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Abstract

A study of the distinctiveness of different facial features
(MLBP, SIFT, and facial marks) with respect to distinguish-
ing identical twins is presented. The accuracy of distin-
guishing between identical twin pairs is measured using the
entire face, as well as each facial component (eyes, eye-
brows, nose, and mouth). The impact of discriminant learn-
ing methods on twin face recognition is investigated. Ex-
perimental results indicate that features that perform well
in distinguishing identical twins are not always consistent
with the features that best distinguish two non-twin faces.

1. Introduction

As the performance of face recognition systems in con-
strained environments continues to improve [6], focus is
shifting from methods that improve face recognition per-
formance in general, to methods that handle specific cases
of failure. Until recently, a scenario that has been known to
confound even human face recognition had not been stud-
ied for automated face recognition systems. This scenario
is the ability to distinguish between identical (monozygotic)
twins. Because identical twins are genetically equivalent,
their facial appearance is also quite similar. Generally, dif-
ferences in their appearance can only be attributed to ex-
posure to different environmental factors (such as dietary
habits and aging) and rare cases of genetic mutations.

Failing to properly identify a subject who has an iden-
tical twin has many negative economic and security impli-
cations [23]. As such, two recent studies have measured
the performance of commercial off the shelf (COTS) face
recognition systems (FRS) in distinguishing between iden-
tical twins [23, 18]. The ability to match identical twin fin-
gerprints has been examined as well [8]. However, there
has yet to be an analysis of which facial features are the
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most distinctive between identical twin pairs, and whether
face recognition systems can be designed to improve the
performance in this scenario. Thus, while previous studies
have provided a better understanding of the vulnerabilities
of face recognition systems when presented with a twin im-
poster, this paper offers some initial guidance for how face
recognition systems can be designed to improve twin iden-
tification.

Klare and Jain organized the facial features for repre-
senting face images into three levels. Level 1 features (such
as Eigenfaces) describe the general appearance of the face,
and are useful for quickly discarding large portions of the
population. Level 2 features (such as SIFT [13] and LBP
[17] descriptors, and Gabor wavelets) embed precise geo-
metrical and structural measurements of the face, and are
necessary for discriminating between two similar looking
faces. Finally, Level 3 features (such as scars and facial
marks) consist of skin irregularities and micro features that
are useful for discriminating between ambiguous faces (e.g.
identical twins) or incomplete faces (e.g. occlusions).

Our research measures the distinctiveness of Level 2
(MLBP and SIFT) and Level 3 (facial marks) facial fea-
tures with respect to identical twins. A framework for
component-based face recognition is developed in order to
analyze the distinctiveness of the different facial compo-
nents (eyes, eyebrows, nose, and mouth). Finally, we ex-
amine the impact of linear discriminant analysis methods
on twin recognition to help understand (i) whether facial
feature subspaces better suited for distinguishing between
twin pairs can be learned, and (ii) whether such subspaces
impact face recognition performance in non-twin compar-
isons. This work does not consider the performance of com-
mercial face recognition systems on identical twins because
this was previously examined [18].

2. Related Work
Sun et al. were the first to measure face recognition

performance on a database of identical twins [23]. The
study measured the performance of a leading COTS FRS
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Figure 1. Examples of identical twin pairs from the 2009 Twins Day collection [18]. Each pair of images in (a) and (b) are two differ-
ent subjects who are identical twins. Distinguishing between pairs of identical twins is one of the more challenging problems in face
recognition.

on a dataset containing 51 pairs of identical twins. Analy-
sis of the match score distributions from twin imposters and
genuine subjects indicated high levels of similarity. How-
ever, the dataset was collected under non-ideal conditions,
including minor pose variations, non-uniform background,
and uncontrolled illumination.

Phillips et al. [18] presented the largest study to date
of face recognition performance on identical twins. A
dataset of 126 twin pairs was analyzed using the three top
COTS FRS participants in the Multi-Biometrics Evaluation
[6]. The results demonstrated that COTS FRS perform ad-
mirably in distinguishing between twin pairs captured in
controlled environments with minimal time lapse. How-
ever, a smaller data set of twin pairs captured with a time
lapse of one year (24 pairs) indicated that even this rela-
tively small time difference was more detrimental to recog-
nition performance than other factors such as adverse light-
ing conditions.

