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Abstract

There is a growing interest in understanding the impact
of aging on face recognition performance, as well as de-
signing recognition algorithms that are mostly invariant to
temporal changes. While some success has been made on
this front, a fundamental questions has yet to be answered:
do face recognition systems that compensate for the effects
of aging compromise recognition performance for faces that
have not undergone any aging? The studies in this paper
help confirm that age invariant systems do seem to decrease
performance in non-aging scenarios. This is demonstrated
by performing training experiments on the largest face ag-
ing dataset studied in the literature to date (over 200,000
images from roughly 64,000 subjects). Further experiments
conducted in this research help demonstrate the impact of
aging on two leading commercial face recognition systems.
We also determine the regions of the face that remain the
most stable over time.

1. Introduction

Face recognition technology is being used in a number
of applications, including de-duplication of identification
cards, and verification of prisoner identities [6]. A major
factor for the success of face recognition in these scenarios
is the ability to mostly constrain factors known to be detri-
mental to face recognition performance, such as facial pose
and expression, illumination, and background. However,
another variate that is known to greatly impact face recog-
nition performance is the alteration in facial structure and
appearance that occurs through the aging process [20].

Unlike the pose, expression, and illumination, aging fac-
tors cannot be constrained in order to improve face recog-
nition performance. For example, many years may pass be-
fore a released prisoner is recidivate, resulting in a large
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time lapse between the mug shot image in the gallery and
the current booking image (probe). Similarly, a U.S. pass-
port is valid for ten years, and most state driver’s licenses
only need to be renewed every five to ten years. Thus, in
many critical applications the success of face recognition
technology may be impacted by the large time lapse be-
tween a probe image and its true mate in the gallery.

Over the past five years, there has been a growing inter-
est in understanding the impact of aging on face recognition
performance and proposing solutions to mitigate any nega-
tive impact from aging. A major contributor to these ad-
vances has been the availability of the MORPH database by
Ricanek et al. [21]. The MORPH database consists of two
albums, which, in total, contains roughly 100,000 images
of about 25,000 subjects. The MORPH dataset has facili-
tated studies on synthetic aging [16, 22], age invariant face
recognition [11, 12, 16], age estimation [5], and aging anal-
ysis [17]. A broader examination of facial aging methods
in the literature can be found in the summary provided by
Ramanathan et al. [19].

Various approaches for improving face recognition per-
formance in the presence of aging can be dichotomized into
two groups. The first contains generative synthesis methods
which seek to learn an aging model that can estimate the ap-
pearance of an aged face from an input image. While these
methods have shown some success in mimicking the aging
process [16, 22], generative methods are challenging due
to the large number of parameters that must be estimated.
Synthesis methods also rely on the appearance of the face in
order to simulate the aging process, and the results of these
methods can suffer from the minor pose and illumination
variations that are encountered in large datasets. Further,
synthesis methods do not handle the problem of face recog-
nition and need a separate face engine to perform match-
ing. Of course, this also speaks to one of the advantages of
synthetic aging methods: they can be easily integrated with
existing face recognition engines.

An alternative solution to improving face recognition
performance across time lapse is through discriminative
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Figure 1. Multiple images of the same subject are shown, along with the match score (obtained by a leading face recognition system)
between the initial gallery seed and the image acquired after a time lapse. As the time lapse increases, the recognition score decreases.
This phenomenon is a common problem in face recognition systems. The work presented in this paper (i) demonstrates this phenomenon
on the largest aging dataset to date, and (ii) demonstrates that solutions to improve face recognition performance across large time lapse
impact face recognition performance in scenarios without time lapse.

learning methods [11, 18, 14, 12]. Such methods seek to
find the weighted combination of features that are most
stable across a particular time lapse. Discriminative ap-
proaches are able to leverage both the wide range of facial
feature representations [10], as well as the family of learn-
ing methods in face recognition. Beginning with Belhue-
mer et al.’s FisherFaces method [3], discriminative learning
approaches have been critical to the advancement of face
recognition over the past two decades.

