress, a crucial question still remains unaddressed, what
is the capacity of a given face representation? The face capacity
here! is defined as the maximal number of identities that
can be completely resolved” by a given face representation.
Tackling this question is the central aim of this paper.

The ability to determine the capacity of a face repre-
sentation affords many benefits: (a) Face representations
are typically compared by their recognition performance
on benchmark datasets. However, this metric of compar-
ison is highly dependent on the complexity’ and scale
of the dataset and does not showcase the full potential
and limitations of the representation. Capacity reflects the
discriminative power of the feature representation, conse-
quently capacity offers an alternate data agnostic metric for
comparing different representations; (b) As the deployment
scale of face recognition systems grows larger (e.g., FBI face
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1. This is different from the notion of capacity of a space of functions
as measured by its VC dimension.

2. Within an error tolerance.

3. Variations in facial appearance due to pose, illumination, expres-
sions, occlusions etc.

Fig. 1: An illustration of a face representation embedding,
where all the faces typically lie inside the population hyper-
ellipsoid. The embedding of images belonging to each
identity or a class are ideally clustered into their own
class-specific hyper-ellipsoids. The capacity of a face rep-
resentation is the number of identities (class-specific hyper-
ellipsoids) that can be packed into the population hyper-
ellipsoid of the embedding within an error tolerance.

database [4] and Aadhar [5]), it is critical to obtain reliable
statistical estimates of the upper bound on the number of
identities the face representation can resolve. This would
allow for informed deployment of face recognition systems
based on the expected scale of operation.
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Fig. 2: A typical face representation pipeline comprises of face detection, alignment, normalization and representation
or feature extraction. While each of these components affect the capacity of the representation, in this paper, we focus on
the capacity of the embedding function that maps a high-dimensional normalized face image to a d-dimensional vector

representation.

Our solution to estimate the capacity of a face represen-
tation relies on the notion of capacity that has been well
studied by the information theory community in the con-
text of wireless communication [6]. The setting, commonly
referred to as the Gaussian channel, consists of a source
signal € RY that is additively corrupted by Gaussian noise
z € R? to generate observations y € R?. The capacity of
this Gaussian channel is defined as the number of distinct
source signals in the signal representation. Figure 1 provides
a pictorial illustration of the geometrical structure of a face
representation under the setting of a Gaussian channel. The
capacity of this Gaussian channel can be computed under
various assumptions for the distributions of the source
signal x and the noise z.

Despite the rich theoretical understanding of the capac-
ity of a Gaussian channel, there has been limited practical
application of this theory in the context of estimating the ca-
pacity of learned embeddings like face representations, nat-
ural language processing, etc. Many challenges contribute
to this limited practical utility.

1) Estimating the distributions of the source P, and
the noise P, for high-dimensional embedding, such
as in a face representation, is an open problem.

2) Accounting for the different sources of noise and
reliably inferring the probability distributions, es-
pecially in high dimensions (typically, several hun-
dred), is a very challenging task. In the context of
face representations, all the components of a typical
face representation pipeline (see Fig. 2), including
face detection, landmarking, normalization and the
mapping from a high-dimensional image to the
low-dimensional embedding are potential sources
of noise.

3) The Gaussian channel [6] setting makes indepen-
dence* ie., * 1 z and additivity ie., © + z as-
sumptions. These assumptions do not hold in many
practical scenarios.

4) Existing capacity estimates for the Gaussian channel
are predicated upon assumptions on the Gaussian-
ity of the distributions of x and z, assumptions
that are again difficult to justify in many practical
scenarios.

In this paper, we propose a framework that addresses the
aforementioned challenges to obtain reliable estimates of the

4. Py, = Py P, Vx € R? and Vz € R?

capacity of any given face representation. We leverage recent
advances in deep neural networks (DNNs) to estimate high-
dimensional distributions of P, and P, given observed
face representation y. Given an embedding function that
maps normalized high-dimensional facial images to a low-
dimensional vector, we model two sources of uncertainty
that contribute to the noise in the embeddings: (i) uncer-
tainty in the data, and (ii) uncertainty in the embedding
function. We note that, in this paper, we only focus on
the noise inherent to the embedding function and leave
the noise introduced by face detection, landmarking, and
normalization components for a future study. Finally, for
tractability purposes, the data and noise models for our
embedding are designed to conform to the Gaussian channel
setting, in terms of independence, additivity and Gaussian-
ity, and relying on the ability of deep neural networks to
approximate complex non-linear functions. These, rather
simplifying, assumptions enable the direct applicability of
existing capacity estimates of Gaussian channels to the
problem at hand. As these assumptions are relaxed in future
studies, our capacity estimates will serve as a baseline. We
perform empirical analysis on the Gaussianity of the em-
bedding in the supplementary material. The key technical
contributions of this paper are:

1) A general purpose approach for estimating high-
dimensional distributions of Gaussian channel
based embeddings i.e., Py, P, and P, given sam-
ples Y from P,.

2) A noise model P, for facial embeddings that ex-
plicitly accounts for uncertainty due to data and the
uncertainty in the parameters of the representation
function.

3) The first practical attempt at estimating the capacity
of face representations under the Gaussian channel
framework.

4) Establishing a relationship between the capacity of
a Gaussian channel and the discriminant function
of a nearest neighbor classifier. Consequently, we
can estimate capacity as a function of the desired
operating point, in terms of the maximum desired
probability of false acceptance error, of face recogni-
tion systems.

5) An estimate of the capacity of a state-of-the-art
DNN based face representation, namely FaceNet,
consisting of 128 features.

Numerical experiments suggest that our proposed



TABLE 1: A summary of face recognition systems reported in the literature.

Probe

Gallery

Datasets

Authors #Images  # classes #Images  # classes Training Verification Performance
Verification (TAR @ 0.1% FAR)
Taignman et al. [9] 4,000,000 4,000 13,113 5,749 WebD! LFW 97.35%
Liao et al. [10] 8,707 4,249 1,000 1,000 N/A LFW 41.66%
Kemelmacher-Shlizerman et al. [11] 100,000 500 690,572 1,027,060 [1] MegaFace+FaceScrub 98.00%
Yan et al. [12] 16,028 466 116,028 466 FRGC v2.0  FRGC v2.0(Exp. 1)+SelfD? 97.03%
Best-Rowden et al. [13] 9,074 596 4,249 4,249 COoTs? LFW 89.00%
Wang et al. [14] 4,350 1,000 1,000 1,000 CASIA LFW 97.52%
Schroff et al. [1] N/A N/A N/A N/A Google LFW 99.63%
Wen et al. [15] N/A N/A N/A N/A WebD! LFW 99.28%
Parikhi et al. [16] N/A N/A N/A N/A SelfD? LFW 98.95%
Retrieval (Mean Average Precision)
Wu et al. [17] 220 N/A 1M+ N/A N/A WebD +LFW 44.00%
Chen et al. [18] 120 12 13,113 5,749 N/A LFW 18.60%
Identification (Detection and Identification Rate @ RANK 1)
Yi et al. [19] 1,196 1,196 201,196 N/A FERET FERET(fb)+SelfD? 99.58%
Klare et al. [20] 50,000 50,000 50,000 50,000 PCSO PCSO 85.00%

1 WebD are datasets downloaded from the Internet and used to augment the gallery; different retrieval systems use their own web datasets

2 SelfD are datasets collected by authors of the papers to augment the gallery
3 COTS is a commercial off the shelf face recognition system

model can provide reasonable estimates of face represen-
tation capacity, serving as a proxy for the discriminative
capability of a given face representation. Applying our ap-
proach to a state-of-the-art DNN based face representation,
FaceNet, yields an upper bound on the capacity of 10% at
a false accept rate (FAR) of 0.1% i.e. the representation
should have a true accept rate (TAR) of 100% at FAR of
0.1% over 108 subjects. However, empirically the FaceNet
representation only achieves a TAR of 50% at a FAR of 0.1%
on the IJB-B [7] dataset over 1,845 subjects and a TAR of 95%
at a FAR of 0.1% on the LFW [8] over 5,749 subjects.

