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Abstract—Aging variation poses a serious problem to 

automatic face recognition systems. Most of the face recognition 
studies that have addressed the aging problem are focused on age 
estimation or aging simulation. Designing an appropriate feature 
representation and an effective matching framework for age 
invariant face recognition remains an open problem. In this 
paper, we propose a discriminative model to address face 
matching in the presence of age variation. In this framework, we 
first represent each face by designing a densely sampled local 
feature description scheme, in which scale invariant feature 
transform (SIFT) and multi-scale local binary patterns (MLBP) 
serve as the local descriptors. By densely sampling the two kinds 
of local descriptors from the entire facial image, sufficient 
discriminatory information, including the distribution of the edge 
direction in the face image (that is expected to be age invariant) 
can be extracted for further analysis. Since both SIFT-based 
local features and MLBP-based local features span a high-
dimensional feature space, to avoid the overfitting problem, we 
develop an algorithm, called multi-feature discriminant analysis 
(MFDA) to process these two local feature spaces in a unified 
framework. The MFDA is an extension and improvement of the 
LDA using multiple features combined with two different 
random sampling methods in feature and sample space. By 
random sampling the training set as well as the feature space, 
multiple LDA-based classifiers are constructed and then 
combined to generate a robust decision via a fusion rule. 
Experimental results show that our approach outperforms a 
state-of-the-art commercial face recognition engine on two public 
domain face aging data sets: MORPH and FG-NET. We also 
compare the performance of the proposed discriminative model 
with a generative aging model. A fusion of discriminative and 
generative models further improves the face matching accuracy 
in the presence of aging. 
 

Index Terms— Face recognition, age invariance, local feature 
representation, multi-feature discriminant analysis, 
discriminative model, generative model.  

I. INTRODUCTION 
UTOMATIC face recognition is an important yet 
challenging problem. This challenge can be attributed to 

(i) large intra-subject variations and (ii) large inter-user 
similarity. Fig. 1 shows some of the main intra-subject 
variations (pose, illumination, expression, and aging) 
commonly encountered in face recognition. Among these 
variations, aging variation is now beginning to receive 
increasing attention in the face recognition community. 
Designing an age-invariant face recognition method is 
necessary in many applications, particularly those that require 
checking whether the same person has been issued multiple 
government documents (e.g., passports and driver license) that 
include facial images [1], [2]. 

Published approaches to age invariant face recognition are 
limited. Most of the available algorithms dealing with facial 
aging problem are focused on age estimation [3]-[13] and 
aging simulation [14]-[18]. One of the successful approaches 
to age invariant face recognition is to build a 2D or 3D 
generative model for face aging [4], [14], [18]. The aging 
model can be used to compensate for the aging process in face 
matching or age estimation. These methods first transform the 
face images being compared to the same age as the gallery 
image using a trained aging model to compensate for the age 
effect (see Fig. 2). While the model based methods have been 
shown to be effective in age invariant face recognition, they 
have some limitations. First, construction of face models is 
difficult and sometimes they do not represent the aging 
process very well, especially when the training sample size is 
limited. Further, the facial aging process is very complex and, 
consequently, in order to construct the aging model, strong 
parametric assumptions are needed, which are often 
unrealistic in real-world face recognition scenarios. Second, 
for constructing the aging model, additional information in the 
form of the true ages of the training faces and the locations of 
landmark points on each face image are needed. A further 
constraint on the training set is that the images should be 
captured under controlled conditions (e.g., frontal pose, 
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normal illumination, neutral expression). Unfortunately, such 
constraints are not easy to satisfy in practice, especially in 
scenarios where the face images being compared are subject to 
significant changes not only in aging, but also in other 
possible variations such as pose, illumination, and expression. 
In order to overcome these problems, approaches based on 
discriminative models have been proposed for the aging 
problem. Some of the representative works of discriminative 
models is [28], [38] which used gradient orientation pyramid 
(GOP) for feature representation, combined with support 
vector machine for verifying faces across age progression. 
Guo et al. [39] investigated the relationship between 
recognition accuracy and age gap, and reported the 
performance of two well known algorithms (PCA and EBGM) 
on a large data set. They also showed some improvement in 
matching by indexing the gallery based on  demographic 
information (gender, race, height, and weight). 

