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Heterogeneous Face Recognition Using
Kernel Prototype Similarities
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Abstract—Heterogeneous face recognition (HFR) involves matching two face images from alternate imaging modalities, such as an
infrared image to a photograph or a sketch to a photograph. Accurate HFR systems are of great value in various applications (e.g.,
forensics and surveillance), where the gallery databases are populated with photographs (e.g., mug shot or passport photographs) but
the probe images are often limited to some alternate modality. A generic HFR framework is proposed in which both probe and gallery
images are represented in terms of nonlinear similarities to a collection of prototype face images. The prototype subjects (i.e., the
training set) have an image in each modality (probe and gallery), and the similarity of an image is measured against the prototype
images from the corresponding modality. The accuracy of this nonlinear prototype representation is improved by projecting the
features into a linear discriminant subspace. Random sampling is introduced into the HFR framework to better handle challenges
arising from the small sample size problem. The merits of the proposed approach, called prototype random subspace (P-RS), are
demonstrated on four different heterogeneous scenarios: 1) near infrared (NIR) to photograph, 2) thermal to photograph, 3) viewed

sketch to photograph, and 4) forensic sketch to photograph.

Index Terms—Heterogeneous face recognition, prototypes, nonlinear similarity, discriminant analysis, local descriptors, random

subspaces, thermal image, infrared image, forensic sketch

1 INTRODUCTION

N emerging topic in face recognition is matching

between heterogeneous image modalities. Coined
heterogeneous face recognition (HFR) [1], the scenario offers
potential solutions to many difficult face recognition
scenarios. While heterogeneous face recognition can involve
matching between any two imaging modalities, the majority
of scenarios involve a gallery dataset consisting of visible
light photographs. Probe images can be of any other
modality, though the practical scenarios of interest to us
are infrared images (NIR and thermal) and hand-drawn
facial sketches.

The motivation behind heterogeneous face recognition is
that circumstances exist in which only a particular modality
of a face image is available for querying a large database of
mug shots (visible band face images). For example, when a
subject’s face can only be acquired in nighttime environ-
ments, the use of infrared imaging may be the only modality
for acquiring a useful face image of the subject. Another
example is situations in which no imaging system was
available to capture the face image of a suspect during a
criminal act. In this case a forensic sketch, drawn by a police
artist based on a verbal description provided by a witness or
the victim, is likely to be the only available source of a face
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image. Despite significant progress in the accuracy of face
recognition systems [2], most commercial off-the-shelf
(COTS) face recognition systems (FRS) are not designed to
handle HFR scenarios. The need for face recognition
systems specifically designed for the task of matching
heterogeneous face images is of substantial interest.

This paper proposes a unified approach to heteroge-
neous face recognition that

1. achievesleading accuracy on multiple HFR scenarios,

2. does not necessitate feature descriptors that are
invariant to changes in image modality,

3. facilitates recognition using different feature de-
scriptors in the probe and gallery modalities, and

4. naturally extends to additional HFR scenarios due to
properties 2 and 3 above.

2 REeLATED WORK

2.1 Heterogeneous Face Recognition

A flurry of research has emerged providing solutions to
various heterogeneous face recognition problems. This
began with sketch recognition using viewed sketches,'
and has continued into other modalities such as near-
infrared (NIR) and forensic sketches. In this section, we will
highlight a representative selection of studies in hetero-
geneous face recognition as well as studies that use kernel-
based approaches for classification.

Tang et al. spearheaded the work in heterogeneous face
recognition with several approaches to synthesize a sketch
from a photograph (or vice versa) [3], [4], [5]. Tang and
Wang initially proposed an eigen-transformation method

1. A viewed sketch is a facial sketch drawn while viewing a photograph
of the subject. The scenario is not practical because the photograph itself
could be queried in the FR system.
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Fig. 1. Example images from each of the four heterogenous face recognition scenarios tested in our study. The top row contains probe images from
(a) near-infrared, (b) thermal infrared, (c) viewed sketch, and (d) forensic sketch modalities. The bottom row contains the corresponding gallery

photograph (visible band face image, called VIS) of the same subject.

[3]. Later, Liu et al. performed the transformation using
local linear embedding to estimate the corresponding photo
patch from a sketch patch [4]. Wang and Tang proposed a
Markov random field model for converting a sketch into a
photograph [5]. Other synthesis methods have been
proposed as well [6], [7]. The generative transformation-
based approaches have generally been surpassed in
performance by discriminative feature-based approaches.
A key advantage of synthesis methods is that once a sketch
has been converted to a photograph, matching can be
performed using existing face recognition algorithms. The
proposed prototype framework is similar in spirit to these
methods in that no direct comparison between face images
in the probe and gallery modalities is needed.

A number of discriminative feature-based approaches to
HEFR have been proposed [8], [9], [10], [11], [12] which have
shown good matching accuracies in both the sketch and
NIR domains. These approaches first represent face images
using local feature descriptors, such as variants of local
binary patterns (LBPs) [13] and SIFT descriptors [14]. Liao
et al. first used this approach on NIR to VIS face recognition
by processing face images with a difference of Gaussian
(DoG) filter, and encoding them using multiblock local
binary patterns (MB-LBPs). Gentle AdaBoost feature selec-
tion was used in conjunction with R-LDA to improve the
recognition accuracy. Klare and Jain followed this work on
NIR to VIS face recognition by also incorporating SIFT
feature descriptors and an RS-LDA scheme [10]. Bhatt et al.
introduced an extended uniform circular local binary
pattern to the viewed sketch recognition scenario [11].
Klare et al. encoded both viewed sketches and forensic
sketches using SIFT and MLBP feature descriptors, and
performed local feature-based discriminant analysis
(LFDA) to improve the recognition accuracy [9]. Yi et al.
[15] offered a local patch-based method to perform HFR on
partial NIR face images. Zhang et al. extracted local features
and performed recognition between sketches and photos
using coupled information-theoretic encoding [16]. Lei and
Li applied coupled spectral regression (CSR) for NIR to VIS
recognition [12]. In [12], CSR was extended to Kernel CSR,
which is similar to the proposed prototype representation
in this work.