Li et al. used a discriminative random subspace method
that outperformed a leading commercial face recognition
engine on the MOPRH dataset [11]. This work helped
demonstrate that a face recognition system could be trained
to improve performance in the presence of aging. While
these contributions helped advance the state of the art in
face recognition in the presence of time lapse, they also
raise a new question regarding the design of face recogni-
tion systems: does the learned subspace for face recogni-
tion across time lapse impact the face recognition perfor-
mance in a non-aging scenario? In other words, while we
can improve face recognition performance in the presence
of a large time lapse between the probe and gallery images,
we do not want to decrease the performance on two images
with minimal time lapse.

The contributions of the research presented in this pa-
per are motivated by the need to answer the question posed
above. This question is answered by providing the largest
study to date on the impact of aging on face recognition per-
formance. Leveraging a dataset of mug shot images from
200,000 subjects, we demonstrate (i) a degradation in face
recognition performance from two leading commercial-of-
the-shelf (COTS) face recognition systems (FRS) on match
sets partitioned by the amount of time lapse occurring be-
tween the probe and gallery images, and (ii) training to im-
prove performance on a particular time lapse range impacts

performance on other time lapse ranges. These findings in-
dicate that face recognition systems should update face tem-
plates after a certain time interval has passed from the orig-
inal acquisition date in order to maximize the benefit of age
invariant subspaces without impacting face recognition in
non-aging scenarios.

The remainder of the paper is outlined as follows. In
Section 2, we discuss the face dataset used in this research.
In Section 3, we revisit the random subspace framework and
discuss how it was adopted for this work. Section 4 presents
experiments on the impact of training on age invariant face
recognition, as well as the computational demands in under-
taking such a large scale study.

2. Dataset

This study leverages a set of 200,000 mug shot im-
ages from roughly 64,000 subjects collected in the state of
Florida, U.S.A. Each image contains a subject id and an im-
age acquisition date, which enables the time lapse between
any two images to be determined. The 200,000 images are
a subset of a larger 1.5 million image dataset available to us,
and the 200,000 images were selected so that different time
lapse ranges were equally represented in this study.

The time lapse ranges analyzed in this study were (i) 0
to 1 year time difference between a probe and gallery im-
age, (ii) 1 to 5 year time difference, (iii) 5 to 10 year differ-
ence, and (iv) more than 10 years difference. Training sets
for each of the time lapse ranges listed above are generated
so that each range has 8,000 subjects. The only exception
is the 10+ year time lapse range, where only around 2,000
subjects were available for training. Similarly, test sets were
generated to represent each of the time lapse ranges above.
For each time lapse range, 12,000 subjects were used for
testing. However, the 10+ year time lapse test set contained



only 2,000 subjects. For each subject in the study, their old-
est face image was used as the gallery seed image. Multiple
probe images that fell within the time lapse range for a sub-
ject were often available as well. For example, the 1 to 5
year test set contained 12,000 gallery images and 33,443
probe images, where each probe image was taken between
one to five years after the corresponding gallery image.

All parameter validation in this work was performed us-
ing the training set. This was done by using the first half of
the training set to train on different parameter values and the
second half of the training set to determine the optimal pa-
rameter combination (with respect to face recognition per-
formance). Thus, the second half of the training set also
served as a validation set.

The analysis performed on the dataset is the largest such
study to date. Further, because the images are pulled from
a larger pool of images, the dataset is also unique in that it
controls the time lapse variate so that the same number of
subjects are available to analyze 5 to 10 years aging as 0
to 1 year aging (for example). As such, measuring the per-
formance of COTS FRS on this dataset will provide an un-
precedented demonstration of how commercially available
face recognition technology performs in the presence of ag-
ing. Because both Li et al. [11] and Ling et al. [12] have
been able to surpass the performance of COTS FRS by per-
forming discriminative learning on face images with time
lapse, it is generally accepted that face recognition perfor-
mance suffers greatly as the time between image acquisition
increases.