Klare and Jain have proposed a taxonomy of facial fea-
tures that organizes the features into three levels (Level 1,
Level 2, and Level 3) [10]. This taxonomy is used as a
guideline for analyzing the distinctiveness of facial features
in distinguishing between identical twin pairs. Level 1 fea-
tures, such as appearance-based features, do not contain
sufficient discriminatory information to improve the iden-
tification accuracy of identical twins and are not considered
in this work. Level 2 facial features consist of representa-
tions that encode the shape and structure of the face and are
localized with respect to the facial geometry. Examples of
Level 2 features include densely sampled local binary pat-
terns (LBP) [17] and SIFT [13] feature descriptors, Gabor
wavelets, and anthropometric shape information. Level 2
features are critical in standard face recognition tasks, how-
ever their suitability for distinguishing between identical
twins may be impacted by the strong facial similarities that
pairs of identical twins exhibit.

In the facial feature taxonomy, Level 3 facial features
consist of facial irregularities such as facial marks and scars,
as well as micro texture information. One form of facial
marks, a mole (or nevus), has been shown to be unique be-
tween identical twins [7]. While facial marks (and Level
3 features in general) are often insufficient for identifica-
tion, they have been fused with a COTS FRS to improve the
identification accuracy [19] and are believed to help resolve
ambiguous matches such as identical twins [10].

Component-based face recognition involves explicitly
measuring the similarity of two subjects using a specific
facial component (e.g. eyes, nose, mouth). Elastic graph
bunch matching (EGBM) [25] is similar to such an ap-
proach, where facial landmarks are used to compute Gabor
representations at different facial components, but while the
representation is measured per component, the matching is
performed across all components taken together. The most
advanced methods in component-based face recognition can
be found in a host of algorithms for performing periocular
recognition [20, 3, 16]. Periocular recognition makes use of
only images of the eyes (and often eyebrows) to determine
a subject’s identity.

3. Facial Features
3.1. Level 2 Features

We examine two types of Level 2 facial features: multi-
scale local binary patterns (MLBP) and scale invariant fea-
ture transform (SIFT) feature descriptors. The multi-scale
local binary patterns are the concatenation of LBP feature
descriptors with radii 1, 3, 5, and 7 [11]. Both the MLBP
and SIFT feature descriptors are sampled across the face
(or component) in 32x32 sized patches that overlap by 16
pixels. The feature descriptor from all image patches are
concatenated into a final feature vector x representing the
face or facial component. All face images are normalized



as described in Section 6.

3.2. Level 3 Features

In addition to SIFT and MLBP, we also examine the use
of facial marks in distinguishing between identical twins.
Facial marks are Level 3 features that can be used to distin-
guish between identical twin pairs. The facial marks used in
this work were manually annotated1 on all images by a sin-
gle examiner. The order of the images in our database was
randomized to prevent a bias from labeling multiple images
of the same subject, or their twin, in succession. The facial
mark matching results are considered optimistic due to the
use of a single examiner to label the images.

The previous work on facial mark identification pre-
sented a matching module that was compatible with textual
queries (e.g. “mole on right cheek”) [19]. In this work, we
have developed a mark matching algorithm that does not
facilitate textual queries, but improves the matching perfor-
mance.

The first step in the mark matching algorithm is to align
the face images. This is achieved using the geometric nor-
malization technique mentioned in Section 6. In the second
step, the Euclidean distance between a pair of marks in the
two faces being compared is measured, and the marks are
labeled a match if the distance is smaller than the thresh-
old τ . Next, we eliminate one-to-many matches from the
previous step by choosing the mark pair with the smallest
distance. The final step involves using any mark matches
found (or not found) between two faces to generate a simi-
larity score.