2 RELATED WORK

The subject of face recognition is as old as the field of
computer vision [21]. Not surprisingly, face recognition
has received tremendous attention in the computer vision
and biometrics communities over the past several decades.
While an exhaustive survey of the vast literature on facial
feature extraction and matching is beyond the scope of this
paper, we present a few notable approaches. Eigenfaces [2]
and Fisherfaces [22] are among the earliest learning based
approaches for face recognition that relied on second-order
statistics of the data, through principal component analysis
(PCA) and linear discriminant analysis (LDA), respectively.
Later on, feature representations to encode the local texture
in a face image became very popular for face recognition,
including local binary patterns (LBP) [23] and histogram of
oriented gradients (HoG) [24]. Developments in deep neural
network based representation learning have contributed to
massive strides in face recognition capabilities. The defining
characteristic of such methods is the use of convolutional
neural network (CNN) based feature extractor, a learnable
embedding function comprised of several sequential linear
and non-linear operators [25]. Taigman et al. [9] presented
the DeepFace system, a deep CNN trained to classify faces
using a dataset of 4 million examples spanning 4,000 unique
identities, that demonstrated remarkable performance on
the Labeled Faces in the Wild (LFW) dataset [8]. Researchers
from Google [1] used a massive dataset of about 200 million

images of 8 million identities to train a CNN directly for
face verification. They optimize a loss function based on
triplets of images comprising a pair of similar and a pair
of dissimilar faces. This model is currently the state-of-the-
art for face verification and achieves the best performance
on LFW and YouTube Faces dataset [26]. For the benefit
of the readers, we present an overview of recent facial
representation approaches in Table 1. While the focus of
the majority of the work in the literature has been on the
accuracy of facial matching on benchmark datasets, our goal
in this paper is to characterize the maximal discriminative
capacity of a given face representation at a specified error
tolerance.

Information theory has been widely used in the domains
of data compression and channel coding [6]. Beyond the
extensive studies on the capacity estimates of communica-
tion channels [6], information theory has also been used in
signal processing to derive information-theoretic limits on
subspace classification. Erdogmus et al. [27] theoretically
studied how information transfer through a classifier af-
fects its performance. They illustrated a theoretical use of
Renyi’s definition of information, extending Fano’s result,
to derive an upper bound on the probability of classifica-
tion error. Motivated by applications in high-dimensional
signal processing, Nokleby et al. [28] derived fundamental
limits on the performance of compressive linear classifiers.
They identified a duality between classification (through
Gaussian mixture models) and communications over non-
coherent multiple-antenna channels. Lastly, in their follow-
up work Nokleby et al. [29], derived tighter upper bounds
on the classification of linear and affine subspaces from
noisy linear features, where the subspaces are modeled
by high-dimensional Gaussian distributions with approxi-
mately low-rank covariances. In contrast to the linear sub-
space based classifiers that are the target of these prior
studies, in this paper, we seek to estimate the capacity of
any given face representation embedding, including but not
limited to deep neural network based face representations.

One of the key technical contributions of our paper is
the reliable estimation of the underlying probability distri-



butions of our noise model P,, P, and P, from samples
y. Gaussian Processes [30] are a popular and powerful
tool in statistics that allows us to model distributions over
functions, offering nice properties such as uncertainty esti-
mates over function values, robustness to over-fitting, and
principled ways for hyper-parameter tuning. A number of
approaches have been proposed for modeling uncertainties
in deep neural networks [31], [32], [33], [34]. Along similar
lines, Kendall et al. [35] study the benefits of explicitly mod-
eling epistemic® (model) and aleatoric ® (data) uncertainties
[36] in Bayesian deep neural networks for semantic segmen-
tation and depth estimation tasks. Drawing inspiration from
this work, we account for these two sources of uncertainties
in the process of mapping a normalized facial image into a
low-dimensional face representation.

Apart from the face, there are a number of other physical
human traits that serve as biometric signatures for human
identification, most notably fingerprints and iris. Unlike
the face, capacity estimates to determine the uniqueness
of these two biometric modalities have already been es-
tablished. Pankanti et al. [37] derived an expression for
estimating the probability of a false correspondence be-
tween minutiae-based representations from two arbitrary
fingerprints belonging to two different fingers. Zhu et al.
[38] later developed a more realistic model of fingerprint
individuality through a finite mixture model to represent
the distribution of minutiae in fingerprint images, including
minutiae clustering tendencies and dependencies in differ-
ent regions of the fingerprint image domain. Daugman [39]
proposed an information theoretic approach to compute the
capacity of IrisCode. He first developed a generative model
of IrisCode based on Hidden Markov Models and then
estimated the capacity of IrisCode by calculating the entropy
of this generative model. To the best of our knowledge,
no such capacity estimation models have been proposed in
the literature for face representations. Moreover, the distinct
nature of representations for fingerprint’, iris® and face’
based human recognition does not allow capacity estimation
approaches to carry over from one biometric modality to
another. Therefore, we believe that a customized model is
necessary to establish the capacity of face representations.

3 CAPACITY OF FACE REPRESENTATIONS

We first describe the setting of our problem and provide a
high-level outline of our proposed approach. Our goal is to
estimate the capacity of a given face representation model,
dubbed teacher', that is assumed to be available in the form
of a black-box embedding function that maps an image s to
a low-dimensional embedding y. We first cast the teacher’s
face representation embedding process in the framework of
a Gaussian channel (Section 3.1). We then learn a student
model that mimics the teacher while also providing uncer-
tainty estimates of the embedding, enabling us to estimate

5. Uncertainty due to lack of information about a process.

6. Uncertainty stemming from the inherent randomness of a process.

7. An unordered collection of minutiae points.

8. A binary representation, called the iris code.

9. A fixed-length vector of real values.

10. We adopt the terminology of teacher-student models from the
model compression community [40].
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the parameterized probability distributions, Py, P, and P,
inherent to the Gaussian channel (Section 3.2). Then we
empirically estimate the capacity of the student model by
leveraging the theoretical framework for the capacity of a
Gaussian noise channel (Section 3.3). Finally, we establish a
relationship between the Gaussian channel and the discrim-
inant function of a nearest neighbor classifier, allowing us
to obtain capacity estimates as a function of the probability
of false acceptance (Section 3.4). A pictorial outline of our
proposed face representation capacity estimation approach
is shown in Fig. 3.

3.1 Face Representation Model

A face representation model M is a parametric embedding
function that maps a face image s of identity c to a, typically,
lower dimensional vector space y € R%, ie., y = fir(s;6),
where 6 is the set of parameters of the embedding function.
For example, in the case of a linear embedding function
like Principal Component Analysis (PCA), the parameter set
6 would represent the eigenvectors. And, in the case of a
deep neural network based non-linear embedding function,
0 represents the parameters of the deep neural network.