We analyzed the performance of two commercial-of-the-
shelf face recognition systems: Cognitec’s FaceVACS SDK
[1], and PittPatt’s Face Recognition SDK [1]. Both match-
ers were competitive participants in the latest NIST spon-
sored Multi-Biometrics Evaluation (MBE) [4]. Results in
this work list the matchers as “COTS 1” and “COTS 2” in
order to make anonymous each matcher’s performance rel-
ative to the other.

Figure 2 shows the matching accuracies of the two COTS
matchers as a function of the time lapse between the probe
and gallery image on the test sets mentioned above. The
decrease in performance as the time lapse increases clearly
shows the difficulty face recognition systems have with age
variation.

3. Random Subspace Face Recognition
In this work, we adopt a random subspace linear discrim-

inant analysis (RS-LDA) algorithm, based on Wang and
Tang’s original face subspace method [23]. More recently,
Li et al. [11] have used a variant of this approach to im-
prove face recognition in the presence in aging. Klare and
Jain have also demonstrated the benefit of RS-LDA on a
heterogeneous face recognition scenario [8].

RS-LDA is based on the FisherFace linear discriminant
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Figure 2. The performance of two commercial face recognition
systems as a function of time lapse between probe and gallery im-
ages.

analysis algorithm [3], where a linear subspace Ψ is learned
from the original feature space by solving the generalized
eigenvalue problem Sb ·Ψ = Λ · Sw ·Ψ with the between-
class and within-class matrices Sb and Sw built from a
set of training images. In RS-LDA, multiple subspaces
Ψb, b = 1 . . . B, are learned using both randomly sampled
subsets of the original feature space as well as randomly
sampled subjects from the set of training instances. The
motivation for using RS-LDA over standard LDA is due to
degenerative properties that often manifest in Sw (which
must be full rank to solve S−1

w · Sb). While Level 2 fa-
cial feature representations [10] (such as the local binary
patterns [15] used in this work) offer improved recognition
accuracies, they also increase the dimensionality of the fa-
cial feature vectors. This in turn increases the likelihood
that Sw is degenerate, and further necessitates the need for
a method such as RS-LDA. Other LDA variants offer so-
lutions to this small sample size problem [13, 7]; however,
RS-LDA is preferred due to the ease of implementation and
wider range of successful applications in face recognition
[23, 11, 8, 9].

The approach used in this work is mostly based on the
method by Li et al. [11]; however, we had to modify their
method in order to reduce the computational requirements
because the number of images handled in this experiment is
an order of magnitude larger than their work. Again, the in-
tent of this work is not to provide a method that can improve
on commercially available face recognition technology (this
capability has already been demonstrated [11, 12]). In-
stead, we wish to understand how training a face recogni-
tion system to improve recognition accuracies on a particu-
lar time lapse scenario performs on scenarios with a larger
or smaller amount of time lapse than training time lapse.



3.1. Face Representation

We represent face images in this experiment with multi-
scale local binary patterns (MLBP), which is the concate-
nation of local binary patterns [15] of radii 1, 3, 5, and 7.
Ahonen et al. first demonstrated the effectiveness of repre-
senting face images with LBP descriptors [2].

In order to represent a face with MLBP feature descrip-
tors, the face is first geometrically normalized using the eye
locations to (i) perform planar rotation so the angle between
the eyes is 0 degrees, (ii) scale the face so the inter-pulilary
distance between eyes is 75 pixels, and (iii) crop the face
to 250x200 pixels. Once geometrically normalized, MLBP
feature descriptors are densely sampled from patches of size
24x24 across the face, with an overlap of 12 pixels. In total,
this yields 285 MLBP descriptors representing the face. The
size of the patch (24x24) was selected by using the training
set to perform parameter validation.