In this paper, we address the age invariant face recognition 
problem by developing a new discriminative approach. We 
propose a learning algorithm that has the capability to not only 
address the aging variations, but also  handle the other intra-
user variations (e.g., pose, illumination, expression). Our 
discriminative model differs from the models in [28], [38] in 
both feature representation and classification, as shown in 
section II. Although global appearance based features have 
been widely used for face representation, it is now generally 
agreed [31], [48] that local image descriptors are more 
effective for face representation. Compared to the global 
appearance features, the local features inherently possess 
spatial locality and orientation selectivity. These properties 
allow the local feature representations to be robust to aging, 
illumination, and expression variations. Considering that the 
entire face image (which has high structural complexity) is 
difficult to be characterized by a single image descriptor, we 
use a patch-based local feature representation scheme (also 
called densely sampled local feature description) in this paper. 
We first divide the input face image into a set of overlapping 
patches with each patch represented by an appropriate image 
descriptor. In order to ensure local consistency, we use 50% 
overlap between the adjacent patches in our approach. We use 
both the Scale Invariant Feature Transform (SIFT) [20] and 

Multi-scale Local Binary Pattern (MLBP) [23] since both of 
these descriptors have been shown to be very successful in 
image representation [31]. For matching the set of large 
number of SIFT and MLBP local features effectively and 
efficiently, we develop a multi-feature discriminant analysis 
(MFDA) algorithm for dimensionality reduction. In MFDA, 
local descriptors are combined to construct a robust decision 
rule by a random subspace fusion model. Extensive 
experiments are conducted to validate the effectiveness of the 
proposed algorithm on two public domain face aging data 
sets: MORPH and FG-NET. 

Our approach to match two face images of the same person 
acquired at different ages differs significantly from the 
previously published approaches. A major difference lies in 
the fact that our approach is a discriminative one while most 
of the other approaches construct generative models. A 
generative model considers the formation of the target 
subject’s face to be controlled by a set of hidden parameters. 
Different faces of the same subject at different ages are 
generated under a similar structure with varying parameters. 
Accordingly, these parameters are used to characterize the 
target subject’s face. Fig. 2 shows an example of the aging 
simulation process using a generative aging model proposed 
in [18]. However, the aging process which needs to be 
modeled is highly complex and there are multiple factors that 
affect the aging which are subject-specific and depend on the 
specific age range. This motivates our exploration of the 
discriminative model for age invariant face recognition. Our 
discriminative model also differs significantly from other 
existing discriminative models [28], [38] for the aging 
problem. The methods in [28], [38] were proposed for the face 
verification task, which is a binary recognition problem, while 
our approach is proposed for the face recognition task which 
is a multi-class recognition problem. Further, the methods in 
[28], [38] proposed the use of gradient orientation pyramid 
(GOP) for feature representation, followed by the support 
vector machine classifier for verification. Our approach, on 
the other hand, proposes densely sampled local feature 

 
Figure 1. Example images showing intra-subject variations (e.g., pose, 
illumination, expression, and aging) for one of the subjects in the FG-NET 
database [29].  

 
Figure 2. Schematic of the aging simulation process from age x to age y [18]. 



 

description for feature representation, and further develops the 
MFDA for classification.     

II. DISCRIMINATIVE MODEL 
The proposed discriminative model consists of two 
components: densely sampled local feature description and 
multi-feature discriminant analysis (MFDA). We will describe 
each component of the framework in the following 
subsections. 

A. Densely Sampled Local Feature Description 
Compared to the global appearance features, local features 

have been shown to be more effective in representing face 
images at diverse scales and orientations and robust to 
geometric distortions and illumination variations [31]. Hence 
we adopt the local image descriptor-based technique for face 
representation.  

    We first divide the whole face images into a set of 
overlapping patches and then apply the selected local image 
descriptors to each patch. The extracted features from these 
patches are concatenated together to form a feature vector 
with large dimensionality for further analysis. Given a face 
image of size H×W, it is divided into a set of s×s overlapping 
patches that overlap by r pixels. The number of horizontal (M) 
and vertical (N) patches obtained are 

  1/)( +−= rsWN                          (1) 
  1/)( +−= rsHM                         (2) 

For each of the M×N patches, we compute a d-dimensional 
feature vector. These image feature vectors are concatenated 
into a single M×N×d-dimensional feature vector for a given 
face image. 