The aforementioned face embedding process can be ap-
proximately cast within the framework of a Gaussian noise
channel as follows. Face representations y of an image s
from the teacher are modeled as observations of a true under-
lying embedding x that is corrupted by noise z. The nature
of the relationship between these entities is determined by
the assumptions of a Gaussian channel, namely, (i) additiv-
ity of the noise i.e,, y = = + 2, (ii) independence of the
true embedding and the additive noise, i.e., ¢ L 2z, and (iii)
all entities, y, * and z follow a Gaussian distribution, i.e.,
Py ~ N(pg,Xg), P. ~ N(0,%) and Py ~ N (py, Xy).
Statistical estimates of these parameterized distributions
will enable us to compute the capacity of the teacher face
representation model as described in Section 3.3.

But, before we proceed further, we would like to point
out a major limitation of our face representation model,
namely the Gaussianity assumption of the distribution
P,. For a given black-box face representation, in practice,
the embeddings could potentially lie on an arbitrary and
unknown low-dimensional manifold. Approximating this
manifold through a normal distribution potentially over-
estimates the support of the embedding in RY, resulting
in an over-estimation of the capacity of the representation.
Similarly, the Gaussianity assumption of the noise distribu-
tion P, is another limitation of our model. The potentially
non-linear nature of the embedding function would, in
general, result in an arbitrary noise distribution.

While this particular representation model suffers from
the aforestated drawbacks, it affords the practical advantage
of trading-off the realism and complexity of the theoretical
model and the complexity of the inferential algorithm!!.
Specifically, our representation model allows us to compen-
sate for the lack of theoretical machinery for modeling the
manifolds induced by non-linear high-dimensional embed-
ding functions by leveraging the functional approximation

11. Similar simplifying assumptions were made by Pankanti et al.
[37] for fingerprints and Daugman [39] for iris. Zhu et al. [38] later
relaxed the model assumptions made by Pankanti et al.



Gaussian Channel

z~N(0,X,)

Teacher-Student

Teacher
(black- Yi

Capacity Estimate

box)

Si

z = f(s)
x NN(H:]:,E:B)
Yy NN(Nvay)

.

J

Fig. 3: Overview of Face Representation Capacity Estimation: We cast the face representation process in the information
theoretic framework of a Gaussian noise channel. Given a black-box teacher face representation model, we learn a student
model that mimics this teacher while being able to provide explicit estimates of the uncertainty (noise) in the embedding due
to the data and the model. The uncertainty estimates at the image level are leveraged to generate empirical approximations
of the probability distributions of the various components of the Gaussian channel at the identity level, which in turn
facilitates an empirical estimate of the capacity of the teacher face representation.

capabilities, flexibility and computational efficiency of deep
neural networks as feed-forward inference machines.

3.2 Estimating Uncertainties in Representations

We first build a probabilistic model for the space of noisy
embeddings y generated by a black-box facial representa-
tion model (teacher) M; with parameters 6.

/ p(ylz, 8", Y )p(z|S", Y™ )da

p(y|S™,Y) (1)

/ / p(ylz, 0)p(6]S™, Y *)p(x|S", Y *)dOda

where Y* = {y1,...,yn} and S* = {s1,...,sy} are
the training samples to estimate the model parameters
0, p(y|z,0) is the aleatoric (data) uncertainty given a set
of parameters, p(6|S*,Y ™) is the epistemic (model) uncer-
tainty in the parameters given the training samples and
p(x|S*,Y*) ~ N(pgy,3X,) is the Gaussian approximation
of the underlying manifold of noiseless embeddings. Fur-
thermore, we assume that the true mapping between the
image s and the noiseless embedding x is a deterministic
but unknown function i.e., x = f(s).

The black-box nature of the teacher model however only
provides D = {si,yi}i]\il, pairs of facial images s; and
their corresponding noisy embeddings v;, a single sample
from the distribution p(y|S*,Y™*). Therefore, we learn a
student model M with parameters w to mimic the teacher
model. Specifically, the student model approximates the data
dependent aleatoric uncertainty p(y;|s;,w) ~ N(ui, %;),
where p; = x; = f(s;) represents the data dependent mean
noiseless embedding and X; represents the data dependent
uncertainty around the mean. This student is an approxi-
mation of the unknown underlying probabilistic teacher, by
which an input image s generates noisy embeddings y of
ideal noiseless embeddings x, for a given set of parameters
w, i.e., p(y;|s;, w) = p(y;|x;, ). Finally, we employ a vari-
ational distribution to approximate the epistemic uncertainty
of the teacher i.e., p(w|S*,Y*) ~ p(0]S*,Y™).

Learning: Given pairs of facial images and their correspond-
ing embeddings from the teacher model, we learn a student

model to mimic the outputs of the teacher for the same
inputs in accordance to the probabilistic model described
above. We use parameterized functions, p; = f(s;;wpy)
and X; = f(s;;wx) to characterize the aleatoric uncer-
tainty p(y;|s;, w), where w = {w,, wx}. We choose deep
neural networks, specifically convolutional neural networks
as our functions f(-;w,) and f(-;ws). For the epistemic
uncertainty, while many deep learning based variational
inference [31], [41], [42] approaches have been proposed, we
use the simple interpretation of dropout as our variational
approximation [31]. Practically, this interpretation simply
characterizes the uncertainty in the deep neural network
weights w through a Bernoulli sampling of the weights.

We learn the parameters of our probabilistic model
¢ = {wy,, ws, py, X,} through maximum-likelihood esti-
mation i.e., minimizing the negative log-likelihood of the
observations Y = {y1,...,yn}. This translates to optimiz-
ing a combination of loss functions:

Lo+ My +7Ly, + 6L, ?)

min
@
where A, v and ¢ are the weights for the different loss
. N

functions, £,, = s 2121”21\\% and £, = %HEQH% are
the regularization terms and L is the loss function of the
student that captures the log-likelihood of a given noisy
representation y; under the distribution V' (p;, ;).

1Y 1 A r
Lo =5 > In|%i|+ Trace (Z = [(yi — 1) (yi — pi) D (€)
i=1 1=1

L is the log-likelihood of the manifold of noiseless embed-
dings under the approximation by a multi-variate normal
distribution N'(p,, ).

N 1 S
Ly = 5 1n|zg|+§Trace (2;1 > [('yi — pg)(yi — Hg)T]> @)
i=1

For computational tractability we make a simplifying as-
sumption on the covariance matrix 3 by parameterizing it
as a diagonal matrix i.e., the off-diagonal elements are set
to zero. This parametrization corresponds to independence
assumptions on the uncertainty along each dimension of the



embedding. The sparse parametrization of the covariance
matrix yields two computational benefits in the learning
process. Firstly, it is sufficient for the student to predict
only the diagonal elements of the covariance matrix. Sec-
ondly, positive semi-definitiveness constraints on a diagonal
matrix can be enforced simply by forcing all the diagonal
elements of the matrix to be non-negative. To enforce non-
negativity on each of the diagonal variance values, we
predict the log variance, [; = log o?. This allows us to re-
parameterize the student likelihood (Eq. 3) as a function of
lii

N d N d f_ z ?
c.;;ZZngr;ZZ(y&; ®)

Similarly, we reparameterize the likelihood (Eq.4) of the
noiseless embedding as a function of [, the log variance
along each dimension.

N . 1 L ¢ (j .
SREPILAEPI P ©

The regularization terms are also reparameterized as, £,
> PO Z}l:l exp (lf) and L, = 3 ijl exp (17).