The synthesis method by Li et al. is the only known
method to perform recognition between thermal IR and

visible face images [17]. The only method to perform
recognition between forensic sketches and visible face
images is Klare et al. [9], which is also one of two methods,
to our knowledge, that has been tested on two different
HFR scenarios (viewed sketch and forensic sketch). The
other method is Lin and Tang’s [18] common discriminant
recognition framework, which was applied to viewed
sketches and near-infrared images. In this work, the
proposed prototype random subspace (P-RS) framework
is tested on four different HFR scenarios.

2.2 Kernel Prototype Representation

The core of the proposed approach involves using a
relational feature representation for face images (illustrated
in Fig. 2). By using kernel similarities between a novel face
pattern and a set of prototypes, we are able to exploit the
kernel trick [19], which allows us to generate a high
dimensional, nonlinear representation of a face image using
compact feature vectors.

The benefit of a prototype-based approach is provided
by Balcan et al. [19]. Given access to the data distribution
and a kernel similarity function, a prototype representation

Probe Image Gallery Image
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Fig. 2. The proposed face recognition method describes a face as a
vector of kernel similarities to a set of prototypes. Each prototype has
one face image in the probe and gallery modalities.
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is shown to approximately maintain the desired properties
of the high-dimensional kernel space in a more efficient
representation by using the kernel trick. While it is not
common to refer to kernel methods as prototype represen-
tations, in this work we emphasize the fact that kernel
methods use a training set of images (which serve as
prototypes) to implicitly estimate the distribution of the
nonlinear feature space. One key to our framework is that
each prototype has a pattern for each image modality.

The proposed kernel prototype approach is similar to the
object recognition method of Quattoni et al. [20]. Kernel
PCA [21] and Kernel LDA [22], [23] approaches to face
recognition have used a similar approach, where a face is
represented as the kernel similarity to a collection of
prototype images in a high-dimensional space. The bio-
metric indexing scheme by Gyaourova and Ross used
similarity scores to a fixed set of references in the face and
fingerprint modality [24].

These prior works differ from the proposed method
because only a single prototype is used per training subject.
By contrast, our approach is designed for heterogeneous
face recognition, and uses two prototype images per subject
(one per modality). Our earlier work [25] utilized a similar
approach that did not exploit the benefit of nonlinear
kernels, but did use a separate pattern from each image
modality (sketch and photo) for each prototype. The kernel
coupled spectral regression by Lei and Li used a similar
approach of representing heterogeneous face images as
nonlinear similarities to a set of prototypes [12].

2.3 Proposed Method

The proposed method presents a new approach to hetero-
geneous face recognition, and extends existing methods in
face recognition. The use of a nonlinear similarity repre-
sentation is well suited to the HFR problem because a set of
training subjects with an image from each modality can be
used as the prototypes and, depending on the modality of a
new image (probe or gallery), the image from each
prototype subject can be selected from the corresponding
modality. Unlike previous feature-based methods, where an
image descriptor invariant to changes between the two HFR
modalities was needed, the proposed framework only
needs descriptors that are effective within each domain.
Further, the proposed method is effective even when
different feature descriptors are used in the probe and
gallery domains. The proposed prototype framework is
described in detail in Section 4.

The accuracy of the HFR system is improved using a
random subspace framework in conjunction with linear
discriminant analysis (LDA), as described in Section 5. The
previous (or baseline) method of feature-based random
subspaces [10] is revisited in Section 6. Experimental results
on four different heterogeneous face recognition scenarios
(thermal, near-infrared, viewed sketch, and forensic sketch)
are provided in Section 7, and all the results are bench-
marked with a commercial face matcher.

While we demonstrate the strength of the proposed
framework on many different HFR scenarios, the parameters
controlling the framework are the same across all tested
scenarios. This shows that the contribution of this work is a
generic framework for improving solutions to the general

Probe Image
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Fig. 3. Example of thermal probe and visible gallery images after being
filtered by a difference of Gaussian, center surround divisive normal-
ization, and Gaussian image filter. The SIFT and MLBP feature
descriptors are extracted from the filtered images, and kernel similarities
are computed within this image descriptor representation.

HFR problem. Future use of the proposed framework will
benefit from selecting parameters tailored to a specific
scenario; however, that is beyond the scope of this work.

3 IMAGE PREPROCESSING AND REPRESENTATION

All face images are initially represented using a feature-
based representation. The use of local feature descriptors has
been argued to closely resemble the postulated representa-
tion of the human visual processing system [26], and they
have been shown to be well suited for face recognition [27].

3.1 Geometric Normalization

The first step in representing face images using feature
descriptors is to geometrically normalize the face images
with respect to the location of the eyes. This step reduces
the effect of scale, rotation, and translation variations. The
eye locations for the face images from all modalities are
automatically estimated using Cognitec’s FaceVACS SDK
[28]. The only exceptions are the thermal face images where
the eyes are manually located for both the proposed method
and the FaceVACS baseline.

Face images are geometrically normalized by 1) perform-
ing planar rotation to set the angle between the eyes to
0 degrees, 2) scaling the images so that the distance between
the two pupils is 75 pixels, and 3) cropping the images to a
height of 250 pixels and a width of 200 pixels, with the eyes
horizontally centered and vertically placed at row 115.

3.2 Image Filtering

Face images are filtered with three different image filters.
These filters are intended to help compensate for both
intensity variations within an image domain (such as
nonuniform illumination changes), as well appearance
variations between image domains. The second aspect is
of particular importance for the direct random subspace
(D-RS) framework (see Section 6). An example of the effects
of each image filter can be seen in Fig. 3.
The three image filters used are as follows.

3.2.1 Difference of Gaussian

A difference of Gaussian image filter has been shown by
Tan and Triggs to improve face recognition performance in
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the presence of varying illumination [29], as well as in an
NIR to VIS matching scenario by Liao et al. [8]. A difference
of Gaussian image is generated by convolving an image
with a filter obtained by subtracting a Gaussian filter of
width o from a Gaussian filter of width o5 (02 > 7). In this
paper, o1 =2 and oy = 4.

3.2.2 Center-Surround Divisive Normalization (CSDN)

Meyers and Wolf [30] introduced the center-surround
divisive normalization filter in conjunction with their
biologically inspired face recognition framework. The CSDN
filter divides the value of each pixel by the mean pixel value
in the s x s neighborhood surrounding the pixel. The
nonlinear nature of the CSDN filter is seen as a compliment
to the DoG filter. In our implementation, s = 16.