Among the available local feature descriptors, SIFT [20] 
and LBP [23] have been shown to be the most effective for 
object recognition [31]. Based on their reported successes in 
face recognition literature [40]-[43], we choose both of them 
as feature descriptors in developing age invariant face 
recognition algorithm. The SIFT feature descriptor quantizes 
both the spatial location and orientation of image gradient 
within an s×s sized image patch, and computes a histogram in 
which each bin corresponds to a combination of specific 
spatial location and gradient orientation. The accumulation of 
the histogram bins is weighted by the gradient magnitude and 
a Gaussian decay function [20].  We use the extended LBP, 
MLBP [23], to describe the face at multiple scales, by 
computing the LBP descriptors computed at four different 
radii {1, 3, 5, 7}. An illustration of the local feature 
representation scheme is given in Fig. 3. 

Although both SIFT and LBP have been successfully used 
in face recognition before, our adoption is different and novel 
for the aging problem. Traditionally, SIFT feature 
representation consists of two main parts: key point 
extraction, and feature descriptors. But in our study, we 
densely sample the SIFT feature descriptors from the entire 
facial image instead of only at a relatively small number of 
extracted key points. In other words, we do not perform key 

point extraction, but place a regular grid on the face. Such a 
strategy allows the definition of age invariant discriminatory 
information in the form of distribution of the edge direction in 
the face. The same is true for the use of MLBP in this paper. 
These extracted local features are well suited for age-invariant 
face recognition as supported by our experimental results. 

In order to extract the local features (SIFT and MLBP), 
each face is first normalized to 150×200 pixels, and then 
divided into either 88 overlapping patches (for patch size of 
32×32) or 408 overlapping patches (for patch size of 16×16) 
Each patch is represented by a 128-dimensional SIFT feature 
vector or a 236-dimensional MLBP feature vector. Thus, the 
resulting feature dimensionality is very high and it is desirable 
to reduce the dimensionality using discriminant analysis. A 
straightforward approach would be to apply the well-known 
LDA (Linear Discriminant Analysis) to the SIFT and MLBP 
features separately and then fuse the outputs of the two 
classifiers, one based on SIFT and the other based on MLBP. 
However, this approach has some limitations. First, we would 
be fusing only two classifiers. Studies on multi-classifier 
system design [33] have shown that the choice of the number 
of classifiers is critical to the overall classifier stability and 
performance. Second, a single classifier constructed on a 
limited training data set is usually biased and unstable, 
especially when the original feature dimensionality is very 
high. In order to overcome these problems, we develop the 
multi-feature discriminant analysis (MFDA) framework to 
take advantage of the two different representations in a unified 
computational framework. The MFDA is an extension and 
improvement of the LDA using multiple features combined 
with two different random sampling methods in feature and 
sample spaces, as explained in the following sections.  

B. Multi-Feature Discriminant Analysis (MFDA) 
The LDA [25] is one of the most popular discriminant 

analysis scheme for face recognition. This can be evidenced 
by a variety of implement of LDA-based methods in face 
recognition literatures [24], [25], [26], [37], [45], [46], [47]. 
So we first briefly review the basic idea of the LDA. The 
LDA uses the within-class scatter matrix and the between-
class scatter matrix to define a criterion function to measure 
the class separability. The within-class and between-class 
scatter matrices are defined as 

 
Figure 3. Illustration of local feature representation of a face image. 
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where iµ  denotes the mean of the class iC , µ  denotes the 
overall mean and c denotes the number of classes. 

The objective of LDA is to obtain the optimal projection 
optW , which maximizes the ratio of the determinant of the 

between-class matrix to that of the within-class matrix, 
defined as: 

  arg max
T

b
opt T

W w

W S W
W

W S W
=                              (5) 

Mathematically, it is equivalent to computing the leading 
eigenvectors of bw SS 1−  [27]. 

