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Partial Face Recognition: Alignment-Free
Approach
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Abstract—Numerous methods have been developed for holistic face recognition with impressive performance. However, few
studies have tackled how to recognize an arbitrary patch of a face image. Partial faces frequently appear in unconstrained
scenarios, with images captured by surveillance cameras or handheld devices (e.g. mobile phones) in particular. In this paper,
we propose a general partial face recognition approach that does not require face alignment by eye coordinates or any other
fiducial points. We develop an alignment-free face representation method based on Multi-Keypoint Descriptors (MKD), where
the descriptor size of a face is determined by the actual content of the image. In this way, any probe face image, holistic or
partial, can be sparsely represented by a large dictionary of gallery descriptors. A new keypoint descriptor called Gabor Ternary
Pattern (GTP) is also developed for robust and discriminative face recognition. Experimental results are reported on four public
domain face databases (FRGCv2.0, AR, LFW, and PubFig) under both the open-set identification and verification scenarios.
Comparisons with two leading commercial face recognition SDKs (PittPatt and FaceVACS) and two baseline algorithms
(PCA+LDA and LBP) show that the proposed method, overall, is superior in recognizing both holistic and partial faces without
requiring alignment.

Index Terms—Partial Face Recognition, Alignment Free, Keypoint Descriptor, Sparse Representation, Open-Set Identification.
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1 INTRODUCTION

FACE recognition (FR) is the problem of verifying
or identifying a face from its image. It has received

substantial attention over the last three decades due to
its value both in understanding how FR process works
in humans as well as in addressing many challenging
real-world applications, including deduplication of
identity documents (e.g. passport, driver license), ac-
cess control and video surveillance. The performance
of automatic FR systems has advanced significant-
ly. While face recognition in controlled conditions
(frontal face of cooperative users and controlled in-
door illumination) has already achieved impressive
performance over large-scale galleries, as indicated
in a recent IEEE T-PAMI special issue on real-word
face recognition [1], there still exist many challenges
for face recognition in uncontrolled environments,
such as partial occlusions, large pose variations, and
extreme ambient illumination.
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Fig. 1. Partial face examples. (a) Partial faces in the
LFW database [2]. (b) Partial faces in a crowd 1. (c) Oc-
cluded faces by hooded sweatshirt and sunglasses 2.

Typical applications of face recognition in uncon-
trolled environments include recognition of individu-
als in video surveillance frames and images captured
by handheld devices (e.g. mobile phones), where a
face may be captured in arbitrary pose without user
cooperation and knowledge. In such scenarios, it is
quite likely that the captured image contains only a
partial face. Table 1 lists a categorization of partial
face images, and some further illustrations are given
in Fig. 1. We call the resulting problem a Partial Face
Recognition (PFR) problem, so as to differentiate it
from the holistic face recognition problem.

Commercial off-the-shelf (COTS) face recognition
systems are not able to handle the general PFR prob-
lem since they need to align faces by facial landmarks
that may be occluded. For example, FaceVACS [3]
requires localization of the two eyes, and PittPat-
t [4] detects several predefined landmarks for face

1. http://www.textually.org/picturephoning/archives/2008/09/
021247.htm

2. http://www.howtovanish.com/2010/01/avoid-nosy-
surveillance-cameras/



2

TABLE 1
A categorization of partial face images

Scenario External
occlusion Self occlusion Facial

accessories
Limited field of
view (FOV) Extreme illumination Sensor

saturation

Examples occlusion by
other objects

non-frontal
pose

hat, sunglasses,
scarf, mask

partially out of
camera’s FOV

gloomy or highlighted
facial area

underexposure
or overexposure

Image

Fig. 2. Proposed partial face recognition approach.

alignment. Therefore, research in PFR is important to
advance the state of the art in face recognition and
enlarge the application domain.

Law enforcement agencies are also in urgent need
of a system capable of recognizing partial faces. First,
a PFR system will enable them to identify a suspect in
a crowd (e.g. Fig. 1b) by matching a partial face cap-
tured by, say, a mobile phone to a watch list through
a wireless link in real time. Second, given a photo of
a certain unlawful event, PFR is needed to recognize
the identity of a suspect based on a partial face. As
an example, while automatic face recognition resulted
in many arrests in the 2011 London riots [5], many
suspects in partial face images were not recognized
by COTS FR systems [6].

1.1 Proposed Method

In this paper, we present a general formulation of the
partial face recognition problem. We require neither
face alignment nor the presence of the eyes or any
other facial component in the image. Further, we do
not know a priori whether the input face is holistic
or partial. We provide a general matching solution
to accommodate all types of partial faces listed in
Table 1. Our approach is based on a Multi-Keypoint
Descriptor (MKD) representation for both the gallery
dictionary and the probe image. Multi-task sparse
representation is learned for each probe face, and
the Sparse Representation based Classification (SRC)
approach [7] is applied for face recognition. We call
the proposed method MKD-SRC. The flowchart of the
proposed method is shown in Fig. 2.