3.2.3 Gaussian

The Gaussian smoothing filter has long been used in image
processing applications to remove noise contained in high
spatial frequencies while retaining the remainder of the
signal. The width of the filter used in our implementation
was o = 2.

3.3 Local Descriptor Representation

Once an image is geometrically normalized and filtered
using one of the three filters, local feature descriptors are
extracted from uniformly distributed patches across the
face. In this work, we use two different feature descriptors
to represent the face image: the SIFT descriptor [14] and
Local Binary Patterns [13]. The SIFT feature descriptor has
been used effectively in face recognition [27], sketch to VIS
matching [9], and NIR to VIS matching [10]. LBP features
have a longer history of successful use in face recognition.
Ahonen et al. originally proposed their use for face
recognition [31], Li et al. demonstrated their use in NIR to
NIR face matching [32], and they have also been success-
fully applied to several HFR scenarios [8], [9], [10], [11].

The SIFT and LBP feature representations are effective in
describing face images due to their ability to encode the
structure of the face and their stability in the presence of
minor external variations [27]. Each feature descriptor
describes an image patch as a d-dimensional vector that is
normalized to sum to one. The face image is divided into a
set of N overlapping patches of size 32 x 32. Each patch
overlaps its vertical and horizontal neighbors by 16 pixels.
With a face image of size 200 x 250, this results in a total of
154 total patches.

Multiscale local binary patterns (MLBP) [9], a variant of
the LBP descriptor, is used in place of LBP in this work.
MLBP is the concatenation of LBP feature descriptors with
radii r = {1,3,5,7}.

Let I be a (normalized and filtered) face image. Let
fr.p(I,a) denote the local feature descriptor extracted from
image I at patch a, 1 <a < N, using image filter F' and
feature descriptor D. The DoG, CSDN, and Gaussian image
filters are, respectively, referred to as Fy, F,, and F;. The
MLBP and SIFT descriptors are, respectively, referred to as
D,, and D,. Using 16 histograms and 8 orientation bins, as
described by Lowe [14], the SIFT descriptor yields a 128D
feature descriptor. Using uniform patterns at eight sampling
locations, as decribed by Ojala et al. [13], the LBP descriptor

yields a 59D feature descriptor. This results in a 236D MLBP
feature descriptor (fr,p, (I,a) € IR*). Finally, we have

fro) = [froI, 1), ..., froI,N)"", (1)

which is the concatenation of all N feature descriptors.
Thus, frp,(I) € RV and frp, (I) € R¥OV.

Using the three filters and two descriptors, we have six
different representations available for face image I, namely,

fr.o, (), fr.p, (), fr,p,I), fr.0,(I), fr.p,(I),and fF, p,(I).

4 HETEROGENEOUS PROTOTYPE FRAMEWORK

4.1 Prototype Representation

The heterogeneous prototype framework begins with
images from the probe and gallery modalities represented
by (possibly different) feature descriptors for each of the
N image patches, as described in the previous section. For
compactness, let f(I) represent f.,(I). The similarity
between two images is measured using a kernel function
k:f(I)x f(I) — R.

Let 7 be a set of training images consisting of n, subjects.
The training set contains a probe image P, and gallery
image G; for each of the n, subjects. That is,

T:{P17G17"'7RLHG7L,}7 (2)

For both the probe and gallery modalities, two positive
semi-definite kernel matrices K” and K¢ are computed
between the training subjects. The probe kernel matrix is
KP € R™™, and the gallery kernel matrix is K¢ € IR™"™.
The entries in the ith row and jth column of K and K¢ are

K"(i,j) = k(f(R) f(F;)), 3)

K°(i,5) = k(f(G))  f(G))), (4)

where k(-,-) is the kernel similarity function. Results in all
experiments in this work use the cosine kernel function:

REANI(ED)
LFE- TG

The cosine kernel was chosen because it resulted in
consistently higher accuracy on all tested scenarios com-
pared to the radial basis function kernel and the polynomial
kernel. Additionally, we preferred the cosine kernel because
it is devoid of parameters.

Let P and G, respectively, be test probe and gallery face
images, i.e., (P,G ¢ T). The function ¢p(P) returns a vector
containing the kernel similarity of image P to each image P,
in 7. For gallery image G, ¢¢(G) returns a vector of kernel
similarities to the gallery prototypes G;. Thus, face images
are represented as the relational vector ¢p(P) € R™ for a
probe image and ¢¢(G) € IR™ for a gallery image. More
precisely, we have

¢p(P) = [k(f(P), f(P)),....k(f(P), f(B )], (6)

k(f(F), f(G)) ()

6(G) = [K(f(Q). F(G1)), ... k(F(G), f(Gu )" (7)

Using this prototype-based representation, extreme
inputs to the system (e.g., a nonface image) will cause the
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kernel similarity to degenerate to the kernel minimum (0 in
the case of the cosine kernel). This allows the system to
remain stable with respect to scale.

Additionally, because the feature vectors ¢p(P) and
¢ (G) are a measure of the similarity between the test image
and the prototype training images, the feature spaces for
similarity computation do not have to be the same for the
probe and gallery modalities. For example, the probe images
could be represented using Fr p,(P) and the gallery images
could be represented using Fr p, (G). Despite the fact that
the SIFT and MLBP feature descriptors are heterogeneous
features, the relational representation allows them to be
represented in a common feature space. This is based on the
assumption that

k(f(P), f(P) = K(f(G), f(Gi))- (8)

We will next introduce a discriminant subspace technique
to project these prototype features into a linear subspace that
better satisfies (8). When necessary, the tersely presented
notation of ¢p(I) or ¢g(I) will be expanded to the more
verbose notation ¢5” (1) or ¢f;” (1), respectively, in order to
specify which feature descriptor and image filter is initially
being used to represent the image I. For example, ¢5" (1)
denotes the prototype similarity of image I when repre-
sented using the CSDN image filter and SIFT descriptors.

4.2 Discriminant Analysis

After representing the images in the training set 7 in the
aforementioned prototype representation, we next learn
linear subspaces using linear discriminant analysis [33] to
enhance the discriminative capabilities of the prototype
representation ¢(-). LDA (and its variants) has consistently
demonstrated its ability to improve the accuracy of various
recognition algorithms through feature extraction and
dimensionality reduction. The benefits of LDA in the
context of face recognition have been demonstrated on
image pixel representations [33], [34], Gabor features [35],
and image descriptors [8], [9].