LDA has been shown to be very successful in face 
recognition. However, if we directly use the LDA for 
discriminant analysis for age invariant face recognition, we 
will encounter the following problems. First, the high 
dimensionality of the input feature vector space in conjunction 
with relatively small size of the aging training set would 
drastically reduce the accuracy and stability of 

wS . 
Furthermore, with only the class means taken into account for 
computing  bS , LDA fails to capture the boundary structure of 
the classes effectively from small training data that is typical 
of available aging databases.  

A possible way to overcome the above problems is to use a 
random sampling technique to improve the performance of 
LDA. There are two popular random sampling methods: 
random subspace and bagging. In the random subspace 
method [21], multiple classifiers are constructed by randomly 
sampling the feature space.  The decisions made by these 
individual classifiers are then combined to generate the final 
decision to strive for improved classification performance. In 
the bagging method [22], multiple training subsets are 
generated by randomly sampling the training set. A classifier 
is then constructed from each training subset, and the results 
of these multiple classifiers are integrated. In order to better 
address the “curse of dimensionality” problem [44], we utilize 
both random subspace and bagging schemes. First, in order to 
reduce the feature dimensionality, we apply the random 
subspace technique to sample the feature space to generate 
multiple subspaces with lower dimensionalities. Second, in 
order to utilize the classification boundary information, we 
select specific sample pairs from different classes to better 
estimate the between-class scatter matrix and the discriminant 
subspace. It has been shown that the inter-class sample pairs 
(sample pairs from different classes) near the classification 
boundary contain more discriminatory information and thus 
play more significant roles in the learning of the 
discriminative subspace [26], [27]. This inspires us to select a 
small set of inter-class sample pairs with smaller distances for 
constructing the between-class scatter matrix. To this end, we 
apply the bagging technique to randomly sample the inter-
class sample pairs with small distances to generate multiple 
inter-class sample pair subsets for constructing multiple 

 
(a) Break the local features into slices. There are total 70 slices for each 

face image. 
 

 
(b) Train 50 different classifiers for each slice for fusion. 

 
Figure 4. Block diagram of the multi-feature discriminant analysis 

(MFDA). 
 

 

Table I. Summary of local features used in our framework. 
 SIFT 

feature 1 
SIFT 

feature 2 
MLBP 

feature 1 
MLBP 

feature 2 

Patch size 16 x 16 32 x 32 16 x 16 32 x 32 

Number of 
patches 408 88 408 88 

Number of 
slices 24 11 24 11 

Number of total 
slices for each 

sample 
70 

 

 
Figure 5. Example face images of the same subject at different ages (ranging 
from 42 to 46) in the MORPH database [19]. 



 

between-class scatter matrices. By combing the random 
subspace and bagging techniques, a random sampling based 
classification framework, called MFDA is developed in this 
paper. The framework is shown in Fig. 4, and the parameter 
values used in the feature representation are summarized in 
Table I. 

Below, we summarize the entire procedure for MFDA. 
Training stage: 

1. For each SIFT or MLBP feature vector, break it into 
slices with feature from the patches of the same row in the 
image as one slice. As shown in Table I, the total number of 
slices is 70. For each slice, perform PCA on the training set 
and then keep all the eigenvectors with non-zero eigenvalues 
as candidates to construct 10 random PCA subspaces 10

1}{ =i
iS , 

each spanned by 300 PCA dimensions. The first 200 
dimensions are fixed according to the first 200 eigenvectors 
with the largest eigenvalues, which preserve most of the facial 
variation. The other 100 dimensions are randomly selected 
from the remaining eigenvectors, which are used to capture 
the local facial details. 

2. In each reduced PCA subspace, estimate the within-
class scatter matrix wS  and whiten it, in an attempt to remove 
the intra-personal variations. This is achieved by a whitening 
transformation matrix T, which is computed as follows: 

                  2/1, −ΦΛ== TITST w
T                     (6) 

where Φ  is the eigenvector matrix of wS , Λ  is the eigenvalue 
matrix of wS and I is the identity matrix. 

