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Abstract—As a computational bridge between the high-level a priori knowledge of object shape and the low-level image data, active

contours (or snakes) are useful models for the extraction of deformable objects. We propose an approach for manipulating multiple

snakes iteratively, called interacting snakes, that minimizes the attraction energy functionals on both contours and enclosed regions of

individual snakes and the repulsion energy functionals among multiple snakes that interact with each other. We implement the

interacting snakes through explicit curve (parametric active contours) representation in the domain of face recognition. We represent

human faces semantically via facial components such as eyes, mouth, face outline, and the hair outline. Each facial component is

encoded by a closed (or open) snake that is drawn from a 3D generic face model. A collection of semantic facial components form a

hypergraph, called semantic face graph, which employs interacting snakes to align the general facial topology onto the sensed face

images. Experimental results show that a successful interaction among multiple snakes associated with facial components makes the

semantic face graph a useful model for face representation, including cartoon faces and caricatures, and recognition.

Index Terms—Active contours, snakes, gradient vector field, face recognition, semantic face graph, face modeling, face alignment,

cartoon faces, caricatures.
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1 INTRODUCTION

OVER the past decade, face recognition has received
substantial attention from researchers in pattern recog-

nition, computer vision, and cognitive psychology commu-
nities (see the survey in [25]). This common interest is
motivatedby challenges indesigningmachinevision systems
that will match our remarkable ability to recognize people
based on facial features, by the increased attention being
devoted to security applications, and by the growing need of
automatic image and video archival based on human faces.
The main challenge in face recognition is the presence of a
large intraclass variability in human face images due to
3D head pose, lighting, facial expression, facial hair, and
aging, and rather small intersubject variations (due to
similarity of individual appearances).

Face recognition algorithms can be classified as pose-

dependent and pose-invariant. In pose-dependent algo-

rithms, a face is represented by a small number of 2D images

(appearances) at different poses, a set of viewer-centered

images. On the other hand, in pose-invariant approaches, a

face is represented by a 3D model, an object-centered

representation. The pose-dependent algorithms can be

further classified into three major groups: 1) the geometry-

basedapproachuses theconfigurationofgeometrical features

of the face [7], 2) the appearance-based approach uses holistic

texture features [20], and 3) the hybrid approach combines

facial geometry and local appearance information [22], [16].

The geometry-based methods suffer from an insufficient

number of facial landmarks that often cannot be detected

accurately; the appearance-based techniques are unable to

tolerate variations in head pose, facial expression, and

illumination. The pose-invariant algorithms use 3D face

models that are promising to overcome the above-mentioned

variations, although it is difficult to align 3D face structure

with 2D images and is cost-sensitive to acquire 3D face shape.

Therefore, grouping low-level features (such as locations of

feature landmarks, texture, and 3D head surface [10]) into a

meaningful semantic entity (e.g., nose, mouth, and eyes) has

become an attractive approach to face recognition.
Modeling facial components at the semantic level can

help us to understand how the individual components
contribute to face recognition. People can easily identify
faces in caricatures (see Figs. 1a, 1b, and 1c) that exaggerate
some of the salient facial components. Caricatures reveal
that there are certain facial features which are salient for
each individual and that a relatively easier identification of
faces can occur by emphasizing distinctive facial compo-
nents and their configuration. Further, two cartoon faces, as
shown in Figs. 1d and 1e, reveal that line drawings and
color characteristics (shades) of facial components provide
sufficient information for humans to recognize the faces in
cartoon movies. People can still recognize faces without the
use of shading information, which is rather unstable under
different lighting conditions. However, very little work has
been done in face recognition based on facial sketches [21]
and (computer-generated [3]) caricatures [13], [18].