To reduce the total feature vector size, principal compo-
nent analysis (PCA) was performed on one half of the train-
ing set to learn a subspace for each of the 285 MLBP fea-
ture sampling locations. The second half of the training set
was used to determine the minimum energy variation that
needed to be retained without impacting face recognition
performance. It was determined that 98% of the variance
could be retained without impacting the recognition perfor-
mance. The original MLBP descriptor is 236 dimensional
(4 · 59). After PCA dimensionality reduction, the descrip-
tor size, on average, was reduced to 99 dimensions at each
of the 285 sampling locations. After the dimensionality of
the MLBP descriptor for each face patch was reduced, all
descriptors are concatenated together, resulting in a feature
vector of dimensionality d = 28, 187. Without this PCA
step, the feature dimensionality would have been 67, 260.

3.2. Random Subspaces

B random LDA subspaces Ψb are learned from B ran-
dom samples of the d-dimensional feature space. The
eigenvalues corresponding to each feature dimension from
the previous PCA step were used to weight the random sam-
pling so that features with higher variation energy will have
a higher likelihood of being selected. The benefit of this
approach was confirmed by evaluation on the validation set.
The number of features sampled with the weighted random
sampling was controlled by the parameter ρ (0 < ρ < 1) in
order to select d′ = ρ · d features at each stage b = 1 . . . B.
Additionally, from the N training subjects available, N ′ <
N were randomly sampled to build the between-class scat-
ter matrix Sb

Btwn ∈ Rd′,d′
and the within-class scatter matrix

Sb
Wthn ∈ Rd′,d′

at each stage b. Finally, we learn the sub-
space Ψb as

Ψb = argmax
Ψ′

||Ψ′T · Sb
Btwn ·Ψ′||

||Ψ′T · Sb
Wthn ·Ψ′||

(1)

After learning the set of B subspaces Ψb, b = 1 . . . B,
a new face image is represented as the concatenation of the
each of the B subspace projections. The dissimilarity be-
tween two faces is then measured by the L-2 norm distance.

Despite reducing the feature dimensionality and only us-
ing a ρ percent of the (d′ = ρ · d) features, reasonable val-
ues of ρ yield a feature vector that is too large to accurately
solve Eq. 1. To resolve this, a second PCA step was ap-
plied at each stage b to perform feature reduction on the d′

dimensional feature vector. This second PCA step was per-
formed by retaining 0 < p < 1 percent of the variance in
the training instances at stage b.

The parameters in the RS-LDA framework are the num-
ber of training subjects at each stage (N ′), the percentage
of features to sample at each stage (ρ), the number of stages
(B), and the percentage of variance in the PCA step for
each stage (p). Using the training set for validation to find
the highest recognition accuracies, the following parame-
ters values were selected: N ′ = 300, ρ = 0.45, B = 20,
and p = 0.95.

4. Experiments

Figure 2 shows the negative correlation between face
recognition accuracy and the amount of time lapse between
probe and gallery image capture. A strong case has been
made to handle this problem by training discriminative face
recognition systems [11, 12]. Here we will use the random
subspace framework developed in Section 3 to understand if
training a face recognition system to improve performance
on aging impacts the standard face recognition scenarios.

Using the training set splits discussed in Section 2, we
trained five different RS-LDA systems using the algorithm
presented in Section 3.

• The first RS-LDA system was trained on the 8,000
training subjects with 0 to 1 year time lapse between
probe and gallery image.

• The second system was trained on 8,000 subjects with
1 to 5 year time lapse.

• The third system was trained on 8,000 subjects with 5
to 10 year time lapse.

• A fourth system was trained on 2,000 subjects with
over 10 years time lapse (only 2,000 subjects were
available with this time lapse).

• A final system was trained using 8,000 subjects with
time lapse equally distributed amongst the four time
lapse splits shown. Thus, this final system was trained
on subjects with 0 year time lapse up to 17 years (17
years is the maximum time lapse in the 10+ set).
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Figure 3. The true accept rates at a fixed false accept rate of 1.0% across datasets with different amount of time lapse between the probe
and gallery images. A set of RS-LDA subspaces were trained on a separate set of subjects with the different time lapse ranges tested above.
In all cases except 10+ year time lapse, the RS-LDA subspaces performed the best when trained on the same amount of time lapse they
were tested on. This examination suggests the need for multiple recognition subspaces depending on the time lapse.