3. In each projected subspace above (after PCA and 
whitening), we construct 5 different between-class scatter 
matrices 5

1}{ =j
j

bS  using the bagging technique. Each between-

class scatter matrix, j
bS , is calculated from the 2,000 inter-

class pairs which are randomly selected from 10,000 inter-
class pairs with the smallest distances among all the inter-class 
pairs, 
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where ),( 21 kk xx  is the k-th selected inter-class pair from the 
subset of the 10,000  inter-class pairs with the smallest 
distances. Based on each between-class scatter matrix, we 
construct an LDA-based subspace classifier. In each projected 
subspace (10 in total for each slice), we generate 5 classifiers 
based on each 5

1}{ =j
j

bS . In this way, we generate 50 different 

classifiers for each slice. 
 

Testing stage: 
1. For each testing sample (which is represented by four 

kinds of local features), obtain the 70 slices using the similar 
way as in the training stage.  

2. Use the trained subspace classifiers to determine the 
classification outputs of these slices.  

3. The outputs are first normalized by using the min-max 
score normalization scheme [32] and then combined by a 

simple score-sum based fusion rule to make the final decision. 

C. Discussion on MFDA 
• The MFDA is proposed specifically for handling 

multiple feature sets with large dimensionality and with 
different scales and measurements. In our study, there are 
two kinds of local features (SIFT and MLBP), each with 
two different feature sets corresponding to two different 
patch sizes. In order to effectively handle these large 
numbers of features for enhanced performance, we need to 
overcome two problems: 1) different incompatibility in 
scale and measurement and 2) overfitting problem. The 
MFDA algorithm is not developed only to solve the 
traditional dimensionality reduction problem. In MFDA, 
different kinds of features are broken into slices and then 
scaled by PCA normalization, and the overfitting problem is 
solved by the random sampling. Our experimental results 
also support the effectiveness of the MFDA over LDA. 
• The use of the bagging technique in the MFDA differs 

from the traditional random sampling based models [22], 
[37]. Instead of using the Bagging to randomly sample data 
within each class or randomly select a subset of classes, the 
MFDA uses bagging to choose a subset of specific inter-
class sample pairs that are close to the classification 
boundary (in the projected subspace rather than the original 
feature space) for the construction of the between-class 
scatter matrix. Therefore, it is not completely random. The 
reason for adopting such a strategy is due to the fact that the 
number of inter-class sample pairs is very large, and not all 
the sample pairs contribute to the learning of discriminative 
model. Hence it is reasonable to choose a subset of 
“specific” inter-class sample pairs near the classification 
boundary as candidates to construct the between-class 
scatter matrix. 
• By integrating the MFDA with the densely sampled local 

feature descriptors, the resulting discriminative model is 
well suited for age invariant face recognition problem due 
to the following reasons: (i) the densely sampled local 
feature description scheme is both an extension and a 
combination of the SIFT and MLBP. Therefore, it is 
expected to inherit the discriminative properties of these 
local description schemes, and furthermore have the 
capability in extracting age invariant features such as the 
distribution of edge direction in the face. (ii) MFDA has the 
capability to effectively combine the rich information 
conveyed by densely sampled SIFT and MLBP descriptors, 
which are complementary to some extent. The recognition 

 
Figure 6. Schematic of the normalization process. 



 

performance in the experiments section demonstrates the 
effectiveness of the proposed discriminative model for age 
invariant face recognition.            

III. EXPERIMENTS 

A. Experiment on the MORPH database 
In this section, we report results on experiments on a large 

public domain face aging data set, which is an extended 
version of the MORPH database [19]. While there are several 
public domain face data sets (e.g., FERET [34], XM2VTS 
[35], AR [36]), only a few are constructed specifically for the 
aging problem. The lack of a large face aging database until 
recently limited the research on age invariant face recognition. 
There are two desired attributes of a face aging database: (i) 
large number of subjects, and (ii) large number of face images 
per subject captured at many different ages. In addition, it is 
desired that these images should not have large variations in 
pose, expression, and illumination. The dataset that we use in 
this paper, MORPH album 2, is the largest face aging dataset 
available in the public domain. It is composed of about 78,000 
face images of 20,000 different subjects captured at different 
ages. While the number of subjects in this database is large, 
the number of face images per subject is rather small (an 
average of about 4 face images per subject). Fig. 5 shows 
example images of one subject at different ages from MORPH 
album 2 [19]. Notice that there are large pose, lighting, and 
expression variations along with the age variation in this 
database. Hence, it is crucial to design an appropriate feature 
representation scheme which is tolerant to such multiple 
variations. 