We propose a semantic and potentially pose-invariant

approach for face recognition based on a generic 3D face

model. From a 3D face model, we can derive 2D semantic face

graphs for identifying faces at a semantic level. Each facial

component ismodeledby its open (or closed) boundaryusing

anactive contour (snake).Researchonactive contours focuses
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on issues related to representation (e.g., parametric curves,

splines, Fourier series, and implicit level-set functions),

initialization, energy functionals, implementations (e.g.,

classical finite difference models, dynamic programming

[2], and Fourier spectral methods), convergence rates and

conditions,andtheirrelationshiptostatistical theory[14] (e.g.,

theBayesianestimation).Classicalsnakes[12]arerepresented

by parametric curves and are deformed via finite difference

methods based on edge energies. Different types of edge

energies including image gradients, gradient vector flows

[23], distance maps, and balloon force have been proposed.

Snakes implicitly combined with level-set methods based on

the curve evolution theory, called geodesic active contours

(GAC) [8], areused to extract unknowngeometric topologyof

close curves. Besides the edge energy, region energy has

been introduced to improve the segmentation results for

homogeneous objects in both the parametric and the

GAC approaches (e.g., region and edge [15], GAC without

edge [5], statistical region snake [6], region competition [26],

and active regionmodel [11]).Multiple active contours [1], [4]

have been proposed to extract/partition multiple homoge-

neous regions that do not overlapwith each other in an image.

We utilize face detection results (face and eye locations) to

initialize multiple snakes that represent the complete face

graph and interact with each other to extract an aligned face

graph (called a cartoon face) for face matching. Since, facial

components usually overlap, e.g., eyes are inside the face

outline, we introduce a repulsion force among multiple

parametric contours for preserving facial topology. We

propose an approach for manipulating multiple snakes

iteratively, called interacting snakes, that minimizes the

attraction energy functionals on both contours and enclosed

regions of individual snakes and the repulsion energy

functionals among multiple snakes. We have implemented

the interacting snakes through explicit curve (i.e., parametric

active contours) representations for face alignment. Once the

semantic face graph has been aligned to face images, we

generate facial caricatures, andderive componentweights for

face matching, based on distinctiveness and visibility of

individual components. Face matching is performed at a

semantic level in a feature space spanned by Fourier

descriptors of facial components.

2 SEMANTIC FACE GRAPH

Asemantic facegraphprovides ahigh-leveldescriptionof the

human face. A projected graph in frontal view is shown in

Figs. 1a, 1b, and 1c. Anode of the graph represents a semantic

facial component (e.g., eyes and mouth), each of which is

constructed from a subset of vertices in the 3D generic face

modelandisenclosedbyparametriccurves.Asemanticgraph

is represented in a 3D space and is comparedwith other such

graphs in a 2Dprojection space. Therefore, the 2Dappearance

of the semantic graph looks different at different viewpoints

due to the effect of perspective projection of the facial surface.

We adopt Waters’ animation model [19] as the generic face

model because it contains all the internal facial components,

face outline, and muscle models for mimicking facial

expressions. However,Waters’ model does not include some

of the crucial external facial features. Hence, we have created

external facial components such as the ear and the hair

contours for the frontal view ofWaters’ model.We hierarchi-

cally decompose the vertices of the mesh model into three

levels: 1) vertices at the boundaries of facial components,

2) vertices constructing facial components, and 3) vertices

belongingtofacialskinregions.Theverticesat thetoplevelare

labeled with facial components such as the face outline,

eyebrows, eyes, nose, and mouth using curves (Fig. 2d). The

coordinatesof a componentboundarycanalsobe represented

by parametric curves, i.e., cðsÞ ¼ ðxðsÞ; yðsÞÞ, where s 2 ½0; 1�,
which is a snake for explicit curve deformation or for

generating level-set functions for implicit curve evolution.