The face mark similarity score si,j between two faces i
and j is generated as

si,j =
nMatched√
ni · nj

(1)

where nMatched is the number of matched marks between
face i and face j, and ni and nj are the total number of
marks detected in faces i and j, respectively. However,
the formula in Eq. 1 is not used in the following special
cases. If either face i or face j has no face marks, then
si,j = 0. This means there is not enough information to say
whether they match or do not match because the absence
of marks might be due to makeup or some other factor. If
nMatched = 0, then si,j = −1, which indicates a strong evi-
dence that the marks are not from the same person.

The scoring method presented above is designed for sum
of score fusion with match scores from Level 2 features
by (i) decreasing the match score when face marks provide
evidence of non-matching, (ii) increasing the match score
when face marks provide evidence of similarity, and (iii)
not altering the match score when we do not have enough

1While automated mark detection works reasonably well, we did not
want inaccuracies from this process to degrade the feature analysis.

evidence to make a decision using face marks. Because the
face marks alone are not sufficient for identification, we fuse
the scores using weighted sum of score fusion [21], with a
small weight assigned to face marks matching scores. Al-
though the dataset we used was collected on the same day
or only a few days apart, this framework should be robust
to the case when the dataset is collected over a larger time
lapse.

4. Component-based Representation
In this section a framework for analyzing two faces on

a per-component basis is presented, which is illustrated in
Figure 2. The motivation to analyze the discriminative in-
formation contained in each facial component with respect
to identical twins is based on the need to isolate the differ-
ent sources of information present in the face. Through such
isolation we intend to better understand how face recogni-
tion systems can be modified to improve face recognition
for identical twins.

The first step in the component-based analysis is to de-
tect a set of facial landmarks on the face. This was per-
formed using the open source Active Shape Model [4] soft-
ware Stasm [15]. In order to improve the accuracy of land-
mark detection, the PittPatt Face Recognition SDK [1] was
used to first detect the center of the two eyes and the nose.
These landmarks were in turn used to initialize the active
shape model by performing an affine transformation to align
the mean shape with the three detected landmarks.

Once the facial landmarks are detected, the next step is
to align each facial component. To align each facial com-
ponent, we performed Procrustes analysis/alignment [5] on
each facial component separately. While Procrustes align-
ment is often performed on the entire collection of facial
landmarks [22], aligning each component separately results
in a more accurate alignment. This per-component align-
ment does lose some information regarding the spatial rela-
tion between each component; however, our objective is to
determine the information content in each component. In-
deed, our analysis of the entire face incorporates informa-
tion regarding the spatial relation among the components
(e.g. how far the mouth is from the nose). The method
of aligning each component separately has been used pre-
viously to cluster face images [12]. Figure 3 shows the im-
proved alignment from aligning each component separately.

With the landmarks from each facial component aligned,
we perform an affine transformation on the image using the
rotation, translation, and scaling parameters from the Pro-
crustes alignment. Each component is then cropped using
the minimum and maximum horizontal and vertical land-
mark location from all images begin aligned. Figure 2
shows an example of the components after alignment and
cropping.

Once each component is aligned, we are able to repre-
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Figure 2. The process for extracting facial components. After detecting facial landmarks using an Active Shape Model, Procrustes analysis
is performed separately on each facial component.

sent the component images using Level 2 features in the
same manner as with the entire face (MLBP and SIFT).
As mentioned earlier, the SIFT and LBP features were ex-
tracted using 32x32 patches with a 16 pixel overlap. As
such, we scaled each component to a size that is a factor of
16. Though this scaling does not maintain the aspect ratio,
it is performed consistently for each subject and thus does
not have any negative impact. The final component image
sizes are:
• Eyes = 64x160

• Eyebrows = 64x160

• Nose = 96x96

• Mouth = 64x160

The components shown in Figure 2 and Figure 3 are before
the component scaling is performed.