The MORPH album 2 data set is partitioned into a training 
set and an independent test set. For the training data used to 
learn the MFDA, we selected a subset of 20,000 face images 
from 10,000 subjects, with two images per subject. These two 
images were selected such that they had the largest age gap.  
The test data is composed of a gallery set and a probe set 
collected from the remaining 10,000 subjects. The gallery set 
is composed of 10,000 face images corresponding to the 
youngest age of these 10,000 subjects. The probe set is 
composed of 10,000 face images corresponding to the oldest 
age of these 10,000 subjects. Tables II and III show the 
statistics of the two publically available facial aging databases, 
FG-NET and MORPH, and the data set used in our 
experiments. Note that while FG-NET has only a small 
number of subjects, it has many more images per subject than 
MORPH. Also, FG-NET suffers from the fact that there is a 
large variation in expression, pose, and illumination among 
the images. To evaluate the recognition performance of our 
algorithm, all the facial images are automatically preprocessed 
through the following steps: (1) rotate the face image so that it 
is aligned with the vertical face orientation; (2) scale the face 
image so that the distance between the two eyes is the same 
for all the face images; (3) crop the face image tightly to 
remove the background and the hair region; (4) apply 
histogram equalization to the face image for photometric 

normalization. After preprocessing, each face image has a size 
of 150×200. Fig. 6 shows a schematic of the normalization 
process and Fig. 7 shows example images of training and 
testing data after preprocessing. 

We first investigate the effectiveness of the local features 
by using the traditional LDA (Fisherface method) [25] as the 
classification technique. The comparative results are shown in 
Fig. 8, where the cumulative match characteristic (CMC) 
curves are used for performance evaluation. Instead of asking 
“Is the top match correct?”, the CMC plot answers the 
question, “Is the correct match in the top-n matches?” The 
number n is called the rank of the match which indicates how 
many gallery images have to be examined to get a desired 
level of performance. The relatively poor result of the LDA on 
pixel values (the traditional Fisherface method) with the rank-
1 accuracy of ~35% clearly shows that the raw pixel intensity 
values are not suitable for face recognition across aging. On 
the other hand, the local descriptor features (SIFT and MLBP) 
significantly outperform the global features by a large margin 
(with the rank-1 accuracy of ~55%), regardless of which local 
descriptor or patch size is used. This confirms that the 
proposed local descriptor features are suitable for age 
invariant face recognition. 

Next we investigate the performance of the proposed multi-
feature discriminant analysis (MFDA) framework, and also 
compare this framework against (i) FaceVACS (a leading 
commercial face recognition engine) [30] and (ii) a generative 
face aging model proposed in [18]. We used the same test data 
set to compare the face recognition performance of generative 
and discriminative models. The generative model is trained 
using MORPH Album 1 (1,690 images of 632 subjects). The 
poor feature point detection on MORPH Album 2 made it 
difficult to use the images in Album 2 for training the 
generative model. The comparative results are shown in Fig. 
9, from which we make the following observations.  

(i) Compared to the results of LDA in Fig. 8, the multi-
feature discriminant analysis (MFDA) significantly boosts the 
recognition performance. The best rank-1 accuracy for LDA 
in Fig. 8 is 60% compared to the 83.9% accuracy of MFDA in 
Fig. 9. This shows the effectiveness of the MFDA.  

(ii) The MFDA algorithm gives better recognition 

 
              (a) Training set                                 (b) Testing set 
 

Figure 7. Example images after preprocessing. Each column shows two 
different samples of the same subject. 



 

performance than the generative aging model [18]. The reason 
for the lower performance of the generative model compared 
to the proposed discriminative model is that the automatic 
facial landmark point detection which is required in the 
generative model, performs poorly on the extended MORPH 
database. This is because of the low image resolution 
(200×240 pixels) and large JPEG compression effect. Fig. 10 
shows example face images with both successful and 
unsuccessful landmark detection results. The discriminative 
model does not need the landmarks; it only requires the 
coordinates of the two eyes for face alignment. The two eye 
coordinates are more robustly detected compared to the 68 
landmark points needed by the generative model. This is one 
of the main advantages of the discriminative model over the 
generative model.  