3 COARSE ALIGNMENT OF SEMANTIC FACE GRAPH

Face modeling (alignment) is one of the three major modules
(others being face detection and recognition) in our face
recognition system. It is decomposed into coarse and fine
alignment (described in Section 4) submodules. In the coarse
alignment, a semantic face graph adapts to a face image
through the global and local rigid 3D geometric transforma-
tion (scaling, rotation, and translation), based on the
detected locations of face and facial components (see
Figs. 3a, 3b, 3c, and 3d for detection results using the
algorithm in [9]). Currently, we assume that all of the
internal and external facial components of a face image are
visible to the modeling module. We further employ the
edges and color characteristics of facial components
to locally refine the rotation, translation, and scaling
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Fig. 1. Caricatures of (a) Bill Clinton, (b) Albert Einstein, and (c) the Mona Lisa. Cartoon faces of (d) George W. Bush and (e) Marilyn Monroe. (All
these pictures were illustrated by R.-L. Hsu.)



parameters for individual components. This parameter

refinement is achieved by maximizing a semantic facial score

(SFS) through a small amount of perturbation of the

parameters. The semantic facial score of a component set T

on a face image Iðu; vÞ, SFST , is defined by a priori weights

on facial components and component matching scores as

follows:

SFST ¼
PN�1

i¼0 wtðiÞ �MSðiÞPN�1
i¼0 wtðiÞ

� � � SD MSðiÞð Þ; ð1Þ

where N is the number of semantic components in T , wtðiÞ,
and MSðiÞ are, respectively, the a priori weight and the

matching score of component i, � is a constant used to

penalize the components with high standard deviations of

the matching scores, and SDðxÞ stands for the standard

deviation of x. The matching score for the ith facial

component is computed based on the coherence of the

boundary and the coherence of color content (represented

by a component map) by

MSðiÞ ¼ 1

Mi

XMi�1

j¼0

1

Ai

XAi�1

k¼0

eðuk; vkÞ
 !

�
cosð�Gi ðuj; vjÞ � �ðuj; vjÞÞ
�� ��þ fðuj; vjÞ

2
;

ð2Þ

where Mi and Ai are, respectively, the number of pixels

along the curve of component i and number of pixels

covered by the component i, �Gi and � are the normal

directions of component curve i in a semantic graph G and

the gradient orientation of image I, f is the edge magnitude

of the image I, and eðuk; vkÞ is the facial component map of

the image I at pixel k. The gradient magnitude, gradient

orientation, eye map (See [9] and (7)), and coarse alignment

results for the subject in Fig. 3c are shown in Fig. 4.

4 FINE ALIGNMENT OF SEMANTIC FACE GRAPH

Fine alignment employs multiple (closed or open) snakes to

locally deform a semantic face graph through a repulsion

energy from a general facial topology to a sensed face image

iteratively. We have studied two competing implementa-

tions of active contours for deforming interacting snakes:

1) explicit (or parametric) and 2) implicit contour representa-

tions. The explicit contour representation has the advantage

of maintaining the geometric topology, while the implicit

contour representation requires topological constraints on

implicit functions. We implement interacting snakes via the

parametric approach, because it can easily constrain the

facial topology.
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Fig. 3. Face detection results: (a) and (c) are input face images of size 640� 480 from the MPEG7 content set (See [12]). (b) and (d) are detected
faces, each of which is described by an oval and a triangle.

Fig. 2. Semantic face graph is shown in frontal view, whose nodes are (a) indicated by text, (b) depicted by polynomial curves, (c) filled with different
shades, and (d) overlaid on a 3D generic face model in side view.



4.1 Interacting Snakes and Energy Functional

The initial configuration of interacting snakes is obtained

from the coarsely-aligned semantic face graph, and is

shown in Fig. 5d. Currently, there are eight snakes in our

model that interact with each other. These snakes describe

the hair outline, face outline, eyebrows, eyes, nose, and

mouth of a face; they are denoted as V ðsÞ ¼
SN

j¼1fviðsÞg,
where N (¼ 8) is the number of snakes, and viðsÞ is the ith

snake with parameter s 2 ½0; 1�. The energy functional used

by interacting snakes is described in (3).