Since the noise z is a normal distribution with zero-mean
in our Gaussian channel model, E(y) = E(x). Therefore,
we empirically estimate p 4 as gy = % > ie1 Yi- We estimate
the other parameters ¢ = {w,,, ws, X, } through stochastic
gradient descent [43]. The gradients of the parameters are
computed by backpropagating [44] the gradients of the
outputs through the network.

s

Inference: The student model that has been learned can
now be used to infer the uncertainty in the embeddings
of the original teacher model. For a given facial image s,
the aleatoric uncertainty can be predicted by a feed-forward
pass of the image s through the network ie., p = f(s,w,)
and ¥ = f(s, ws). The epistemic uncertainty can be approx-
imately estimated through Monte-Carlo integration over
different samples of model parameters w. In practice the pa-
rameter sampling is performed through the use of dropout
at inference. In summary, the total uncertainty in the em-
bedding of each facial image s is estimated by performing
Monte-Carlo integration over a total of T' evaluations as
follows:

1z
~ t
Hi = = 122 (7)
T
. 1 £l T 1 £l
X = TZ(H;?—LA%‘)(HE—A +TZE§ (8)
t=1 t=1

where p! and X! are the predicted aleatoric uncertainty for
each feed-forward evaluation of the network.

3.3 Capacity From Uncertainty Estimates

The goal of this paper is to estimate the capacity of a given
teacher face representation, where capacity is defined as the
number of unique identities that can be resolved by the
representation. Given x. and y., the respective noiseless
population embedding and the noisy embeddings of a

6

representative class, the capacity of the face representation
channel is defined as,

C = max I(x¢; yYe), )

p(xe)

where I(z;y) = [ [ p(x,y)log pi’s)‘}f(’;) is the mutual infor-

mation between the random variables « and y. For general
distributions, it may not be possible to analytically calculate
the capacity of a channel. However, for the Gaussian chan-
nel that we consider in this paper, analytical expressions for
the capacity do exist. In fact, the capacity of this channel
has been extensively studied (we refer the reader to [6]
for a more in-depth treatment of this topic) across various
relaxations of the Gaussian distributions, namely, isotropic
Gaussian, axis aligned Gaussian and finally the more gen-
eral case of anisotropic Gaussian distribution with colored
noise, the scenario that is most relevant to our model. Under
this general case, the capacity of the face representation
Gaussian channel is given by:

C = maxI(z.y.) (10)
p(xc)
1
ek Loe Pre 2z
Trace(Eq, ) <P 2 ‘Ezc|
UL S,V + As
= max o
Trace(Eq, ) <P 2 |Azc‘
B 1. |3, + Az,
= max = A 1
Trace(EiC)SP 2 ‘Azc|

where ¥, is the covariance matrix of the noiseless popu-
lation embedding of classes, X, is the covariance matrix
of the embedding noise of a representative class, U, and
A, are the matrices with the eigenvectors and the eigen-
values of X, respectively. The capacity of this channel is
maximized when X3, is diagonalized. Under the assump-
tion of axis aligned Gaussian distribution (i.e., off-diagonal
elements of covariance matrix are zero) the expression for
the capacity of this channel simplifies as,

- 1<p2210g<1+ m) o

where o, _is the variance of the i-th dimension of the noise-
less population embedding and o7, is the variance of the
i-th dimension of the embedding noise of a representative
class.

While we were able to extract uncertainty estimates of
each individual image in Section 3.2, we now need to esti-
mate the distributions P, and P,_, the distributions for the
noiseless population embedding of classes and the embed-
ding noise of a representative class, respectively. We approx-
imate each of these distributions by multi-variate normal
distributions, @, ~ N (i, , Xy, ) and z. ~ N(0,X).

We empirically estimate the parameters of these distribu-
tions as follows. The mean of the population embedding is

_ 1 C  ~c ne 1 Ne ~c
computed as pg, = & > ., A9, Where i° = N Do B
The covariance of the population embedding 3 is esti-
mated as,

C =

Zi: [2 + (A — pa, ) (A — umc)T} 12)

Q \
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Fig. 4: Decision Theory and Capacity: We illustrate the relation between capacity and the discriminant function
corresponding to a nearest neighbor classifier. Left: Depiction of the notion of decision boundary and probability of
false accept between two identical one dimensional Gaussian distributions. Shannon’s definition of capacity corresponds
to the decision boundary being one standard deviation away from the mean. Right: Depiction of the decision boundary
induced by the discriminant function of nearest neighbor classifier. Unlike in the definition of Shannon’s capacity, the size
of the ellipsoidal decision boundary is determined by the maximum acceptable false accept rate. The probability of false
acceptance can be computed through the cumulative distribution function of a x?(r?, d) distribution.

where 3¢ = N Zl 1 E" Along the same lines, the covari-
ance of the embeddmg noise of a given class c is estimated
as,

c

Y. =

XT: [

i=1t=1

\T
N.T — )+ Eﬂ
We use these estimates of ¥ and X, in Eq. 10 to compute
the capacity of the face representation.

3.4 Decision Theory and Model Capacity

The capacity of the face representation, in terms of the
Gaussian channel, described thus far can be alternatively
motivated from a geometrical perspective. Recall that our
face representation space is composed of two components:
the noiseless population embedding of the classes approxi-
mated by a multi-variate Gaussian distribution and the em-
bedding noise of each class approximated by a homoscedas-
tic multi-variate Gaussian distribution. Under these settings,
the decision boundaries between the classes!? that mini-
mizes the classification error rate are determined by discrim-
inant functions [45]. As illustrated in Fig. 4, for a two-class
problem, the discriminant function is a hyper-plane in R?
with this optimal hyper-plane being equidistant from both
the classes. Moreover, the separation between the classes
determines the operating point and hence the probability
of false acceptance. In the multi-class setting the optimal
discriminant function is the surface encompassed by all
the pairwise hyper-planes, which asymptotically reduces
to a high-dimensional hyper-ellipsoid. The extent of this
enclosing hyper-ellipsoid can be determined by the desired
operating point in terms of the maximal error probability of
false acceptance.

Under the multi-class setting, the capacity estimation
problem is equivalent to the geometrical problem of ellipse
packing, which seeks to estimate the maximum number

12. In the case of face recognition, each class is an identity (subject)
and the number of classes corresponds to the number of identities.

of small hyper-ellipsoids that can be packed into a larger
hyper-ellipsoid. In the context of face representations the
small hyper-ellipsoids correspond to the class-specific en-
closing hyper-ellipsoids as described above while the large
hyper-ellipsoid corresponds to the entire space spanned by
all the classes. The volume V' of a hyper-ellipsoid corre-
sponding to a Mahalanobis distance 72 = (z —u)T X7 1(z

p) with covariance matrix X is given by the following
expression, V = Vd\Eﬁrd, where V; is the volume of the d-
dimensional hypersphere. An upper bound on the capacity
of the face representation can be computed simply as the
ratio of the volumes of the population and the class-specific

hyper-ellipsoids,
Vw( e )

B V|E + 3, |2r
- ( V|Ezc| T )
‘Ewc+220| re
(B

_ ‘Ewmzc :
| Szc %

where V.. is the volume of population hyper-ellipsoid
and V,_ is the volume of the class-specific hyper-ellipsoid.
The size of the population hyper-ellipsoid r,,, is chosen such
that a desired fraction of all the classes lie within the hyper-
ellipsoid and 7., determines the size of the class-specific
hyper-ellipsoid. ¥;_., and X  are the effective sizes of
the enclosing population and class-specific hyper-ellipsoids
respectively. For each of the hyper-ellipsoids the effective
radius along the i-th principal direction is \/S\T = v\,
where v/)\; is the radius of the original hyper-ellipsoid along
the same principal direction.