5. Discriminative Learning
One of the significant contributions to automated face

recognition has been the application of linear discriminant
analysis (LDA). Belhumeur et al. [2] originally offered this
solution on pixel representations of the face by solving the
generalized eigenvalue problem SB ·Ψ = Λ ·SW ·Ψ, where
SB is the between-class scatter matrix and SW is the within-
class scatter matrix. The eigendecomposition has the effect
of maximizing the Fisher criterion ||S′

B ||/||S′
W ||, where S′

is the scatter matrix from the subspace Ψ. Most practical
face recognition scenarios require learning Ψ from a sepa-
rate set of training subjects than the subjects the system will
be tested on.

The original FisherFace method was applied on Level 1
appearance (pixel) features. Because appearance represen-

tations have high spatial redundancy and their dimension-
ality may be substantially reduced in size without losing
discriminative information [10], the FisherFace approach
has been quite successful in learning improved feature sub-
spaces from the original representation. However, as faces
are more commonly being represented with more verbose
Level 2 features (such as LBP’s), the richer information
content impacts the ability to apply the standard discrimi-
nant analysis. Instead, methods such as random sampling
LDA (RS-LDA) [24], direct LDA (D-LDA) [9], and regu-
larized LDA (R-LDA) [14] are applied to handle degenera-
tive scatter matrices.

In this work we adopt the random sampling LDA method
for our discriminative subspace analysis. RS-LDA gener-
ates a set of B subspaces Ψb that are each learned on a sub-
set of training instances (bagging) and a subset of features
(random sampling). Thus, if x ∈ Rd is the initial represen-
tation of a face image (e.g. a concatenation of LBP feature
vectors), for each subspace b, we learn Ψb on xb ∈ Rdb ,
where the db < d features in xb are a randomly sampled
subset of the original d features.

The following parameters are tunable in our implemen-
tation of RS-LDA: (i) 0 < s < 1 is the percentage of the
original set of d features to be sampled at each stage b, (ii)
p is the number of face images to use at each stage, and (iii)
0 < v < 1 is the percentage of variance to be retained in
each stage. The variance is controlled by performing prin-
cipal component analysis (PCA) on xb at each stage.

We present a modification to RS-LDA that is designed
to improve the performance on identical twins. Let xik de-
note the feature vector of the k-th image for the i-th subject.
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(b)
Figure 3. The mean shape for each facial component (eyebrows,
eyes, nose, and mouth) from 523 images. (a) The mean shapes re-
sulting from performing Procrustes alignment on each facial com-
ponent separately. (b) The mean shapes from performing Pro-
crustes alignment on the entire face. The mean components in (a)
appear sharper than those in (b), indicating an improved alignment
from the per-component alignment.

µi =
∑ni

k=1 x
ik/ni is the mean vector for each subject i,

where ni is the number of instances for subject i. For all
N subjects, the total mean vector is µ =

∑N
i=1 µi · ni/n,

where n =
∑N

i=1 ni. Traditionally, SB is built as SB =∑N
i=1 ni · (µi − µ) · (µi − µ)T [2].
In order to learn a subspace designed to distinguish

between pairs of identical twins, we introduce a method
called Twin RS-LDA. Let µTwin

i be the average of the two
mean vectors for the subject i, and his identical twin j, i.e.
µTwin
i = (ni ·µi+nj ·µj)/(ni+nj). Next we build the twin

between-class scatter matrix STwin
B =

∑N
i=1(µi − µTwin

i ) ·
(µi − µTwin

i )T. Finally, for each random sample stage b,
we learn the matrix ΨTwin

b from an eigendecomposition of
STwin
B ·ΨTwin = Λ · SW ·ΨTwin.

By replacing SB with STwin
B , Twin RS-LDA attempts to

maximize the difference energy between twin pairs, as op-
posed to the difference energy between all pairs of subjects.
The within-class scatter SW remains the same because we
still seek a subspace that minimizes the within-class varia-
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Figure 4. The Fisher separability values for each facial component
and the entire face using MLBP feature descriptors. The “Twin”
scores are computed from F Twin from Eq. 2, and the “All” scores
are computed from F from Eq. 3.

tion.
Both RS-LDA and Twin RS-LDA are applied to MLBP

and SIFT feature descriptors. Further, they are both applied
to the complete face image as well as each facial component
separately.