We learn the linear projection matrix W by following the
conventional approach for high-dimensional data, namely,
by first applying PCA, followed by LDA [33]. In all
experiments, the PCA step was used to retain 99.0 percent
of the variance. Let X be a matrix whose columns contain
the prototype representation of each image in 7:

X = [(z)P(Pll)v(bG(G,])a s ,¢P(P7;,)7¢G(G;Zt)]~ (9)

Let X’ denote the mean-centered version of X. The initial
step involves learning the subspace projection matrix W] by
performing principal component analysis (PCA) on X’ to
reduce the dimensionality of the feature space. Next, the
within-class and between-class scatter matrices of W] " - X’
(respectively), Sy and Sp, are computed. The dimension of
the subspace W] is such that Sy will be of full rank. The
scatter matrices are built using each subject as a class; thus
one image from the probe and gallery modality represents
each class. A more detailed description of how to compute
Sy and Sp is described in [9]. Last, the matrix W} is learned
by solving the generalized eigenvalue problem:

Sp-Wy=A-Sy-W,. (10)

This yields the LDA projection matrix W, where

W= (wy" - wit)" (11)

Letting 1 denote the mean of X, the final representation for
an unseen probe or gallery image I using the prototype
framework is W' - (¢(I) — u). Subsequent uses of W in this
work will assume the appropriate removal of the mean p
from ¢(I) for terseness.

5 RANDOM SUBSPACES

5.1 Motivation

The proposed heterogeneous prototype framework uses
training data to define the prototypes and to learn the linear
subspace projection matrix W. This requirement on training
data raises two (somewhat exclusive) issues in the prototype
representation framework. The first issue is that the number
of subjects in 7 (i.e., the number of prototypes) is generally
too small for an expressive prototype representation. While
Balcan et al. demonstrated that the number of prototypes
does not need to be large to approximately replicate the data
distribution [19], their applications primarily dealt with
binary classification and a small number of features. When
applying a prototype representation to face recognition, a
large number of classes (or subjects) and features are
present. The small sample size problem implies that the
number of prototypes needed to approximate the under-
lying data distribution should be large [36].

The second issue is also related to the small sample size
problem [36]. This common problem in face recognition
arises from too few training subjects to learn model
parameters that are not susceptible to generalization errors.
In the heterogeneous prototype framework this involves
learning a W matrix that generalizes well.

A number of solutions exist to tackle the small sample
size problem in face recognition. Most are designed to
handle deficiencies in the subspace W, such as dual-space
LDA [34] and direct LDA [37]. Regularization methods such
as R-LDA [38] also address degenerative properties of W.
However, these methods do not address the issue of too few
prototypes for an expressive representation.

Another approach to handle deficiencies in learning
parameters is the use of random subspaces [39]. The
random subspace method samples a subset of features
and performs training in this reduced feature space.
Multiple sets (or bags) of randomly sampled features are
generated, and for each bag the parameters are learned.
This approach is similar to the classical bagging classifica-
tion scheme [40], where the training instances are randomly
sampled into bags multiple times and training occurs on
each bag separately. Ensemble methods such as Ho’s
random subspaces [39] and Breiman’s bagging classifiers
have been demonstrated to increase the generalization of an
arbitrary classifier [41].

Wang and Tang demonstrated the effectiveness of
random sampling LDA (RS-LDA) for face recognition
[42]. Their approach combined random subspaces and
bagging by sampling both features and training instances.
For each random sample space, a linear subspace was
learned. Klare and Jain utilized this approach in the HFR
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Fig. 4. Overview of the proposed algorithm for performing heterogenous face recognition using prototype similarities.

scenario of NIR/VIS by using multiple samplings of face
patches described by local feature descriptors [10].

We consider random sampling ideal for the prototype
recognition framework because it is able to satisfactorily
address the two limitations: 1) The number of prototypes is
multiplied by the number of bags, which improves the
expressiveness of the prototype representation, and 2) the
use of an ensemble method improves deficiencies in W.
Further unification of these two separate problems into a
single solution offers a simpler framework.

5.2 Prototype Random Subspaces
The prototype random subspace framework uses B differ-
ent bags (or samples) of the N face patches. Each sample
consists of a - N patches, 0 < a < 1. For bag b (b=1...B),
we have the integer vector x; € Z*N, where each compo-
nent of x is a unique randomly sampled value from 1... N.
It is assumed that « is selected such that « - NV is an integer.
An example of randomly sampled face patches in shown
in Fig. 5.

Let f(I,k;) denote the concatenation of the a-N
descriptors from the randomly selected patch indices in
Kp. That is,

FUIma) = [fULmo(1)) - fU ma(a - N))TT

Letting K and K{ denote the probe and gallery kernel
similarity matrices for bag b, we modify (3) and (4) to

KL (i,5) = k(f(Pi, k) f(Py k),

(12)

(13)

KZ?(%]) = k(f(GuK’b) f(ijﬁb))
The preliminary prototype representation ¢(-) is now
modified to ¢(-,) as

¢P(P7 K:b) = [ k:(f(P7 Hb)?f(PlaHh))a AR

k(f(Pv ’ib)v f(an Iib)) }Tv

(14)

(15)

¢G(G, Iib) = [ k(f(G Hb) (Gl, Hb) geeey

k(f(G, k), f(Gry )]

Linear discriminant analysis is performed separately for

(16)

each bag. Using training set 7 (which was also used to
define the prototypes), we learn B subspace projection

matrices W;,, b=1...B.
A new face image I is represented in the random

subspace prototype framework as ®(I), where ®(I) is the
concatenation of each linearly projected prototype represen-
tation from each of the B random subspace bags. That is,

op(P) = (W5 - op(P,rp)']",
(17)

(W] - ép(P,k1))",

c(G) = (W5 - 6a(G,rp)']".

(18)

(W 66(G.r)), -,

For terseness we have omitted the superscript /' and D in
the previous equations. For example, in (17), ®5,"(I) is
abbreviated to ®(P) for image filter F' and descriptor D to

represent I.
A visual summary of the proposed prototype random

subspaces method can be found in Fig. 4.