This geometrical interpretation of the capacity reduces
to the Shannon capacity in Eq. 10 when r,, = r,.. Con-
sequently, in this instance, the choice of 7, for the pop-

C

IN

(13)




ulation hyper-ellipsoid implicitly determines the boundary
of separation between the classes and hence the operating
false accept rate (FAR) of the embedding. For instance, when
computing the Shannon capacity of the face representation
choosing 7, such that 95% of the classes are enclosed
within the population hyper-ellipsoid would implicitly cor-
respond to operating at a FAR of 5%.

However, very often, practical face recognition systems
need to operate at different false accept rates, dictated by
the desired level of security. The geometrical interpretation
of the capacity described in Eq. 13 directly enables us to
compute the representation capacity as a function of the
desired operating point as determined by its corresponding
false accept rate. The size of the population hyper-ellipsoid
7y, Will be determined by the desired fraction of classes
to enclose or alternatively other geometric shapes like the
minimum volume enclosing hyper-ellipsoid or the maxi-
mum volume inscribed hyper-ellipsoid of a finite set of
classes, both of which correspond to a particular fraction
of the population distribution. Similarly, the desired false
accept rate ¢ determines the size of the class-specific hyper-
ellipsoid 7.

Let Q= {x | r? > (x—p)TZ"!(z—p)} be the enclosing
hyper-ellipsoid. Without loss of generality, assuming that
the class-specific hyper-ellipsoid is centered at the origin,
the false accept rate g can be computed as,

1 ( 2Ty 1g
= __exp(- T2 %
weo V2T 2

Reparameterizing the integral as y = ¥~ 2z, we have Q =
{y|r*>y"y} and,

q:l—/ L exp(—yTy)dy
yeR / (Zﬂ)d 2

where {y1,...,y,} are independent standard normal ran-
dom variables. The Mahalanobis distance r? is distributed
according to the x?(r2,d) distribution with d degrees of
freedom and 1 — ¢ is the cumulative distribution function
of x%(r?, d). Therefore, given the desired FAR ¢, the corre-
sponding Mahalanobis distance 7., can be obtained from
the inverse CDF of the x2(r2,d) distribution. Along the
same lines, the size of the population hyper-ellipsoid 7,
can be estimated from the inverse CDF of the x?(r2,d) dis-
tribution given the desired fraction of classes to encompass.

g = 1- )dw(14)

(15)

4 NUMERICAL EXPERIMENTS

In this section we will evaluate the efficacy of the proposed
capacity model. We estimate the capacity of a state-of-the-art
deep neural network based face representation model. Fur-
thermore, we estimate the capacity of the face representation
using multiple datasets, corresponding to different practical
scenarios.

4.1 Datasets

We first provide a brief description of the face datasets that
we use, both for learning the teacher and student models as
well as for estimating the capacity of the teacher. Figure 5
shows a few examples of the kind of faces in each dataset.
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PCSO: This dataset is a subset of a larger collection of
mugshot images (not in the public domain) acquired from
the Pinellas County Sheriffs Office (PCSO), comprising of
1,447,607 images of 403,619 subjects. We use a subset of
84,164 images from 10,000 subjects for face verification and
capacity estimation.

LFW [8]: This dataset is a collection of 13,233 face images of
5,749 subjects, downloaded from the web. The images in this
dataset exhibit limited variations in pose, illumination, and
expression, since only faces that could be detected by the
Viola-Jones face detector [46] were included in the dataset.
One limitation of this dataset is that only 1,680 subjects
among the total of 5,749 subjects have more than one face
image.

CASIA [47]: This dataset is a large collection of labeled
images downloaded from the web (based on names of
famous personalities) typically used for training deep neural
networks. It consists of 494,414 images across 10,575 sub-
jects, with an average of about 500 face images per subject.
This dataset is used for training both the teacher and student
models.

IJB-A [48]: IARPA Janus Benchmark-A (IJB-A) contains 500
subjects with a total of 25,813 images (5,399 still images
and 20,414 video frames), an average of 51 images per
subject. Compared to the LFW and CASIA datasets, the IJB-
A dataset is more challenging due to: i) full pose variation
making it difficult to detect all the faces using a commodity
face detector, ii) a mix of images and videos, and iii) wider
geographical variation of subjects. The face locations are
provided with the IJB-A dataset (and used in our experi-
ments when needed).

IJB-B [7]: TARPA Janus Benchmark-B (IJB-B) dataset is a
superset of the IJB-A dataset consisting of 1,845 subjects
with a total of 76,824 images (21,798 still images and 55,026
video frames from 7,011 videos), an average of 41 images
per subject. Images in this dataset are labeled with ground
truth bounding boxes and other covariate meta-data such
as occlusions, facial hair and skin tone. A key motivation
for the IJB-B dataset is to make the face database less
constrained compared to the IJB-A dataset and have a more
uniform geographic distribution of subjects across the globe
in comparison to IJB-A.

4.2 Face Representation Model

We consider the capacity of two different face represen-
tation models: (i) the state-of-the-art deep neural network
based FaceNet introduced by Schroff et al. [1], and (ii)
the classical PCA based EigenFaces [2] representation of
image pixels. These two representations are illustrative of
the two extremes of various face representations proposed
in the literature with FaceNet providing close to state-of-the-
art recognition performance. The FaceNet representation
is based on a non-linear multi-layered deep convolutional
network architecture introduced by Szegedy et al. [49]. The
EigenFaces representation, in contrast, is a linear model for
representing faces. However, unlike the original FaceNet
model, both of our models are trained using the entire
CASIA dataset. Figure 6a provides a complete description of
the inception-resnet [49] network architecture of the teacher
model, the basis of the FaceNet representation.



(a) PCSO

(c) CASIA

(e) IJB-B

Fig. 5: Example images from each of the five datasets considered in our paper in increasing order of complexity. The IJB-A
and IJB-B datasets exhibit large variations in pose, expressions and illumination. The LFW and CASIA datasets, however,
only have limited variations in pose, illumination and expression, but LFW consists of only very few images per identity,
on average. The PCSO dataset (not in the public-domain) is a mugshot dataset of frontal face images over a large and

diverse set of identities.

Since the student model is purposed to mimic the teacher
model, we base the student network architecture on the
teacher’s!® architecture with a few notable exceptions. First,
we introduce dropout before every convolutional layer of
the network, including all the convolutional layers of the
inception [50] and residual [51] modules. Second, the last
layer of the network is modified to generate two outputs p
and X instead of the noisy embedding y, the output of the
teacher. Figure 6b provides a pictorial representation of the
student network architecture.

4.3 Implementation Details

Before we train the teacher and student networks, the face
images are pre-processed and normalized to a canonical
face image. The faces are detected and normalized using
the joint face detection and alignment system introduced
by Zhang et al. [52]. Given the facial landmarks, the faces
are normalized to a canonical image of size 182x182 from
which RGB patches of size 160x160x3 are extracted as the
input to the teacher and student networks. During training
these patches are cropped randomly from the normalized
image and also flipped horizontally at random for data
augmentation.

The teacher is trained through a combination of the
softmax loss for classification, and the center loss [15] that
minimizes the intra-class distance between the embeddings.
Training is performed through stochastic gradient descent
with Nesterov Momentum 0.9 and weight decay 0.0005. We
use a batch size of 16, a learning rate of 0.01 dropping by
a factor of 2 every 20 epochs and is trained for about 100
epochs. The teacher model also uses dropout (with dropout
probability set to 0.8) at training, but only in the final fully-
connected classification layer. As is standard practice, we do
not use dropout on the teacher model during inference.