Generating the two between-class scatter matrices also
allows us to compare the inherent separability of different
features and components with respect to distinguishing only
twin pairs and distinguishing all pairs of subjects. For this
purpose, we introduce the Fisher separability measure F
to measure the separability amongst all comparisons, and
F Twin for only twin comparisons. Letting λBTwin ∈ Rd be
the vector of eigenvalues from STwin

B , λB ∈ Rd be the vec-
tor of eigenvalues from SB , and λW ∈ Rd be the vector of
eigenvalues from SW , we compute the Fisher values as

F Twin =

∑d
i=1 λBTwin(i)∑d
i=1 λW (i)

(2)

F =

∑d
i=1 λB(i)∑d
i=1 λW (i)

(3)

The relative values of these two measures will help under-
stand if certain facial components are more distinct in iden-
tifying twins.

6. Experimental Results
Our experiments were conducted on the twin data col-

lected in 2009 at the Twins Day festival, which has been de-
scribed in detail in [18]. We did not have access to the pairs
collected in 2010 [18]. The 2009 database contains 87 pairs
of identical twins (174 subjects). Each subject contained ei-
ther two or four images depending on whether they attended
one or two days of data collection. The images used were
all frontal pose, neutral expression, and the subjects did not
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Figure 5. Recognition accuracies using facial marks features. Note that face marks in identical twins may not be fully distinct or may not
even be present (a). Still, the amount of performance improvement from fusing face marks with MLBP features in Twin vs. Twin (b) over
All vs. All (c) demonstrates the value of facial marks in distinguishing identical twins.

wear glasses. The images were collected in tents with stu-
dio lighting; however, a small directional illumination was
detected in the images. Because of the negative effect the
illumination has on the MLBP and SIFT representations, a
difference of Gaussian (DoG) filter (σ1 = 2 and σ2 = 4)
was used to discard this low frequency noise. The use of a
DoG filter nearly doubled the true accept rate of the MLBP
features.

We measured the face recognition performance using
each of the four facial components (eyes, eyebrows, nose,
and mouth) as well as the entire face. For the entire face,
we geometrically normalized the face using the center of
the eyes to (i) rotate the image so that the angle between the
eyes was 0 degrees, (ii) scale the image so the inter-pupilary
distance was 75 pixels, and (iii) crop the face to a height of
250 pixels and a width of 200 pixels.

The RS-LDA and Twin RS-LDA subspaces were trained
using a training set of twin pairs, and was tested using a
different set of twin pairs (i.e. no subject in training was
used for testing). Due to the relatively small number of
twin pairs, bootstrap sampling was performed to generate
the training and testing splits. From the 87 twin pairs, we
sampled with replacement 87 pairs for training. That is, we
sampled 87 total pairs such that some twin pairs would oc-
cur multiple times within the 87 training pairs, and other
twin pairs would be unused for training. The remaining
pairs were used as an evaluation set for the split. The eval-
uation results are averaged over 500 bootstrap trials.

Table 1 lists the matching accuracies for the entire face
as well as each facial component. Both SIFT and MLBP
feature descriptors are shown. For each component/feature
combination, we reported the accuracy of using only the
feature descriptor and using the feature descriptor in con-
junction with Twin RS-LDA and RS-LDA. The perfor-
mance is measured across two scenarios: Twin vs. Twin
and All vs. All. For Twin vs. Twin, all imposter compar-
isons are from pairs of identical twins. This measures how

often each feature and facial component cannot distinguish
between the twin pairs. All vs. All is from the same twin
data set, but also includes comparisons between different
subjects who are not twins. The performance on All vs. All
helps provide context for the Twin vs. Twin results.