The novelty of the proposed approach includes: (i) a

general partial face recognition approach without re-
quiring face alignment; (ii) the MKD-SRC framework
that works for both holistic faces and partial faces, and
outperforms SRC [7] in addressing the one-sample-
per-class problem; (iii) a new keypoint descriptor,
called Gabor Ternary Pattern (GTP) which outper-
forms the Scale Invariant Feature Transform (SIFT)
[8] descriptor; and (iv) a fast atom filtering strategy
for MKD-SRC to address large-scale face recognition
(with 10,000 gallery images).

This paper is built upon our preliminary work
reported in [9]. The main differences are summarized
as follows. (i) While the method in [9] used the SIFT
descriptor, we now propose a new keypoint descrip-
tor (GTP) which outperforms SIFT. (ii) We address
the one-sample-per-class problem in large-scale open-
set identification setting for PFR, and show that the
proposed MKD-SRC method performs better than
two leading commercial face matchers, FaceVACS and
PittPatt, on the FRGCv2.0, AR, and PubFig databases.
(iii) We extend the MKD-SRC method for partial face
verification, which is effective on the LFW database.

1.2 Literature Review

The most popular approach for face alignment is to
first detect the two eyes and then normalize the face
geometrically. Other popular face alignment methods
include Active Shape Model (ASM) [10] and Active
Appearance Model (AAM) [11], which depend on
localizing a certain fixed number (typically 68) of
landmarks on holistic face. In [12], a sparse repre-
sentation based alignment method was proposed in
controlled scenarios. However, all these alignment
methods would fail for face images with unknown
missing portions of the face.

Occluded and non-frontal faces are the most fre-
quently encountered partial faces in practice. While
several approaches have dealt with FR under occlu-
sion [7], [12], [13], [14], [15], [16], [17], they all require
face alignment. Ekenel and Stiefelhagen showed that
under occlusion, face alignment is critical to recogni-
tion performance [18].

Non-frontal face recognition has also attracted sig-
nificant attention, including multi-view [19], [20] and
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cross-view [21], [22], [23], [24], [25], [26] face recog-
nition. Multi-view face recognition requires that the
gallery contains a large number of poses for each sub-
ject, which is difficult to satisfy in practice. For cross-
view FR, most approaches apply 2D or 3D appearance
models to synthesize face images in specific views. A
critical step in these approaches is to localize a certain
fixed number of representative facial landmarks and
establish correspondences between two images in d-
ifferent views. As a result, the images are expected to
have visible anchor points irrespective of the view.

For partial faces resulting from a limited field of
view, Yang et al. [27] and Yi et al. [28] proposed
an automatic partial face alignment and matching
approach. However, their approach requires high res-
olution images (with an inter-pupil distance of more
than 128 pixels) with good skin texture, and it is not
applicable to pose variations.

Some FR approaches only require face sub-images
as input, such as eye [29], nose [29], one half (left
or right portion) of the face [30], or the periocular
region [31]. Again, these methods require the presence
of certain facial components and pre-alignment.

Instead of holistic representation, some face recog-
nition approaches have adopted parts-based represen-
tations to deal with occlusion and pose variations.
A simple way is to divide the aligned face image
into several sub-regions [32], [33], [34], [35], match
each sub-region and then fuse the matching result-
s. Alternatively, one could detect several predefined
components (such as eye, nose, and mouth), and then
recognize the face by fusing the matching results
for the components [20], [26], [36]. Sanderson and
Paliwal [37] proposed a parts-based face representa-
tion based on block 2D DCT feature extraction and
GMM modeling, and obtained better performance
than holistic methods like PCA. Cardinaux et al. [38]
further showed that, part-based GMM representation
is robust to misalignment, which is able to perform
face verification on automatically detected faces with-
out perfect alignment. Following these two studies,
Lucey and Chen [39] applied relevance adaptation to
improve the GMM parts based face representation,
and Cardinaux et al. [40] applied HMM instead of
GMM, with improved performance. However, both
sub-region and component based approaches may fail
when a partial face cannot be detected or some facial
components are occluded.

Several existing approaches are closely related to
the proposed MKD-SRC algorithm. Wright et al. intro-
duced the well-known SRC approach for face recogni-
tion [7], achieving robust performance in the presence
of illumination variations and occlusions. However,
the SRC approach requires well aligned face images.
Wagner et al. [12] further improved the SRC method
by assuming that face registration might have errors.
LBP-SRC [41] is another approach that applies SRC
in conjunction with Local Binary Pattern (LBP) [33]

features after alignment for face recognition. Howev-
er, as indicated in [12], SRC is targeted for the access
control scenario, where many controlled face images
can be captured to construct the gallery.