Eisnake ¼
XN
i¼1"Z 1

0

EinternalðviðsÞÞ þ ErepulsionðviðsÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Eprior

þEattractionðviðsÞÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Eobservation

ds

#
;

ð3Þ

where i is the index of the interacting snake. The first two

terms in (3) are basedon theprior knowledgeof snake’s shape

and snake’s configuration (i.e., facial topology), while the

third term is based on the sensed image (i.e., observed pixel
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Fig. 4. Boundary map and eye component map for coarse alignment: (a) and (b) are gradient magnitude and orientation, respectively, obtained from
multiscale Gaussian-blurred edge response, (c) an eye map extracted from the face image shown in Fig. 3c, (d) a semantic face graph overlaid on a
3D plot of the eye map, and (e) image overlaid with a coarsely aligned face graph.

Fig. 5. Initialization of interacting snakes: (a) Face candidate extracted from the face image shown in Fig. 3a. (b) Coarsely aligned semantic face graph
overlaid on the face candidate. (c) Initial configuration of interacting snakes. (d) The interacting snakes shown in (c) overlaid on the face candidate.

Fig. 6. Repulsion force: (a) interacting snakes with index numbers marked, (b) the repulsion force computed for the hair outline, and (c) the repulsion
force computed for the face outline.



values). The internal energy consists of smoothness and

stiffness energies of a contour, while the repulsion energy is

constructed among multiple snakes. The attraction energy is

drawn from the image around the contours themselves and

their enclosed regions. From calculus of variations, we know

that interacting snakes which minimize the energy function

in (3) must satisfy the following Euler-Lagrange equation:

XN
i¼1

"
�v0i

0ðsÞ � �v
ð4Þ
i ðsÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Internal Force

�rErepulsionðviðsÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Repulsion Force

�rEattractionðviðsÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Attraction Force

#

¼ 0;

ð4Þ

where � and � are coefficients for adjusting the second and

the fourth order derivatives of a contour, respectively.

Repulsion force field is constructed based on the gradients

of distance map among the interacting snakes as follows:

�rErepulsionðviðsÞÞ ¼ � � r 1� e
C�EDT

�SN

j¼1;j6¼i
vjðsÞ
�� �

; ð5Þ

where repulsion weight � ¼ 0:81, control factor C ¼ 3:9, and

EDT is the Euclidean Distance Transform. Fig. 6 shows the

repulsion force fields for the hair outline and the face outline.

The use of the repulsion force can prevent different active

contours from converging to the same location of minimum

energy.
The attraction force field consists of two kinds of fields in

(6): one is obtained from edge strength, called gradient vector

field (GVF) [23], and the other from a region pressure field

(RPF) [11].

�rEattrationðviðsÞÞ ¼ GVF þRPF

¼ � � ~VVðviðsÞÞ þ � � ~NNðviðsÞÞ

� 1� jEcomp
i ðviðsÞÞ � �j

k�

� �
;

ð6Þ

where ~VV is the gradient vector flow field with flow weight

� ¼ 0:9; ~NNðviðsÞÞ is the normal vector to the ith contour viðsÞ
withpressureweight� ¼ 0:25;Ecomp

i is the component energy

of the ith component; �, � are the mean and the standard

deviation of region energy over a seed region of the

ith component; kð¼ 20Þ is a constant that constrains the

energyvariationofacomponent.TheadvantageofusingGVF

for snake deformation is that its range of influence is larger

than that obtained from gradients and can attract snakes to a

concave shape.AGVF is constructed froman edgemap by an

iterative process. However, the construction of GVF is very

sensitive to noise in the edge map; hence, it requires a clean

edgemap as an input. Therefore, we compute aGVFbyusing

three edge maps obtained from luma and chroma compo-

nents of a color image, and by choosing as the edge pixels the

top p% (¼ 15%) of edge pixel population over a face region, as

shown in Fig. 7a. Fig. 7b is the edge map for constructing the

GVF that is shown in Fig. 7c). The region pressure field is

available only for a homogeneous region in the image.