Figure 3 shows the recognition accuracy on each of the
four test sets using the five trained systems. The first test
set (Fig. 3(a)) has 0 to 1 year time lapse between the probe
and gallery images for 12,000 subjects. The results show
that the best performance from the five trained systems is
the system trained on 0 to 1 year time lapse. As the time
lapse between the training set and the test set increases, the
face recognition accuracy decreases. These results help pro-
vide the following answer to the question originally posed:
training a face recognition system to improve on face aging
does seem to reduce its performance when facial aging has
not occurred.

The recognition performance on face images that have 1

to 5 years time lapse (Fig. 3(b)) show the best performance
from the five RS-LDA systems is the system trained on 1 to
5 year lapse. However, the performance from 0 to 1 years
time lapse training is not much lower. In fact, the difference
between training and testing on 0 to 1 year and 1 to 5 year
is rather minimal. This is likely due the fact that only minor
aging changes have occurred in these time spans.

The recognition performance on face images with 5 to
10 years time lapse (Fig. 3(c)) shows how learning can help
improve recognition accuracies in the presence of a large
amount of aging. The true accept rate improves by nearly
7.0% when trained on the 5 to 10 year set than with the 0
to 1 year training set. Thus, the feature subspaces learned



on data with minimal aging did not generalize well to data
with larger amounts of aging.

The recognition results on aging over 10 years (Fig. 3(c))
is the only scenario in which the subspace trained on the
same time lapse as tested on did not offer the highest results.
However, the 10+ year subspace only had 2,000 subjects to
train on while the other subspaces had 8,000 subjects. This
could also be explained by the complex nature of face aging
that manifests itself in different ways for different individu-
als, especially when the time lapse is large.

In each testing scenario, the subspace labeled (All) is
the one trained on 8,000 subjects exhibiting all time lapse
ranges studied here. While this subspace never had the top
accuracy with respect to the other RS-LDA subspaces, it
consistently performed well on all time lapses. This indi-
cates that mixed training (with a wide set of age differences)
is a viable solution when learning multiple subspace models
is not reasonable (such as scenarios when image acquisition
dates are unavailable).

The performance of COTS1 exceeded the RS-LDA sys-
tem in each testing scenario. However, the RS-LDA system
was purposely designed to be less complex to help facili-
tate the scope of this study. Including additional features
such as the SIFT descriptors and multiple patch sizes that
Li et al. used in their aging system [11] would have led
to improved performance. Despite this, the validity of the
training performed in RS-LDA is clearly established when
examining the performance of the RS-LDA subspaces over
the baseline MLBP only performance. MLBP only makes
use of the initial MLBP feature representation to measure
the (dis)similarity between the faces, but does not perform
training. Through the use, of RS-LDA the recognition ac-
curacy improves substantially.

The large time lapse dataset with a large number of sub-
jects presented in this study also enabled us to examine
which regions of the face remained the most persistent or re-
tained the most discriminative power over time. To examine
this stability, we measured the Fisher separability at each
patch where the MLBP feature descriptors were computed.
For a given face patch, we measured the Fisher separability
as the ratio of the sum of eigenvalues from the between-
class scatter to the sum of eigenvalues from the within-class
scatter. This indicates the inherent separability provided by
the Level 2 MLBP features at different regions of the face.
These Fisher separability values at different time lapses are
shown in Figure 4. The results show that while, as expected,
the inherent separability decreases for each facial region as
time increases, the mouth region has more discriminative
information than the nose region, especially as time passes.
This also confirms the discriminative information contained
in the region of the face around the eyes. Such informa-
tion could be useful in explicitly weighting different face
regions.

320 days time lapse:

(a)

9.8 years time lapse:

(b)
Figure 5. Examples where training on different time lapses than
tested on caused failures when matching the probe image (left)
with the gallery image (right). (a) The subspace trained on 0 to
1 years time lapse yielded a Rank-1 match, while the subspace
trained on 5 to 10 years time lapse yielded a Rank-13 match. (b)
The subspace trained on 0 to 1 years time lapse yielded a Rank-
881 match, while the subspace trained on 5 to 10 years time lapse
yielded a Rank-1 match.