(a)

(b)

Fig. 5. The process of randomly sampling image patches is illustrated.
(a) All image patches. (b), (c), and (d) Bags of randomly sampled
patches. The kernel similarity between SIFT and MLBP descriptors at
each patch of an incoming image and the prototypes of corresponding
modality are computed for each bag. Images from [43].

(d)
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5.3 Recognition

Given a probe face image P and a gallery face image G, we
define their similarity S(P,G) using the cosine similarity
measure:

 (®p(P). 3(C)
SO = o) -T2 (@]

Further, we let Sg:g; (P,G) denote the similarity between
the probe P represented using filter | and descriptor D;,
and gallery image G represented in terms of filter F, and
descriptor D,. That is,

(19)

PP, o7 (G
Sgg;(PyG)_ < P ( )7 G ( )>

— . 20
[@5 P (P)| - @ (G)] (20

This similarity measure facilitates recognition using a
threshold for a binary verification scenario or a nearest
neighbor matcher for an identification scenario.

5.4 Score Level Fusion

The proposed framework naturally lends to fusion of the
different feature representations. For example, given one
image filter F' and two feature descriptors D; and D, we can
utilize the following sum of similarity scores between probe
image P and gallery image G : {Sﬁ;ﬁ; (P,G)+ Sﬁ:jgj (P,G) +
SEDH(P,G) + Sﬁjgf (P, G)}. Min-max score normalization is
pefférmed prior to fusion.

6 BASELINES

6.1 Commercial Matcher

The accuracy of the proposed prototype random subspace
framework is compared against Cognitec’s FaceVACS [28]
COTS ERS. Comparing the accuracy of our system against a
leading COTS FRS offers an unbiased baseline of a state-of-
the-art commercial matcher on each HFR scenario. Face-
VACS was chosen because it is considered as one of the best
commercial face matchers and, in our internal tests, it excels
at HFR scenarios (with respect to other commercial
matchers). For example, the accuracy of FaceVACS on
NIR to VIS [10] and Viewed Sketch to VIS [9] performed on
par with some previously published HFR methods.

6.2 Direct Random Subspaces

In addition to a commercial face recognition system, the
proposed prototype recognition system is also compared
against a recognition system that directly measures the
difference between probe and gallery images using a
common feature descriptor representation. As discussed
previously, most recent approaches to heterogeneous face
recognition involve directly measuring the similarity
between two face images from alternate modalities using
feature descriptors [8], [9], [10], [11].

The random subspace framework from [10] is used as the
baseline because it is the most similar to the proposed
prototype framework, thus helping to isolate the difference
between using kernel prototype similarities versus directly
measuring the similarity. Further, because most of the
datasets tested in Section 7 are in the public domain, the
proposed framework may also be compared against any
other published method on these datasets.

To briefly summarize the direct random subspace
approach using our notation, at each bag b the D-RS
framework represents an image as frp(l,kp). LDA is
performed on each bag to learn the projection matrix W,
using the training set 7. The final representation ¥(-) is the
concatenation of the projected vector at each bag:

Ve p(I) = (W) feo(L k)", (Wh - frp(lkp)']"
(21)

The similarity between probe image P and gallery image G
(each represented with filter F and descriptor D) is
computed using the cosine similarity metric:

- B <\I/F_,D(P)7‘I’F,D(G)>
Spp(P,G) = [9rp(P)]| - [¥rp(G)]

Unlike P-RS, D-RS must use the same D for the probe
and gallery images. This follows from the fact that f; p, ()
and f;p,(I) are of generally different dimensionality and
also have a different interpretation.

The D-RS algorithm is presented as a baseline approach
motivated by our earlier works [9], [10]. However, through
directly measuring facial similarities, D-RS is able to
capture additional information that may be useful in the
recognition process. As such, it will be shown in Section 7
that score level fusion between D-RS and P-RS often
provide the highest accuracies in most HFR scenarios.

D-RS will be used in conjunction with the six filter/
descriptor representations presented in Section 3
(SIFT+DoG, MLBP+CSDN, etc.). Results will be presented
from the sum-score fusion of the min-max normalized
scores from these six representations.

(22)

7 EXPERIMENTS

The results provided are based on the following parameter
values: @ =0.1 and B =30. A cosine kernel was used to
compute the prototype similarity and 99.0 percent of the
variance was retained in the PCA step of LDA.

7.1 Databases

Five different matching scenarios are tested in this paper:
four heterogeneous face recognition scenarios and one
standard face recognition scenario. Example images from
each of HFR dataset can be found in Fig. 1. Results shown
on each dataset are the average and standard deviation of
five random splits of training and testing subjects. In every
experiment, no subject that was used in training was used
for testing.

7.1.1 Dataset 1—Near-Infrared to Visible (Fig. 1a)

The first dataset consists of 200 subjects with probe images
captured in the near-infrared spectrum (~780-1,100 nm) and
gallery images captured in the visible spectrum. Portions of
this dataset are publicly available for download.”> This
dataset was originally used by Li et al. [8], [32]. Only one
NIR and one VIS image per subject are used, making the
scenario more difficult than previous experiments which
benefited from multiple images per subject in training and

2. http:/ /www .cbsr.ia.ac.cn/english/Databases.asp.
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gallery enrollment [8], [10]. The data was split as follows:
ny = 133 subjects were used for training set 7 and the
remaining 67 subjects we used for testing.

7.1.2 Dataset 2—Thermal to Visible (Fig. 1b)

The second dataset is a private dataset collected by the
Pinellas County Sheriff’s Office (PCSO) and consists of 1,000
subjects with thermal infrared probe images and visible
(mug shot) gallery images. The thermal infrared images
were collected using a FLIR Recon III ObservIR camera,
which has sensitivity in the range of 3-5 um. The data was
split as follows: n; = 667 subjects were used for training set
T and the remaining 333 subjects were used for testing.

7.1.3 Dataset 3—Viewed Sketch to Visible (Fig. 1c)

The third dataset is the CUHK sketch dataset,®> which was
used by Tang and Wang [3], [5]. The CUHK dataset consists
of 606 subjects with a viewed sketch image for probe and a
visible photograph for gallery. A viewed sketch is a hand-
drawn sketch of a face which is drawn while looking at a
photograph of the subject. The photographs in the CUHK
dataset are from the AR [43], XM2VTS [44], and CUHK
student [3], [5] datasets. The 606 subjects were split to form
a training set 7 with n; = 404 subjects, and the remaining
202 subjects were used for testing.