However, we can construct component energy maps that

reveal the color property of facial components such as eyes

with bright-and-dark pixels andmouthwith red lips. Then, a

region pressure field can be calculated based on the

component energy map and on the mean and standard

deviation of the energy over seed regions (note that we know

the approximate locations of eyes and mouth). Let us denote

the color components in theRGBspace as ðR;G;BÞ, and those

inYCbCr space as ðY ;Cb; CrÞ.Aneye component energy for a

color image is computed as follows:
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Fig. 7. Gradient vector field: (a) face region of interest extracted from a

640� 480 image, (b) thresholded gradient map based on the population

of edge pixels shown as dark pixels, and (c) gradient vector field.

Fig. 8. Component energy (darker pixels have stronger energy): (a) face region of interest, (b) eye component energy, (c) mouth component energy,

(d) nose boundary energy, and (e) magnified nose boundary energy shown as a 3D mesh surface.



Ecomp
eye ¼ Emsat þEcsh þ Ecdif ; ð7Þ

Emsat ¼ R�K

3

� �2

þ G�K

3

� �2

þ B�K

3

� �2
 "

�ðRþGþB�KÞ2

3

!0:5
3
5; ð8Þ

Ecsh ¼ ½½Cr�K=2�2 � ½Cb�K=2�2�; ð9Þ
Ecdif ¼ ½½Cr� � ½Cb��; ð10Þ

whereEmsat is themodified saturation (that is thedistance ina
plane between a point ðR;G;BÞ and ðK=3; K=3; K=3Þ), where
RþGþB ¼ K, Ecsh is chroma shift, Ecdif is chroma
difference, K ¼ 256 is the number of grayscales for each
color component, and ½x� indicates a function that normalizes
x into the interval ½0; 1�. The eye component energy for the
subject in Fig. 8a is shown in Fig. 8b. The mouth component
energy is computed as Ecomp

mouth ¼ ½�½Cb� � ½Cr��. Fig. 8c shows
an example of mouth energy. For the nose component, its
GVF is usuallyweak, and, therefore, it is difficult to construct
an energy map for nose. Hence, for the nose, we utilize a
shape-from-shading (SFS) algorithm [24] to generate a
boundary energy for augmenting the GVF for the nose
component. Figs. 8d and 8e show the nose boundary energy
as a 2D grayscale image and a 3D mesh plot, respectively.

4.2 Parametric Active Contours

Once we obtain the attraction force, we can make use of the

implicit finite differentialmethod [12], [23] and the iteratively

updated repulsion force to deform the snakes. The repulsion

force is computed and merged with the attraction force in

each iteration via the weight �. The stopping criteria is based

on limits of iterative movement of each snake. Fig. 9a shows

the initial interacting snakes, Fig. 9b shows snake deforma-

tion, and Figs. 9c and 9d show finely aligned snakes.

5 SEMANTIC FACE MATCHING AND FACIAL
CARICATURES

For face matching, we construct a face descriptor in spatial

frequency domain based on the Fourier transform of a

semantic face graph. Let the semantic graph projected on a

2D image represented by the set T be G. The coordinates of

component boundary of G can be represented by a pair of
sequences xiðnÞ and yiðnÞ, where n ¼ 0; 1; . . . ; Ni � 1 and
i ¼ 1; . . . ;M, for component iwithNi vertices. The1DFourier
transform, aiðkÞ, of the complex signal uiðnÞ ¼ xiðnÞ þ jyiðnÞ
(where j ¼

ffiffiffiffiffiffiffi
�1

p
) is computed by

aiðkÞ ¼ FfuiðnÞg ¼
XNi�1

n¼0

uiðnÞ � e�j2	kn=Ni ; ð11Þ

for facial component i with a close boundary such as eyes
and mouth, and with end-vertex padding for components
with open boundary such as ears and hair components. The
advantage of using semantic graph descriptors for face
matching is that these descriptors can seamlessly encode
geometric relationships (scaling, rotation, translation, and
shearing) among facial components in a compact format.
The reconstruction of semantic face graphs from semantic
graph descriptors is obtained by

~uuiðnÞ ¼ F�1faiðkÞg ¼
XLi�1

k¼0

aiðkÞ � ej2	kn=Ni ; ð12Þ

where Li (< Ni) is the number of frequency components
used for the ith face component.