The proposed MKD-SRC approach uses a differen-
t feature representation than the above SRC based
approaches. Since both SRC and LBP-SRC require
aligned faces and use a single fixed-size feature vector
(e.g. concatenated image pixels or LBP histograms) to
represent a face, each column of their corresponding
dictionary is related to one gallery image. However,
in such a scheme a partial face might be difficult to
align and represent due to unknown missing facial
regions. In contrast, MKD-SRC uses a variable-size
description, so each face is represented by a set of
descriptors. The MKD dictionary is composed of a
large number of gallery descriptors, making it pos-
sible to sparsely represent descriptors from a probe
image, irrespective of whether it represents a holistic
or partial face. Furthermore, SRC requires a sufficient
number of training samples covering all possible illu-
mination variations for each subject, which limits its
applicability. In contrast, MKD-SRC performs satisfac-
torily in scenarios where only one training sample per
class is available.

The bag-of-words (BoW) representation in the field
of visual object categorization [42] is another represen-
tation scheme that has been applied to face recogni-
tion [43], [44]. However, the underlying assumption
in the BoW representation is that the object image
should not be significantly occluded, otherwise the
descriptor histogram of a partial view will be quite
different from that of the whole view. For this reason,
the BoW representation is not suitable for PFR.

A number of papers have been published on SIFT-
based face recognition [45], [46], [47], [48]. However,
all of them were applied on pre-aligned face images.
While SIFT matching is fast, it treats each image
pair independently and therefore does not utilize
collaborative representation [49] of different subjects
in the gallery set. Since many local facial patches may
look similar, it is possible that the SIFT matching
would find more matches for an impostor pair than a
genuine pair [9]. To alleviate this, the proposed MKD-
SRC approach performs keypoint matching via sparse
representation of all gallery images to select the best
match automatically.

Characteristics of MKD-SRC in comparison with
various existing approaches are summarized in Table
2. The remainder of this paper is organized as follows.
In Section 2 we describe the proposed alignment-
free partial face representation method. In Section
3 we introduce the MKD-SRC algorithm. Extensive
experiments are demonstrated in Section 4, and finally
we conclude this work in Section 5.
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TABLE 2
Comparison of available partial face recognition approaches with the proposed approach

Approach Scenario Image requirement Database used #Subjects
Subspace [13], [14], [15]; SRC [7], [12]; SVM [16],
[17]; Part-based fusion [26], [32], [33], [34], [35], [36];
Single component [29], [30], [31]

Occlusion Aligned & cropped
frontal faces

AT&T, ORL, AR,
Yale B, FERET,
FRGC, Multi PIE

≤ 1, 196

Multi-view [19], [20]; Cross-view [21], [22], [23],
[24], [25], [26] Arbitrary pose Alignment via fa-

cial landmarks FERET, PIE ≤ 250

Skin texture [50] Limited FOV Frontal face MBGC 114

Proposed method (MKD-SRC) Occlusion, arbitrary
pose, limited FOV Alignment free FRGC, AR, LFW,

PubFig > 20, 000

2 ALIGNMENT FREE PARTIAL FACE REP-
RESENTATION

While face alignment is often based on detection of
facial landmarks, in the scenario of partial faces, there
is no guarantee that commonly used landmarks are
visible in the image. Therefore, when considering
partial faces a canonical frame is not always available
for feature extraction. Furthermore, most available
approaches, either holistic (e.g. PCA and LDA), or
local (e.g. Gabor and LBP), use a fixed-length repre-
sentation for each face. A fixed-length representation
assumes that the face image is aligned and cropped
to a predefined size, followed by either concatenating
the pixel values or extracting local feature vectors
of predetermined dimensionality at fixed locations.
However, for partial faces, it is not possible to extract a
fixed-length descriptor due to missing facial portions
and the difficulty of alignment.

Given the characteristics of partial faces, we es-
tablish two principles for partial face representation:
(i) alignment free representation, and (ii) variable-
length description. The length or size of representa-
tion should be determined by the specific content of
the input (partial) face. A holistic face generally will
have a larger descriptor size than a partial face.