7.1.4 Dataset 4—Forensic Sketch to Visible (Fig. 1d)

The fourth and final heterogeneous face dataset consists of
real-world forensic sketches and mug shot photos of
159 subjects. This dataset is described in [9]. Forensic
sketches are drawn by an artist based only on an eye
witness description of the subject. The forensic sketch
dataset is a collection of images from Gibson [45], Taylor
[46], the Michigan State Police, and the Pinellas County
Sheriff’s Office. Each sketch contains a suspect involved in a
real crime and the mug shot photo was only available after
the subject had later been identified. Forensic sketches
contain incomplete information regarding the subject and
are one of the most difficult HFR scenarios because the
sketches often do not closely resemble the photograph. The
number of subjects subjects used in 7 is 106, and 53 subjects
are used for the test set.

7.1.5 Dataset 5: Standard Face Recognition

A fifth nonheterogeneous (i.e., homogeneous) dataset is
used to demonstrate the ability of the proposed approach to
operate in standard face recognition scenarios as well. The
dataset consists of one probe and one gallery photograph of
876 subjects, where 117 subjects were from the AR dataset
[43], 294 subjects were from the XM2VTS dataset [44],
193 subjects from the FERET dataset [47], and 272 subjects
were from a private dataset collected at the University of
Notre Dame. This is the same dataset used in [27].

7.1.6 Enlarged Gallery

A collection of 10,000 mug shot images from 10,000 different
subjects was used in certain experiments to increase the size
of the gallery. These mug shot images were provided by the
Pinellas County Sheriff’s Office. Any experiment using

3. The CUHK dataset is publicly available for download at http://
mmlab.ie.cuhk.edu.hk/facesketch.html.

these additional images will have a gallery with the number
of testing subjects plus 10,000 images. Experiments with a
large gallery are meant to present results that more closely
resemble real-world face retrieval scenarios that would
occur in forensic and intelligence applications of hetero-
geneous face recognition.

7.2 Results

Fig. 6 lists the rank retrieval results of P-RS, D-RS, and
FaceVACS for each dataset using the additional 10,000
gallery images for each experiment. Additionally, the true
accept rates (TAR) at false accept rates (FAR) of 1.0 and
0.1 percent are listed to facilitate comparisons with other
published methods.

The results for P-RS are the fusion of the match scores from
{SED 4+ SED 4+ SEh + Sypr + Sppr 4+ Sgpr Y, de., the
same features are used in the probe and gallery images.
Similarly, D-RS is the fusion of the match scores from
{SF,D +SFD +SF(D +SF,D -‘rSFD +SF0D } Results
from these same matchers are also dlsplayed in CMC
(cumulative match characteristic) plots in Fig. 7.

The CMC results of matching NIR face images to
standard face images are shown in Fig. 7a. The accuracies
in Fig. 6 and Fig. 7a demonstrate that the proposed P-RS
matcher is able to outperform the D-RS method and
achieved comparable accuracy to FaceVACS on near
infrared sketches. The P-RS algorithm compares favorably
to other methods that have been tested on the CASIA HFB
NIR dataset with training and testing sets containing
disjoint sets of subjects. For example, Lei and Li’s kernel
coupled spectral regression achieved a TAR of 76.95 percent
at FAR = 0.1% [12]. Similarly, the LSNA method by Liao
et al. achieved a TAR of roughly 70 percent at FAR = 0.1%
[8]. By comparison, the P-RS method achieved an average
TAR of 95.8 percent at FAR = 0.1%. While the previous
methods trained on roughly 3,000 total NIR and VIS images
from roughly 150 subjects, the proposed P-RS method was
trained on 266 images from 133 subjects. However, the
previous methods did test the accuracy on test sets with
more images per subject, which may or may not have
contained additional face variations (the single NIR and VIS
image per subject that we used were selected at random).
Regardless, the improved accuracy using a smaller training
set of subjects clearly demonstrates the value of the
proposed P-RS method.

The CMC results of matching thermal face images to
standard face images are shown in Fig. 7b. P-RS is able to
achieve an average Rank-1 accuracy of 46.7 percent. By
comparison, it is observed that FaceVACS had a Rank-1
accuracy of 21.5 percent. This drastic improvement demon-
strates the benefit of P-RS’s notable property of not
requiring a feature descriptor that is invariant to changes
in the probe and gallery modalities. While a Rank-1
accuracy of 46.7 percent still leaves more to be desired,
the examples in Fig. 1 show that even humans would have
difficulty in this recognition task. The only previous method
on thermal to visible matching achieved a Rank-1 accuracy
of 50.06 percent, but it was evaluated on only 47 subjects in
the gallery [17]. By contrast, the Rank-1 accuracy for the
proposed P-RS method was computed using a gallery
consisting of 10,333 subjects.



KLARE AND JAIN: HETEROGENEOUS FACE RECOGNITION USING KERNEL PROTOTYPE SIMILARITIES 9

Rank-1 Accuracy (%)

Method NIR Thermal Sketch Forensic* Standard
P-RS 87.8+4.53 46.74+2.41 T74.6+542 14.7+£1.69 925+1.91
D-RS 66.6 £6.97 41.54+0.98 96.4+1.54 17.4+£3.10 93.7+0.20
(P-RS)+(D-RS) 86.6+4.35 49.2+1.90 9254352 20.84+2.07 93.0+1.05
FaceVACS 87.8+4.14 21.54+0.83 84.8+2.05 1.9+1.03 98.7 +0.40
* Results for forensic sketch are the Rank-50 accuracy.
()
TAR @ FAR = 1.0%
Method NIR Thermal Sketch Forensic Standard
P-RS 98.2+1.63 76.4+255 99.5+0.35 14.7+3.38 96.8+0.52
D-RS 94.0£3.50 77.5+£1.22 99.6+£041 17.7+£6.88 97.9+0.34
(P-RS)+(D-RS) 97.0£2.36 782+0.13 99.7+0.27 18.94+231 97.6+0.34
FaceVACS 93.7+1.63 47.5+£249 922+1.50 2.6=£1.03 99.5 +£0.40
(b)
TAR @ FAR = 0.1%
Method NIR Thermal Sketch Forensic Standard
P-RS 95.8 +£6.15 71.2+£12.94 99.0+1.25 12.9+5.39 95.5+2.55
D-RS 90.8 £8.52 72541225 99.5+0.44 15.7+£7.89 96.7+2.41
(P-RS)+(D-RS) 94.5+6.45 72.74+13.47 99.4+0.73 16.0+£7.23 96.4+2.41
FaceVACS 92.04+4.39 44.4+7.85 89.6 +=6.45 2.5+ 0.97 99.1 +1.02
(0