4.1. Computational Demands

Future work will attempt to leverage the additional face
images contained in the 1.5 million mug shot image dataset
available to us. However, one of the major difficulties we
anticipate in this analysis is the computational demands for
processing such a wide corpus of data. In this section, we
briefly highlight some of the challenges of processing large
scale data.

In this study, each of the roughly 120,000 test images
used were enrolled in the Cognitec’s and PittPatt’s FRS.
Once each face was enrolled, 869 million match compar-
isons were performed by each matcher to measure the per-
formance on each time lapse data set.

The analysis of RS-LDA on MLBP feature representa-
tion required all 200,000 images in the study. This, in turn,
required all images to be geometrically normalized using
the eye locations automatically detected by the FaceVACS
system. Once the images were aligned, the MLBP fea-
ture descriptors were extracted. With a 236-dimensional
MLBP descriptor extracted at 285 patches across each face,
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Figure 4. Discriminability of different face regions over time. (a) The mean pixel values at each patch where MLBP feature descriptors
are computed. (b) The scale of the Fisher separability criterion. (c) The heat map showing Fisher separability values at each image patch
across different time lapses. As time increases, the eyes and mouth regions seem to be the most stable sources of identifiable information.

roughly 48Gb of space was needed for storing these fea-
tures.

For analyzing the RS-LDA performance on each of the
five time lapse training sets, a total of 869 million test set
comparisons needed to be performed five times, resulting
in a total of 4.34 billion comparisons. Other computational
demands arose from the training of the RS-LDA subspaces
on sets of 8,000 subjects, performing parameter validation
on combinations of the four different parameters1 in the RS-
LDA framework, and generating the ROC curves for each
score matrix.

Machines with large amounts of RAM were also re-
quired to efficiently process the data. For example,the co-
variate analysis necessary for RS-LDA needed the MLBP
features from all 8,000 subjects to be loaded into main
memory. For testing, a major bottleneck occurred when
reading from disk the MLBP feature descriptors from each
of the 12,000 subjects. This made it necessary to keep
the MLBP features in memory while each of the 20 ran-
dom subspaces were processed (as opposed to releasing the
memory as each image was projected into one of the sub-
spaces).

Efficient code design helped overcome some of these
computational challenges. However, this study was pri-

1Recognition accuracies from training on roughly 10,000 subjects and
testing on 10,000 subjects was explored on over two hundred parameter
combinations.
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Figure 6. The ability to improve face recognition performance
by training on the same time lapse being tested on suggests face
recognition systems should update templates over time. For ex-
ample, at fixed intervals from the original acquisition date the
template is updated to reside in a subspaces trained for the time
lapse that has occurred since acquisition. Probe images would be
projected into each subspace and matched in the subspace corre-
sponding to each gallery image.

marily made possible by Michigan State University’s High
Performance Computing Center (HPCC), which provides a
cloud computing service. Up to 40 different compute nodes,
each with over 10gb of RAM, were used at the same time
to meet the computational demand of this experiment.

5. Conclusions
This paper presents studies on the largest face aging

dataset to date. These results demonstrate that (i) face
recognition systems degrade as the time lapse between



probe and gallery faces images, (ii) training to improve face
recognition performance in the presence of aging can lower
performance in non-aging scenarios, and (iii) the best per-
formance on a particular amount of time lapse is achieved
by training a system on that particular time lapse.

The findings presented suggest a periodic update of face
templates (see Figure 6). With significant time lapse, up-
dating the face template to reside in a subspace designed to
capture the most discriminative features will help improve
the recognition performance in the presence of aging with-
out compromising performance in cases where only a min-
imal amount of aging has occurred.

Our future work will involve expanding the study to in-
corporate additional subjects and face images. Further, the
impact of training subspaces not only on the time lapse, but
the subject’s age as well (i.e. train separate subspaces for
aging in young people and aging in old people) will be in-
vestigated.
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