One of the more surprising results from our experiments
was the negligible difference in recognition accuracies no-
ticed from RS-LDA and Twin RS-LDA. However, this may
be due to the small number of training images impeding
the ability to properly learn improved feature extractions.
However, a general performance increase is noticed in most
component/feature combinations, indicating some value in
subspace learning. The fact that Twin RS-LDA did not de-
crease the recognition performance in the All vs. All sce-
nario may suggest that face recognition vendors can incor-
porate discriminative subspaces trained using an objective
function similar to Twin RS-LDA. Given a large number of
training subjects, this may result in an improved ability to
distinguish identical twins while not impacting the standard
All vs. All face recognition scenario.

Figure 4 shows the Fisher separability for each facial
component as well as the entire face using MLBP features.
No facial component seems more useful in a twin scenario
than a standard matching scenario. Of particular interest,
though, is the strong Fisher value of the mouth component.
While the mouth is not generally considered as informative
as the eyes or eyebrows, the per-component alignment per-
formed may have increased the discriminative value of this
facial region.

Figure 5 shows the recognition performance when us-
ing facial mark features. We observed a slight decline in
accuracy when using facial marks on the Twins vs. Twins
scenario when compared to the All vs. All scenario. How-
ever, the benefit of using facial marks for twin comparisons
is seen by the strong performance increase when fused with
a Level 2 feature. By fusing the facial mark and MLBP
scores in the framework we presented in Section 3.2, there



(a) (b)
Figure 6. The two examples above each show a pair of identical twins that failed to match using MLBP and SIFT features across the entire
face. (a) Using only the mouth component, the two twins were distinguishable. (b) Fusing face mark match scores enabled this twin pair
to be distinguished.

is no significant difference in the verification rates of All
vs. All. However, the verification performance for Twin vs.
Twin significantly improves when using facial marks (at a
FAR of 1.0%, the TAR is 37% without mark fusion and 50%
with mark fusion). Therefore, with the correct framework,
facial marks information can be used to help distinguish be-
tween identical twins without decreasing performance on
other subjects.

7. Conclusions
This research analyzed the discriminability of Level 2

(MLBP and SIFT) and Level 3 (facial marks) features
with respect to distinguishing identical twins. Addition-
ally, the separability of different facial components (eyes,
eyebrows, nose, and mouth) as examined. It was shown
that the saliency of facial features changes from standard
face recognition tasks to attempting to distinguish identical
twins. This is illustrated in Figure 6, where only the mouth
component was able to separate a twin pair, and face mark
fusion separated another twin pair.

Future work should involve expanding the size of twin
datasets to improve the training for twin identification. The
results shown in this work should also be considered by
commercial vendors in order to improve system perfor-
mance in the presence of identical twin pairs.
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Table 1. True accept rates (TAR) at a fixed false accept rate (FAR) or 1.0% are listed for the Level 2 features (MLBP and SIFT) at each
facial component.

Twins vs. Twins All vs. All
No LDA Twin-RSLDA RSLDA No LDA Twin-RSLDA RSLDA

All Patches:
MLBP
SIFT

31.5± 7.7 32.0± 7.5 31.7± 7.5

14.2± 5.6 22.7± 8.3 22.7± 8.0

78.4± 5.3 78.2± 6.1 78.3± 6.3

73.2± 6.6 81.6± 6.2 81.6± 6.2

Eyes:
MLBP
SIFT

7.6± 3.7 11.3± 6.4 10.7± 6.0

1.4± 1.3 7.1± 3.8 6.8± 3.8

41.1± 5.1 47.3± 5.9 47.3± 5.9

20.8± 3.4 41.9± 4.5 41.2± 4.4

Eyebrows:
MLBP
SIFT

15.6± 8.2 16.2± 9.4 16.0± 9.3

4.4± 4.0 7.9± 5.2 7.8± 5.0

43.9± 4.4 45.1± 4.7 45.1± 4.8

21.2± 4.7 33.9± 6.3 33.1± 5.9

Mouth:
MLBP
SIFT

11.6± 7.4 12.2± 7.4 12.2± 7.3

9.0± 4.0 10.9± 6.3 10.9± 6.5

43.6± 6.9 46.6± 6.2 46.5± 6.2

24.7± 4.1 35.4± 5.1 35.3± 5.1

Nose:
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