Fig. 6. Recognition results for the proposed prototype random subspace and the baseline direct random subspace method across five recognition
scenarios. Listed are the (a) rank retrieval results with using an additional 10,000 subjects in the gallery, (b) true accept rates at a fixed false accept
rate (FAR) of 1.0 percent, and (c) TAR at FAR of 0.1 percent. (P-RS)+(D-RS) is a sum of score fusion between the two methods.

The CMC results of matching viewed sketch face images
to standard face images are shown in Fig. 7c. The P-RS
exhibited decreased accuracy when using the extended
gallery. However, the TAR values in Figs. 6b and 6c indicate
that P-RS is still well suited for this task. When removing
the extended gallery, the P-RS method achieved an average
Rank-1 recognition rate of 99.47 percent. This is slightly
lower than the 99.87 percent average accuracy reported in
[12]. Using P-RS parameters tuned to the viewed sketch
scenario (instead of the generic parameters used) should
improve this accuracy.

The CMC results of matching forensic sketch face images
to standard face images are shown in Fig. 7d. For forensic
sketches, the Rank-50 accuracy is most relevant because the
Rank-1 accuracy is too low to be useful: Forensic investi-
gators generally examine roughly the top 50 retrieved
matches from a query. In this forensic sketch scenario, the
P-RS method (Rank-50 accuracy of 14.7 percent) was
outperformed by the D-RS method (Rank-50 accuracy of
17.4 percent). The only previous method to publish results
on forensic sketch matching also used the same size
extended gallery and achieved a Rank-50 accuracy of
13.4 percent [9] (this number is the weighted average of a
32.65 percent Rank-50 accuracy on 49 good sketches and an
8.16 percent accuracy on 110 poor sketches). It is important
to note that the matcher in [9] was trained on viewed
sketches and not forensic sketches like P-RS and D-RS.

The lower accuracy of P-RS compared to D-RS on the
forensic sketch dataset can be attributed to two factors. The

primary factor is the small training set. While both methods
utilize learning, D-RS is able to leverage the a priori
knowledge that SIFT and MLBP perform well for direct
similarity measurement. An additional reason for P-RS’s
lower accuracy on forensic sketch matching is that these
sketches are often not completely accurate due to the
inability of a witness to adequately describe the face of a
suspect. This impacts the desired property in (8) that if two
images of the same subject are similar in the probe modality
that they will be similar in the gallery modality. Despite
these limitations, P-RS still achieved an order of magnitude
improvement in accuracy over the COTS FRS.

Fig. 9 demonstrates the ability of the P-RS framework to
perform recognition using different feature descriptors for
the probe and gallery images. Fig. 9 lists the accuracy for
the viewed sketch and near-infrared scenarios averaged
over five random training/testing splits without the
additional 10,000 gallery images. The columns indicate
each of the six different image filter and feature descriptor
combinations used to represent the gallery, and the rows
indicate the representations used for the probe images.
Thus, the nondiagonal entries for each scenario correspond
to when the probe and gallery images are represented with
different features. The accuracy is generally higher when
the same features are used for faces in the probe and gallery
(i.e., the diagonal entries). Various levels of accuracy are
witnessed when using different image features, ranging
from poor to high. Similar results were obtained with the
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Fig. 7. CMC plots for each of the four HFR scenarios tested. Each scenario is using an additional 10,000 gallery images to better replicate real-world
matching scenarios. Listed are the accuracies for the proposed prototype random subspace method, the direct random subspace method [10], the
sum-score fusion of P-RS and D-RS, and Congitec’s FaceVACS system [28].

thermal and forensic sketch scenarios, but were omitted
due to limited space.

The ability to perform face recognition with the probe
and gallery images using different representations is a
property that previous feature-based methods did not
possess. This property is important to mention because it
demonstrates the proposed method’s ability to generalize to
other unknown HFR scenarios. For example, in the case of
thermal to visible recognition, if a local feature descriptor is
developed that leads to high accuracy in matching thermal
to thermal, it can be incorporated into this framework even
if it does not work well in the visible domain. As other HFR
scenarios are attempted (such as 3D to 2D visible photo-
graph), this property could prove extremely useful in
overcoming the hurdle of finding a feature descriptor that
is invariant to changes between the two domains which
feature-based methods rely on.

The relationship between the number of prototypes used
in the P-RS representation and the recognition accuracy was
measured to better understand the number of prototypes
needed for maximal performance. Fig. 8 lists the recognition
accuracy when all the training subjects are available for
LDA subspace learning, but only a subset of the subjects are
used as prototypes. As shown, the recognition accuracy
generally saturates around 100 prototypes. The scenarios

with more subjects available for LDA (e.g., thermal) do
seem to benefit from more prototypes than those with fewer
LDA subjects (e.g., NIR). However, in all cases the number
of prototypes needed is significantly less than the total
number of training subjects. Such results speak well toward
the scalability of the proposed P-RS method.

The value of both the P-RS and D-RS methods
is observed when examining their fusion results. In all
cases except near infrared HFR, the fusion of the two
methods resulted in improved recognition accuracy. This
indicates that the two methods are generally able to extract
some degree of orthogonal information, resulting in im-
proved accuracy through fusion.