The student is trained to minimize the loss function
defined in Eq. 2, where the hyper-parameters are chosen
through cross-validation. Training is performed through

13. In the scenario where the teacher is a black-box model, the design
of the student network architecture needs more careful consideration
but it also affords more flexibility. See Fig. 3 for an illustration of this
process.

stochastic gradient descent with Nesterov Momentum 0.9
and weight decay 0.0005. We use a batch size of 16, a
learning rate of 0.01 that is dropped by a factor of 2 every 20
epochs. We observed that it is sufficient to train the student
model for about 100 epochs for convergence. The student
model includes dropout with a probability of 0.05 after each
convolutional layer and with a probability of 0.8 after the
final fully-connected classification layer. At inference each
image is passed through the student network 1,000 times
as a way of performing Monte-Carlo integration through
the space of network parameters {w,,, ws, }. These sampled
outputs are used to empirically estimate the mean and
covariance of the image embedding.

4.4 Face Recognition Experiments

We evaluate and compare the performance of the teacher
and student models on the four test datasets that we con-
sider, namely, LFW, PCSO, IJB-A and IJB-B. To evaluate the
student model we estimate the face representation through
Monte-Carlo integration. We pass each image through the
student model 1,000 times to extract {u;, 2;}1%° and com-
1 1000 :
pute p 1606 2oi—1 Mi as the representation. Follow-
ing standard practice, we match a pair of representations
through the nearest neighbor classifier on the normalized
feature vectors i.e., by computing the euclidean distance
dij = ||u; —u; ||§ between the normalized representations
u; = H;:W’ where x; is the un-normalized representation
from either the teacher or student model. We note that the
capacity model considered in this paper does not take into
account this normalization process, the projection of the the
un-normalized representations in R? onto the surface of a
unit hyper-sphere in R?, leading to overestimates of the face
representation capacity. We leave the topic of relaxing this
simplifying assumption, to obtain more accuracte capacity
estimates, to a future study.

We evaluate the face representation models on the LFW
unconstrained face dataset, using two protocols: the stan-
dard LFW protocol and the BLUFR protocol [10]. Since
there is no standard predefined protocol for evaluation on
the PCSO dataset, we use the BLUFR protocol. Lastly, the
protocol for the IJB-A and IJB-B datasets defines matching
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(a) Teacher Network Architecture: The input to the teacher is a face image of size 160 x 160 and the output is a 128-dimensional
vector for each image. The entire face representation space can be approximated by a 128-dimensional hyper-ellipsoid.
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(b) Student Network Architecture: The input to the student is a face image of size 160 x 160 and the output is a 128-dimensional
hyper-ellipsoid of the uncertainty of the representation for the corresponding image. This entire face representation can be

approximated by a 128-dimensional population hyper-ellipsoid.

Fig. 6: Face Representation Architectures: The network architectures for estimating the representation capacity. (a) The
Inception-ResNet [49] architecture of the teacher face representation model. This architecture is the current state-of-the-art
network for face representations. It was designed to represent a 160x160 face image by a 128-dimensional feature vector.
(b) We adopt the same Inception-ResNet architecture for the student network. The student network, however, differs from
the teacher network in the following ways; (1) it has two outputs: the mean and the covariance of the uncertainty of the
embedding, and (2) incorporates dropout after every convolutional layer in the network.

between templates, where each template is composed of
possibly multiple images of the class. Following the protocol
in [14], we define the match score between templates as the
average of the match scores between all pairs of images in
the two templates.

Figure 7 and Table 2 report the performance of the teacher
and student models, both FaceNet and Eigenfaces, on each
of these datasets at different operating points. We make the
following observations: (1) The performance of DNN based
representation on PCSO and LFW, consisting largely of
frontal face images with minimal pose variations and facial
occlusions, is comparable to the state-of-the-art. However,
its performance on IJB-A and IJB-B, datasets with large pose
variations, is lower than state-of-the-art approaches. This
is due to the fact that unlike these methods we do not
fine-tune the DNN model on the IJB-A and IJB-B training
sets since our goal in the paper is estimate the capacity of
a generic face representation as opposed to achieving the
best verification performance on each individual datasets.
(2) Our results indicate that the student models are able
to mimic the teacher models very well as demonstrated
by the similarity of their recognition accuracies as well as
the receiving operating curves, and (3) As expected, the

DNN significantly outperforms the PCA based Eigenfaces
representation in terms of recognition accuracy.

4.5 Capacity Estimates

Shannon Capacity: We estimate the capacity of the face
representations by evaluating Eq. 10. For each of the datasets
we empirically determine the shape and size of the pop-
ulation hyper-ellipsoid X,, and the class-specific hyper-
ellipsoids X, . These quantities are computed through the
predictions obtained by sampling the weights (w,,, ws) of
the model, via dropout. We obtain 1,000 such predictions for
a given image, by feeding the image through the network a
1,000 different times with dropout. For robustness against
outliers we only consider classes with at least two images
per class for LFW and five images per class for all the other
datasets for the capacity estimates.

Although the expressions in Eq. 10 and Eq. 13 assume
that the shape of the class-specific embedding and the pop-
ulation embedding are hyper-ellipsoids, we obtain capacity
estimates for different modeling assumptions on the shape
of these entities. For instance the shapes could also be mod-
eled as hyper-spheres corresponding to a diagonal covari-
ance matrix with the same variance in each dimension. We
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Fig. 7: Face recognition performance of the teacher and student models on the various datasets. We report the performance

of both DNN and PCA based face representations, (a) face ver

ification on the LFW dataset evaluated through the standard

protocol, (b) face verification on the LFW dataset evaluated through the BLUFR protocol, (c) face verification on a subset

of the PCSO dataset (84,164 images of 10,000 classes), (d) face

verification on the IJB-B dataset.

TABLE 2: Face Recognition Results

Teacher: DNN Student: DNN

Teacher: PCA Student: PCA State-of-the-Art

Dataset 0.1% FAR 1% FAR 0.1% FAR 1% FAR 0.1% FAR 1% FAR 0.1% FAR 1% FAR 0.1% FAR 1% FAR
LFW 9550 9820 91.97 9847 2.07 9.80 143 727 N/A 99.7
LEW (BLUFR) 93.90 98.51 90.68 97.22 0.81 43 0.64 3.55 98.7 N/A
PCSO 96.01 99.16 95.94 99.16 4.89 15.03 2.07 13.49 99.6 99.7
IJB-A 45.92 70.26 4435 70.36 0.31 1.87 0.17 1.39 90.6 95.2
JB-B 4831 74.47 46.04 73.96 1.16 4.87 0.84 439 70.0 83.0
TABLE 3: Capacity of Face Representation Model
Hyper-ellipsoid
Dataset Examples Noise Hypersphere (Axis Aligned) Hyper-ellipsoid
Model DNN PCA DNN PCA DNN PCA
Min 15x10%7  1.6x10° 9.0x103%  1.6x10° 9.8x103° 1.6x10°
PCSO Mean  3.9x10'? 1.0x10° 2.1x104 1.0x10° 1.6x102! 1.0x10°
Median 9.5x10'®  1.0x10° 9.0x10'®  1.0x10° 4.4x1030 1.0x10°
Max 4.0x10° 59x10°1 9.5x101  59x10~1 1.0x10'° 59x10?
Min 8.4x1036 1.7x10° 9.1x103° 1.7x10° 3.6x1039 1.7x10°
LEW Mean  8.7x10!8 1.0x10° 74x10°  99x10~! 50x10'8  99x10~1!
Median  3.7x10%° 1.0x10° 9.0x1020 1.0x10° 4.7x1031 1.0x10°
Max 3.9x10% 59x10°1 1.8x10% 59x10°1 1.3x1017  59x101
Min 7.0x1027 1.4x10° 3.2x102%7 1.7x10° 3.6x1034 1.4x100
CASIA Mean  1.7x10%0 1.0x10° 2.5%x103 1.0x10° 5.0x1013 1.0x10°
Median  2.1x10%° 1.0x10° 2.2x1010 1.0x10° 6.8x102%2 1.0x10°
Max 1.0x10*  6.7x10°1 2.8x101  6.7x10°1 7.5x1011  6.7x101
Min 3.7x1021  7.8x100 58x10%21  7.8x100 8.2x10%9 7.8x100
1JB-A Mean  3.4x10° 1.0x10° 22x10*  99x1071 6.6x103  99x1071!
Median  2.0x10° 1.0x10° 1.5x10° 1.0x10° 1.1x102! 1.0x10°
Max 8.1x10%  6.6x10°1 1.5x10%  6.6x10~1 3.3x10'2  6.6x10?
Min 1.3x1027 1.5%x10° 9.1x1026 1.5x10° 3.1x103%3 1.5x10°
1B-B Mean  5.2x10° 1.0x10° 2.6x10%  9.9x107! 22x101  99x1071!
Median  2.7x10° 1.0x10° 5.7x10° 1.0x10° 5.0x1023 1.0x10°
Max 8.0x10% 5.8x10°1 1.0x10% 5.8x10~1 8.4x10'2 58x10?