(iii) Both the generative and discriminative approaches 
outperform one of the best state-of-the-art face recognition 
system, FaceVACS. However, the discriminative approach 
offers more significant improvement (rank-1 accuracy of 
83.9% compared to ~79% rank-1 accuracy of both generative 
model and FaceVACS).  

(iv) A normalized score level fusion of discriminative and 
generative models further improves the recognition accuracy, 
but the improvement is marginal (rank-1 accuracy of 85.4% 
for the fused approach vs. 83.9% for the discriminative 
model). The recognition performance of generative model 
shown in Fig. 9 is the result of fusion of three different 
matching scores (i.e., original image, pose correction image, 
and aging simulation image) as was described in [18]. 
Therefore, the fusion of generative model and discriminative 
model already incorporates the fusion with scores for the 
original images. This shows the challenge associated with age 
invariant face recognition. As mentioned earlier, part of the 
challenge is that the available face aging datasets come with 
not just changes in the subject’s age but also include 

variations due to pose, illumination and expression. 
In order to further validate the effectiveness of the proposed 
method, we conducted an additional experiment to explore the 
robustness of the MFDA with respect to the training set. For 
this experiment, we first divided the entire training set into 
two subsets according to the intra-subject age gap, as shown 
in Table IV. For each subset, we randomly selected 2,000 
subjects with two images per subject in the training set. This 
gives two different training subsets each with 4,000 images 
from 2,000 subjects. For the first training subset, the intra-
subject age gap is 0. For the second training subset, the 
average intra-subject age gap is 1.5 years. We compared the 
recognition performance on the same test set based on these 
two different training sets. Fig. 11 shows that the performance 
of MFDA on the test set using training subset #2 (with an age 
gap in the two images of each subject) is slightly better than 
the training subset #1. This shows the proposed MFDA takes 
advantage of the aging information available in the training 
set for improved face recognition performance in the presence 
of age variations. 

Fig. 12 shows some successful and failed examples of face 
matching.  The failure of the discriminative method is mainly 
due to large pose changes, rather than the age change. It seems 
that FaceVACS is more effective in handling the pose 
variations while our method is more effective in handling the 

 
Figure 8. The cumulative match characteristic (CMC) curves with LDA 
applied to different feature representations: (i) Original features refer to raw 
pixel intensity values, (ii) SIFT feature 1 refers to SIFT features with patch 
size 16×16, (iii) SIFT feature 2 refers to the SIFT features with patch size 
32×32, (iv) MLBP feature 1 refers to MLBP features with patch size 16×16, 
(v) MLBP feature 2 refers to MLBP features with patch size 32×32. 

 
Figure 9. The cumulative matching characteristic (CMC) curves of different 
aging models. 

 
Figure 10. Facial landmark detection results. Blue points represent the 68 
landmark points corresponding to those in Fig. 2. Figures in (a) and (b) show 
images where automatic landmark detection is successful; (c) and (d) show 
images where automatic landmark detection is not successful. 



 

aging variations. Compared to FaceVACS, the proposed 
discriminative model is more adaptable to the age invariant 
face recognition problem. This is also supported by the results 
shown in Figs. 9 and 11. Finally, by integrating the 
discriminative model and the generative model, some failed 
matches can be corrected. This shows the advantage of a 
fusion framework, which integrates the generative and 
discriminative models. 

B. Experiment on the FG-NET database 
In order to verify the generality of the proposed 

discriminative model, we conducted an additional experiment 
on the FGNET database to compare our discriminative 
approach with the FaceVACS. The FGNET database is 
composed of 1,002 face images from 82 different subjects. In 
our experiment, we chose all the face images for performance 
evaluation. In order to keep the training data and testing data 
separated, the leave-one-out strategy is used in our study. The 
comparative results are shown in Fig. 13, from which we can 
clearly see that the proposed discriminative model 

outperforms the FaceVACS by a clear margin. This further 
validates the effectiveness of the proposed discriminative 
model. 