5.1 Component Weights and Matching Cost

After the two phases of face alignment, we can automati-
cally derive a weight (called semantic component weight) for
each facial component i for a subject P with Np training face
images by

scwP ðiÞ ¼
1þ e�2�2

d
ðiÞ=d2ðiÞ Np > 1;

1þ e�1=d2ðiÞ Np ¼ 1;

(
ð13Þ

dðiÞ ¼ 1

NP

XNP

k¼1

SFDiðG0;GPk
Þ �MSPkðiÞ; ð14Þ

�dðiÞ ¼ SDk SFDiðG0;GPk
Þ �MSPkðiÞ

� 	
; ð15Þ

where SFD means semantic facial distance, MS is the
matching score, SD stands for standard deviation, and G0

and GPk
are the coarsely aligned and finely deformed

semantic face graphs, respectively. The semantic component
weights take values between 1 and 2. The semantic facial
distance of facial component i between two graphs is defined
as follows:

HSU AND JAIN: GENERATING DISCRIMINATING CARTOON FACES USING INTERACTING SNAKES 1393

Fig. 9. Fine alignment: (a) interacting snakes overlaid on a face candidate, (b) snake deformation shown with 16 epochs (five iterations per epoch),
(c) aligned snakes (currently eight snakes for hair outline, face border, eyebrows, eyes, nose, and mouth are interacting) overlaid on the face
candidate, and (d) aligned snakes shown alone.



SFDiðG0;GPk
Þ ¼ DistðSGDG0

i ;SGD
GPk

i Þ

¼ 1

Li

XLi

k¼0

aG0

i ðkÞ � a
GPk

i ðkÞ
��� ���2

" #0:5
;

ð16Þ

where SGD stands for semantic graph descriptors. The

distinctiveness of a facial component is evaluated by the

semantic facial distance SFD between the generic semantic

face graph and the aligned/matched semantic graph. The

visibility of a facial component (due to head pose, illumina-

tion, and facial shadow) is estimated by the reliability of

component matching/alignment (i.e., matching scores for

facial components). Finally, the 2D semantic face graph of

subjectP canbe learnedfromNp imagesundersimilarposeby

GP ¼
[
i

F�1 1

NP

XNP

k¼1

SGD
GPk

i

( )
: ð17Þ
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Fig. 11. A semantic face matching algorithm.

Fig. 10. Facial caricatures generated based on the average face of 50 faces (five for each subject): (a) A prototype of the semantic face graph, G0,
obtained from the mean face of the database, with individual components shaded. (b) and (h) Face images of six different subjects. (c), (d), (e), (f),
and (g) and (i), (j), (k), (l), and (m) Caricatures of the faces in (b) and (h), respectively, (semantic face graphs with individual components shown in
different shades) with different values of exaggeration coefficients, k, ranging from 0:1 to 0:9.



The matching cost between the subject P and the kth face
image of subject Q can be calculated as

CðP;QkÞ ¼
XM
i¼1



scwP ðiÞ � scwQkðiÞ � SFDiðGP;GQk

Þ
�
; ð18Þ

where M is the number of facial components. Face
matching is accomplished by minimizing the matching cost.

5.2 Facial Caricatures

Facial caricatures are generated based on exaggeration of an
individual’s facial distinctiveness from the average facial
topology. Let Gcrc

P represent the face graph of a caricature
for the subject P , and G0 be the face graph of the average
facial topology. Caricatures are generated via the control of
an exaggeration coefficient, ki, in (19):

Gcrc
P ¼

[
i

F�1 SGDi
GP þ ki � SGDGP

i � SGDG0

i

� 
n o
: ð19Þ

Currently, we use the same coefficients for all the compo-
nents, i.e., ki ¼ k. In Fig. 10, facial caricatures are optimized in
the sense that the average facial topology is obtained from the
mean facial topology of training images (a total of 50 images
for 10 subjects). We can see that it is easier for a human to
recognize a known face based on the exaggerated faces.