generalize the hyper-sphere model to an axis aligned hyper-
ellipsoid corresponding to a diagonal covariance matrix
with possibly different variances along each dimension. For
the sake of modeling efficiency we make the same modeling
assumption for both the global shape of the embedding and
the embedding shape of each class.

The capacity estimates of the face representations, under
the Gaussian noise channel setting, are dependent on the
size of a canonical class-specific hyper-ellipsoid (the capac-
ity expression Eq. 10 depends on X, ), that is representative
of a typical subject among all possible subjects the face
representation system is going to be used for. However,

the hyper-ellipsoid corresponding to each class could poten-
tially be of a different size. For instance, in Fig. 1 each class-
specific hyper-ellipsoid is of a different size, orientation
and shape. Defining or identifying a canonical subject, from
among all possible identities, is in itself a challenging task
and beyond the scope of this paper. We overcome this prac-
tical problem by reporting the capacity for different choices
of classes, i.e., ranging from classes with very low intra-class
variability and classes with very high intra-class variability.
We report estimates of the capacity for different datasets and
for each dataset select classes with the minimum, mean, me-
dian and maximum hyper-ellipsoid volume as our canonical
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(d) UB-A

(e) JB-B

Fig. 8: Example images of classes that correspond to different sizes of the class-specific hyper-ellipsoids, based on the
FaceNet representation, for each of the five datasets considered in the paper. Top Row: Images of the class with the
largest class-specific hyper-ellipsoid for each database. Notice that in the case of database with predominantly frontal faces
(PCSO and LFW), large variations in facial appearance lead to the greatest uncertainty in the class representation. On
more challenging datasets (CASIA, IJB-A, IJB-B), the face representation exhibits most uncertainty due to pose variations.
Bottom Row: Images of the class with the smallest class-specific hyper-ellipsoid for each database. As expected, across all
the datasets, frontal face images with the minimal change in appearance result in the least amount of uncertainty in the
class representation. More examples like these can be found in the supplementary material.

class-specific hyper-ellipsoid. Datasets whose class distribu-
tion is similar to the distribution of the data that was used
to train the face representation, are expected to exhibit low
intra-class uncertainty, while datasets with classes that are
out of the training distribution can potentially have high
intra-class uncertainty, and consequently lower capacity.
Figure 8 show examples of the images corresponding to the
lowest and highest intra-class variability in each dataset.
Table 3 reports the Shannon capacity of the DNN
and PCA based face representation estimated on various
datasets and across different modeling assumptions. We
make the following observations from our numerical results,

DNN and PCA: The capacity of the FaceNet representation
is significantly higher than the capacity of Eigenfaces, with
the former and later being of the order of ~ 102 and 10°
respectively. The Eigenfaces representation based on linear
projections of the raw pixel values is unable to scale beyond
a handful of identities, while FaceNet representation based
on learned non-linear functions is able to resolve signifi-
cantly more number of identities. The relative difference in
the capacity is also reflected in the vast difference in the
verification performance between the two representations.

Capacity Estimates: The upper bound on the capacity esti-
mate of the FaceNet model in constrained scenarios (LFW
and PCSO) is ~ 10'® and ~ 10'2 in unconstrained envi-
ronments (CASIA and IJB) under the general model of a
hyper-ellipsoid. Therefore, theoretically, the representation
should be to resolve 10'® and 10'2 subjects with a true
acceptance rate (TAR) of 100% at a false acceptance rate
(FAR) of 5% under the constrained and unconstrained oper-
ational settings, respectively. While this capacity estimate
is significantly greater than the population of the earth,
in practice, the performance of the representation is lower
than the theoretical performance, about 95% across only

10,000 subjects in the constrained and only 50% across
1,845 subjects in the unconstrained scenarios. These results
suggest a significant room for improvement in the empirical
performance of face recognition systems, especially under
unconstrained scenarios. The relative order of the capacity
estimates mimics the relative order of the verification accu-
racy on these datasets.

Data Bias: Even within each dataset, the capacity estimates
exhibit significant variations depending on the choice of
the size of the class-specific hyper-ellipsoid. Whilst these
variations are a consequence of the simplicity of our capac-
ity estimation model and the inhomogeneity of distribution
of samples from each class, they help establish an upper
bound on the capacity of the representation. Empirically,
we have observed that classes with the highest capacity
(smallest hyper-ellipsoid) are typically classes with very
few images and very little variation in facial appearance.
Similarly, classes with high intra-class uncertainty, with low
capacity estimates, are typically classes with a very large
number of images spanning a wide range of variations
in pose, expression, illumination conditions etc., variations
that one can expect under any real-world deployments of
face recognition systems. Coupled with the fact that the
capacity of the face representation is estimated from a very
small sample of the population (less than 11,000 subjects),
we argue that capacity estimates with large intra-class
uncertainty (within the datasets considered in this paper)
are an accurate representation of a canonical subject’s face
representation in unconstrained real-world deployments of
face recognition systems.

Gaussian Distribution Parameterization: The capacity esti-
mates of the general hyper-ellipsoid are significantly higher
than the capacity estimates of the reduced approximations,
hyper-sphere (isotropic Gaussian) and axis-aligned hyper-
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Fig. 9: For each of the datasets under consideration, we estimate the capacity of the deep neural network at different false
accept rates corresponding to different operating points. Under the limit, the capacity tends to zero as the FAR tends to
zero. Similarly, the capacity tends to co as the FAR tends to 1.0.

ellipsoid. At the same time, the isotropic and the axis-
aligned hyper-ellipsoid approximations result in very simi-
lar capacity estimates.

Capacity at Specified FAR: We extend the point estimates
of Shannon’s capacity described so far to establish capacity
as a function of different operating points, as defined by
different false accept rates. We define r,, and r,, corre-
sponding to the desired operating points and evaluate Eq.
13. In all our experiments we choose r;, to encompass 95%
of the classes within the population hyper-ellipsoid. Dif-
ferent false accept rates define different decision boundary
contours that, in turn, define the size of the class-specific
hyper-ellipsoid. Figure 9 shows how the capacity of the
representation changes as a function of the false accept rates
(FAR) for different datasets. We note that at the operating
point of FAR = 0.1%, the capacity of the maximum face
representation is ~ 10'? in the constrained and ~ 107 in the
unconstrained case. However, at stricter operating points
(FAR of 0.001% or 0.0001%), that is more meaningful at
larger scales of operation [11], the capacity of even the
FaceNet representation is significantly lower (~ 10% for IJB)
than the typical desired scale of operation of face recognition
systems.