IV. CONCLUSIONS AND FUTURE WORK 
A discriminative model for age invariant face recognition is 

proposed. The proposed approach addresses the face aging 
problem in a more direct way without relying on a generative 
aging model. This obviates the need of a training set of 
subjects that differ only in their age with minimal variations in 
illumination and pose, which is often a requirement to build a 
generative aging model. We first represent each face with a 
patch-based local feature representation scheme. In order to 
overcome the large feature dimensionality problem, we adopt 
a multi-feature discriminant analysis (MFDA) method to 
refine the feature space for enhanced recognition performance. 
Experimental results on two public domain databases 
(MORPH and FGNET) show the effectiveness of the 
proposed method. Our performance surpasses that of a 

 
Figure 13. Comparison of the discriminative approach with the FaceVACS 
on the FG-NET dataset. 

Table II. Statistics of public domain facial aging databases 

DATABASE #sub 
#sub./gender #sub./ethnicity Total # 

image 
#img/
sub 

age 
range male female white African-

american Hisp. Asian Other 

FG-NET 82 48 34 82 0 0 0 0 1,002 12.2 0~69 

MORPH 
Album1 632 525 107 172 459 0 0 1 1,690 2.7 15~68 

Album2 20,569 17,019 3,550 4,576 14,549 1,290 118 9 78,207 3.8 15~77 
 

Table III. Summary of database (MORPH-Album2) used to train and test the proposed MFDA algorithm 
Training dataset (20,000 images from subject 

10001 to 20000) 
Test dataset (20,000 images from the first 10,000 subjects) 
Probe Gallery 

#images #subjects Age range #images #subjects Age range #images #subjects Age range 
20,000  

(two/ subject) 10,000 15~76 10,000 10,000 20~77 10,000 10,000 18~76 

 
Table IV. Constructing two different training subsets to evaluate the sensitivity of MFDA with respect to the training set. 

 Training data 
Subset #1  2,000 subjects are randomly selected from 2,636 subjects (age gap in the two images/subject is 0) 
Subset #2  2,000 subjects are randomly selected from 7,364 subjects (the average age gap in the two images/subject is 1.5 years) 

 
Table V. A comparison of age invariant face recognition methods. 

 Approach Database (# subjects, # images) 
in probe and gallery 

Rank-1 recognition 
accuracy reported (%) 

Lanitis et al. (2002) 
[14] 

Build an aging function in terms of PCA coefficients of 
shape and texture Private database (12,85) 68.5% 

Ramanathan et al. 
(2006) [10] Shape growth modeling up to age 18 Private database (109,109) 15.0% 

Wang et al. (2006) 
[11] 

Build an aging function in terms of PCA coefficients of 
shape and texture Private database (NA,2000) 63.0% 

Geng et al. (2007) [4] Learn aging pattern on concatenated 
PCA coefficients of shape and texture across a series of ages 

Public domain  
FG-NET (10,10) 38.1% 

Park et al. (2010) [18] 
Learn aging pattern based on PCA coefficients in 

separate 3D shape and texture spaces from the given 2D 
database 

Public domain 
FG-NET (82,82) 37.4% 

Public domain 
MORPH Album 1 (612,612) 66.4% 

Public domain 
MORPH Album 2 (10000,20000) 79.8% 

Proposed 
discriminative model 

Use discriminative analysis method with densely sampled 
local descriptors 

Public domain 
FGNET (82,82) 47.50% 

Public domain 
MORPH Album 2 (10000,20000) 83.9% 

 
  



 

commercial state-of-the-art face recognition engine. As shown 
in Table V, this is a very large evaluation of facial aging study 
reported in the literature. 

Facial aging is a challenging problem that will require 
continued efforts to further improve the recognition 
performance. There are several directions for future work. 
First, since the generative model and the discriminative model 
offer somewhat complementary information, it is worthwhile 
to improve the fusion framework for enhanced performance. 
Second, as shown in Fig. 12, the proposed discriminative 
model is vulnerable to pose changes. A method more tolerant 
to pose changes should be studied in future work. 
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