The proposed P-RS framework also generalizes to
standard face recognition scenarios. Using the standard
(nonheterogeneous) face dataset, Fig. 10a compares the
accuracy of P-RS, D-RS, and FaceVACS. FaceVACS clearly
outperforms P-RS and D-RS as expected since it is
consistently one of the top performers in NIST face
recognition benchmarks. However, using four different face
datasets we see that P-RS and D-RS both achieve Rank-1
accuracies around 93 percent with 10,876 subjects in the
gallery. In Fig. 10b, the results of matching using different
feature descriptors in the probe and gallery domain are
shown. The ability to match probe and gallery images using
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Fig. 8. The effect of the number of prototypes on the recognition accuracy. The accuracy (vertical axis) is the TAR @ FAR = 1.0%. For each HFR
scenario, results are computed using a subset of the prototypes (horizontal axis) for the initial representation, and all training samples for the
subsequent LDA step. For each scenario, it is observed that accuracy generally plateaus around 100 prototypes. However, when more LDA training
samples are available (e.g., thermal), additional prototypes seem to help the recognition accuracy. Results shown are the mean and standard
deviation from the five random splits for the following HFR scenarios: (a) near infrared, (b) viewed sketch, and (c) thermal infrared.

o 20 40

different feature representations is rare and could benefit 8 SUMMARY
situations in which older face templates exist but the
original face images are missing.

The proposed P-RS method is computationally scalable
to meet the demands of real-world face recognition systems.
Running in Matlab and using a single core from a 2.8 GHz

Intel Xeon processor, the ff)llowing amount .of tirr.le. IS hich each prototype subject has an image in both the
needed to enrf)ll a.smgle fa.ce image after the offline training gallery and probe modalities. The nonlinear kernel similar-
step. Image filtering requires roughly 0.008 sec for DoG, ity between an image and the prototypes is measured in the
1.1 sec for CSDN, and 0.004 sec for Gauss. The MLBP and corresponding modality. A random subspace framework is
SIFT feature descriptors each take roughly 0.35 sec to employed in conjunction with LDA subspace analysis to
compute. Because each image filtering is performed only . riher improve the recognition accuracy.

once, and each feature descriptor is computed three times The proposed method leads to excellent matching
(once for each filter), computing all six filter/descriptor  accuracies across four different HFR scenarios (near
combinations takes around 3.2 sec. The prototype random infrared, thermal infrared, viewed sketch, and forensic
subspace representation with 30 bags takes roughly 0.2 sec  sketch). Results were compared against a leading commer-
to compute for a single filter/descriptor combination. Thus, cial face recognition engine. In most of our experiments the
all six filter/descriptor combinations take roughly 1.8 sec.  gallery size was increased with an additional 10,000 subjects
In total, a face image needs around 5.0(s) to enroll in Matlab.  to better replicate real matching scenarios. In addition to
With a gallery of n, subjects and the final feature vector ® of  excellent matching accuracies, one key benefit of the
size d’, identification of a subject is O(d’ - n,). Depending on  proposed P-RS method is that different feature descriptors
the number of bags, the number of prototypes for each can be used to represent the probe and gallery images.
scenario, and the variance retained in the PCA step, d’ isin  Finally, the number of prototypes needed by P-RS for

A method for heterogeneous face recognition, called
Prototype Random Subspaces, is proposed. Probe and
gallery images are initially filtered with three different
image filters, and two different local feature descriptors are
then extracted. A training set acts as a set of prototypes in

the order of 1,000. effective performance was shown to be stable.
Viewed Sketch Near Infrared
Gallery Features Gallery Features
Probe DoG DoG CSDN  CSDN  Gauss Gauss Probe DoG DoG CSDN  CSDN  Gauss  Gauss
Features SIFT MLBP SIFT SIFT SIFT MLBP Features SIFT MLBP SIFT SIFT SIFT MLBP
DoG SIFT 98.5 99.0 98.0 99.0 98.5 99.0 DoG SIFT 94.0 92.5 92.5 92.5 92.5 91.0
DoG MLBP 94.1 95.0 9.1 93.6 94.6 95.5 DoG MLBP 83.6 91.0 74.6 80.6 83.6 82.1
CSDN SIFT 98.5 99.0 99.0 99.0 98.5 99.0 CSDN SIFT 94.0 92.5 97.0 88.1 94.0 89.6
CSDN SIFT 94.1 83.7 88.1 96.0 91.6 93.1 CSDN SIFT 92.5 89.6 94.0 98.5 89.6 91.0
Gauss SIFT 97.5 98.0 98.5 98.5 99.0 98.0 Gauss SIFT 86.6 85.1 91.0 82.1 92.5 82.1
Gauss MLBP 90.6 84.2 94.6 94.1 95.5 98.5 Gauss MLBP 68.7 74.6 76.1 76.1 88.1 89.6

(@ (b)

Fig. 9. True accept rates at a fixed false accept rate of 1.0 percent using the proposed P-RS framework with different features for the probe and
gallery. The rows list the features used to represent the probe images, and the columns list the features for the gallery images. The nondiagonal
entries in each table (in bold) use different feature descriptor representations for the probe images than the gallery images. These results
demonstrate another “heterogeneous” aspect of the proposed framework: recognition using heterogeneous features. The first row and sixth column
of (a) demonstrate that the P-RS framework can achieve 99.0 percent accuracy representing the probe/sketch images with DoG filtered SIFT and
the photo/gallery images with Gaussian filtered MLBP.
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Gallery Features
Probe DoG  DoG CSDN  CSDN  Gauss Gauss
Features SIFT  MLBP  SIFT SIFT SIFT MLBP
DoG SIFT 97.9 96.9 97.6 96.9 96.9 97.3
DoG MLBP 97.6 96.9 97.3 97.3 96.2 96.6
CSDN SIFT 95.5 95.5 96.6 95.5 95.2 95.5
CSDN SIFT 95.9 94.5 96.2 95.9 96.2 95.9
Gauss SIFT 95.9 95.2 95.5 95.5 96.6 95.2
Gauss MLBP  95.9 96.2 95.2 95.5 96.2 96.9
(b)

Fig. 10. Face recognition results when using photographs for both the
probe and gallery (i.e., nonheterogeneous face recognition). (a) CMC
plot of matcher accuracies with an additional 10,000 gallery images.
(b) Results when different features are used to represent the probe and
gallery images. The layout is the same as in Fig. 9.

Future work will focus on 1) improving the accuracy of
each of the tested HFR scenarios separately, and 2) in-
corporating additional HFR scenarios. Tailoring the P-RS
parameters and learning weighted fusion schemes for each
HFR scenario separately should offer further accuracy
improvements. One additional HFR scenario that should
be considered is 3D to 2D face matching. P-RS should be
particularly impactful in this scenario because heteroge-
neous features will be required to represent faces in the 3D
and 2D modalities.
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