5 CONCLUSION

In this paper, we make the first attempt to estimate the ca-
pacity of any given face representation. We approximate the
face representation process as a Gaussian noise channel and
explicitly account for the different sources of uncertainty
in the representation. We proposed an efficient approach
to infer the states of this representation channel and es-
timate its capacity under the information theoretic notion
of capacity of a Gaussian channel. We also extended our
model to establish a relation between the capacity of the
Gaussian noise channel and the false accept rate of a nearest
neighbor classifier. Finally, we empirically estimated the
capacity, under the Gaussian noise channel, of two face rep-
resentations: a state-of-the-art deep neural network, FaceNet
and classical Eigenfaces. Numerical results yield an upper
bound of 10'3 for FaceNet and 10° for Eigenfaces at a FAR
of 5% and a large gap between the theoretical and empirical
verification performance of the representations. At lower
FAR of 0.001% or 0.0001%, the FaceNet capacity drops-
off significantly to ~ 10% under unconstrained scenarios,
impairing the scalability of the face representation.

As face recognition technology makes rapid strides in
performance and witnesses wider adoption, quantifying
the capacity of a given face representation is an important
problem, both from a theoretical as well as from a practical
perspective. However, due to the challenging nature of the
technical problem we make simplifying assumptions, for
tractability purposes, in this first attempt. Our experimental
results demonstrate that even this simplified model is able
to provide reasonable capacity estimates of a state-of-the-
art face representation. Relaxing the assumptions of the
approach presented here is an exciting direction of future
work, leading to more realistic capacity estimates.
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In this supplementary material we include additional
analysis and results that could not be included in the main
paper due to space constraints.

1 GAUSSIAN CHANNEL

The validity of our capacity estimates are dependent on
how well the face representations conform to the modeling
assumptions of the Gaussian noise channel. The Gaussian
noise channel is predicated upon the Gaussianity of the
distributions Py, P, and P,. While there are many tests
to numerically quantify the Gaussianity of the embedding,
most of these tests are either very unstable or are too
conservative. Therefore, we resort to visual tests through
Q-Q plots, univariate as well as multi-variate.

Univariate Test: Figure 1 displays the heat map of the
pair-wise covariance between the dimensions of the rep-
resentation averaged over the entire CASIA dataset. The
covariance is predominantly a diagonal matrix with very
low correlation between the feature dimensions. Figure 2
shows the marginal histograms and the normal distribution
estimated from the data. Across all dimensions the data
conforms very well to a normal distribution. This is also
apparent in the marginal Q-Q plots for all the dimensions
as shown in Fig. 3.

Multivariate Test: Figure 4 displays the Q-Q plot to compare
the face representations of the entire CASIA dataset and
the mulit-variate Gaussian distribution estimated from the
same representations. The plots show that apart from a few
outlying samples the FaceNet representation does indeed
follow a Gaussian distribution for both Py and P.

2 Teacher-Student REPRESENTATIONS

The efficacy of our capacity estimation model is predicated
on the ability of the student to mimic the teacher. It is critical
that the student model preserves the overall structure of
the embedding space. Figure 5 provides a visualization of
the embeddings after projecting onto the top two principal
eigenvectors of the embedding. We observe that the student
model not only mimics the teacher at the level of each indi-
vidual image but also preserves the overall global structure
of the embedding space.

Our main motivation for learning a student model is
to explicitly account for and extract uncertainty estimates

-0.2

Fig. 1: Heat map of the empirical covariance of the represen-
tation estimated over the entire CASIA dataset.

TABLE 1: Epistemic and Aleatoric Uncertainty

Epistemic (T) Aleatoric (T)
Sample Class
20 200 1000 20 200 1000
330 347 3.54 790 796  7.99
301 329 325 750 740 743
705 704 713 13.01 13.02 13.14
649 738 7.36 1474 14.68 14.66

that the teacher itself is unable to provide. Furthermore, by
explicitly accounting for the different sources of uncertainty,
epistemic and aleatoric, the student model can identify out-
lier samples, those that are outside the distribution of the
training data. For an inlier sample, the epistemic uncertainty
can be explained away by the uncertainty in the model
weights w while the same does not hold for an outlier image.
In Fig. 5 we provide a pictorial demonstrative example of
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Fig. 2: Histogram and marginal distributions of the 128 dimensional FaceNet representation.

Fig. 3: Q-Q plot of the marginal distributions of the 128 dimensional FaceNet representation.

the embedding of an outlier and an inlier and quantitative
examples in Table 1. Notice that, both qualitatively and
quantitatively, the outlier example exhibits a greater amount
of uncertainty compared to the inlier example.

3 CAPACITY ESTIMATES

Distribution of Class Uncertainty: The capacity estimates
of a given representation is dependent on the choice of
a canonical class-specific hyper-ellipsoid, that is represen-
tative of a typical subject among all possible subjects the
face representation system is going to be used for. How-
ever, determining this canonical subject is a difficult task
in itself. In Fig. 6 we show histograms of the distribution
of class-specific hyper-ellipsoids for each of the datasets.
Notice that classes in each dataset span a wide range of

hyper-ellipsoid sizes resulting in the wide range of capacity
estimates. Some datasets even have a number of outlying
classes with hyper-ellipsoids that are much bigger or much
smaller than the rest of the dataset. These spurious classes
(often the result of mis-labeled data) can have a significant
effect on the capacity estimates. To overcome this problem,
we manually identified and accounted for classes with mis-
labeled images.

We also show examples of the classes and the images that
correspond to the smallest and largest class hyper-ellipsoids
in each dataset. First for FaceNet: PCSO in Fig. 7, LFW in
Fig. 8, CASIA in Fig. 9, IJB-A in Fig. 10 and IJB-B in Fig.
11, followed by Eigenfaces: PCSO in Fig. 12, LFW in Fig. 13,
CASIA in Fig. 14, I]B-A in Fig. 15 and IJB-B in Fig. 16.

Capacity at FAR: Figure 17 shows the capacity of Eigenfaces



(a) FaceNet P, (b) FaceNet P, (c) Eigenfaces Py (d) Eigenfaces P,

Fig. 4: Q-Q plot for each of the 128 dimensions of the FaceNet representation for both P, and P,

outlier
[ inlier

(a) Teacher Embeddings (b) Student Embeddings (c) Inlier and Outlier Embeddings

Fig. 5: Visualization of the embeddings of the (a) teacher, (b) student, (c) an inlier and outlier class. We project the face
representation onto the first two principal eigenvectors for the purpose of this visualization.

(a) PCSO (b) LFW (c) CASIA (d) UB-A (e) JB-B

Fig. 6: Histogram of the class-specific hyper-ellipsoids for each dataset. Top-Row: FaceNet and Bottom-Row: Eigenfaces

on different datasets as a function of the operating point
defined by the acceptable false accept rate.
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Fig. 17: For each of the datasets under consideration we estimate the capacity of Eigenfaces at different false accept rates
corresponding to different operating points. Under the limit, the capacity tends to zero as the FAR tends to zero. Similarly
the capacity tends to co as the FAR tends to 1.0.