5.3 Face Matching

The proposed semantic facematching algorithm is described
in Fig. 11 for face identification with no rejection. The
computation of matching costs is based on the distance of
semantic face descriptors and semantic component weights.
We have constructed a small face database at near frontal
views with small amounts of variations in facial expression,
face orientation, face size, and lighting conditions, during
different sessions over a period of twomonths. Fig. 12 shows
five images of one subject,while Fig. 13 showsone image each
of the 10 subjects.We employ five images each per subject for
training and testing the semantic face graphs. With 5-fold
cross validation tests, the cumulative rank score curves [17]
are shown in Figs. 15a, 15b, 15c, and 15d using five different
sets of facial components. External facial components include
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Fig. 13. Face images of 10 subjects.

Fig. 14. Cartoon faces: (a) automatically aligned face graphs and (b) manually aligned graphs.

Fig. 12. Five color images (256� 384) of a subject.



face outline, ears, and hairstyle, while internal components

are eyebrows, eyes, nose, and mouth. With automatic face

alignment (see Fig. 14a), the set of internal components gives

thebestperformance (90percent at the top four ranks). The set

of external components are difficult to align accurately;

therefore, it degrades the performance when all the compo-

nents are used. However, with manual alignment (see

Fig. 14b), we can see that the external facial components play

an important role in recognition (resulting in a top-rank

recognition rate of 96 percent and outperform the perfor-

mance of internal components. The caricature exaggeration

(see Figs. 15b and 15d) does improve the performance. The

Fourier descriptors provide a compact feature set for

classification and the dimensionality of the feature space is

low (175 vertices for all the facial components). Each coarse

alignment and fine alignment for an image of size 640� 480

takes6:84 secs (implemented inC)and460 secs (implemented

inMATLAB), repsectively, while each face comparison takes

0:0029 secs with Matlab implementation on a 1.7 GHz CPU.

We are conducting other cross validation tests for classifica-

tion, and are in theprocess of performing recognition on large

gallery and probe databases. Although the alignment is

currently done offline,we are attempting to improve both the

alignment performance and alignment speed.
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Fig. 15. Cumulative rank score curves obtained based on: (a) automatically aligned face graphs, (b) automatically aligned face graphs exaggerated

with caricature scale k ¼ 0:7, (c) manually aligned face graphs, and (d) manually aligned face graphs exaggerated with caricature scale k ¼ 0:7. Five

semantic sets are (e) all components (T1), (f) external components (T2), (g) face oval components (T3), (h) internal components (T4), and (i) eyes and

eyebrows (T5).



6 CONCLUSIONS AND FUTURE WORK

We have proposed semantic face graphs derived from a

subset of vertices of a 3D facemodel to construct cartoon faces

for facematching. The cartoon faces are generated in a coarse-

to-fine fashion; face detection results are used to coarsely

align semantic face graphs with detected faces and interact-

ing snakes are used to finely align face graphs with sensed

face images. We have implemented an explicit snake

deformation for fine alignment and shown that a successful

interaction among multiple snakes associated with facial

componentsmakes the semantic face graph a usefulmodel to

represent faces. We have also presented a framework for

semantic face recognition,which is designed to automatically

derive weights for facial components based on their distinc-

tiveness andvisibility, and toperformfacematchingbasedon

visible facial components. We have demonstrated good

classification performance using extracted cartoon faces. An

advantage of semantic face graph is that it allows face

matching based on selected facial components and it also

provides an effectiveway to update a 3D facemodel based on

2D images. We are currently adding snakes for ears and two

open crest curves for the nose to complete the graph

deformation of the entire face. In the future, we will evaluate

the interacting snakes through two types of implementations,

explicit (parametric active contours) and implicit (geodesic

active contours) curve representations in the domain of face

recognition. We plan to test the proposed semantic face

matching algorithm on other face databases. We will also

implement a pose estimationmodule in order to construct an

automated pose-invariant face recognition system.
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