To satisfy these two principles, we adopt a Multi-
Keypoint Descriptor (MKD) based representation. A
number of salient facial keypoints, along with a de-
scriptor for each keypoint are automatically extracted
without pre-alignment. For a face image, holistic or
partial, the set of all descriptors associated with the
extracted keypoints are used to represent the face.
A desirable property of keypoint descriptors is their
robust repeatability [8], [51], which means that de-
scriptors from a partial face should be similar to the
descriptor set of the corresponding holistic face. Note
that the proposed MKD representation is different
from the BoW representation. We neither learn visual
words (clusters) nor do we compute histograms of
cluster centers. In the following we describe the pro-
posed alignment free representation.

2.1 Affine Invariant Keypoint Detection

The SIFT detector proposed by Lowe [8] is one of the
most popular keypoint detector. The SIFT keypoints

Fig. 3. Comparison of keypoint detection by SIFT and
CanAff. Left: 37 keypoints are detected by SIFT. Right:
571 keypoints (only the first 150 keypoints are shown)
are detected by CanAff.

have a robust repeatability property against image
translation, rotation, and scaling. This property is
important for PFR because the faces we are matching
are not aligned. However, SIFT keypoint regions are
not invariant under affine transformation. Another
drawback of SIFT for face image is that it provides a
limited number of keypoints because SIFT only seeks
blob-like structures. Since most faces look generally
similar to each other, a limited number of keypoints
may not be sufficient to discriminate between them.
This limits its applicability to face recognition.

In this paper, we consider a scale invariant Can-
ny edge [52] based interest point detector proposed
in [53], and an affine invariant shape adaptation
technique proposed in [54]. We denote the resulting
detector as CanAff3. The edge based detector finds
many more keypoints than the SIFT detector for face
images, since there are more edges than blobs on a
face (See Fig. 3 for an example). The affine invariant
shape adaptation makes image matching more robust
to viewpoint changes, which is desired in face recog-
nition with pose variations.

The CanAff detector first extracts edges with a
multi-scale Canny edge detector [52], followed by a s-
cale invariant local neighborhood for each edge point.
The characteristic size of the local neighborhood is
detected by seeking extremum in the local responses

3. We have also tried some other affine invariant keypoint detec-
tion methods, like the Harris Affine and Hessian Affine detectors
proposed in [55] and the MSER detector proposed in [56], and
found that the CanAff detector is the best one for our partial
face recognition task, because all other detectors provide a limited
number of keypoints in a face image.
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to the scale normalized LoG operator [51]. Next, the
detected local region is adapted to be an anisotropic
affine-invariant shape as in [54], where the keypoint
neighborhood is iteratively adapted using the second
moment matrix information. At convergence, each
detected affine invariant region is enclosed with an
ellipse xTMx = 1, where the ellipse parameters

in M =

(
a b
b c

)
are estimated from the affine-

invariant neighborhood.
All detected ellipses are geometrically normalized

to circles by an affine transformation x′ = M1/2x,
and the resulting regions are further cropped and
scaled to 40 × 40 pixels (see Fig. 4). We apply the
CanAff detector using the software in [57], with the
“-sedgelap -noangle” option and default parameters
in all our experiments. We do not apply rotation
adaption because most face images are up-right 4, and
sometimes a falsely detected dominant orientation [8]
will, on the contrary, degrade matching accuracy. To
compensate for illumination variations, we normalize
the pixel values within each region to be in [0,1] by
clipped Z-Score normalization. The idea is, to linearly
stretch the pixel values into [0,1] by mapping (μ−3σ)
to 0, and (μ + 3σ) to 1; all values outside [0,1] are
clipped.

2.2 Gabor Ternary Pattern Descriptor
Once the detected regions are normalized to a fixed
size, a local descriptor is constructed within each
region as follows. We first apply the Gabor filter [23],
[58] to each image patch. We use Gabor filters because
they provide good perception of local image struc-
tures and they are robust to illumination variation-
s [23], [58]. The Gabor kernels are defined as

ψμ,ν(x, y) =
‖kμ,ν‖2

σ2
exp

(
−‖kμ,ν‖2‖z‖2

2σ2

)
×

[
exp(ikT

μ,νz)− exp(−σ2

2
)

]
,

(1)

where μ and ν define the orientation and scale of the
Gabor kernels, respectively, z = (x, y)T , and the wave
vector kμ,ν is defined as

kμ,ν = (kν cosφμ, kν sinφμ)
T
, (2)

with kν = kmax/f
ν , kmax = π/2, f =

√
2, and φμ =

πμ/8 [23], [58]. Due to the relatively small region size
(40× 40 pixels) we process, Gabor kernels at a single
scale (ν = 0) and four orientations (μ ∈ {0, 2, 4, 6},
corresponding to 0◦, 45◦, 90◦, and 135◦) with σ = 1
are used. Furthermore, we only use the odd Gabor
kernels (imaginary part), which are sensitive to edges
and their locations. These four Gabor kernels are able

4. By “Up-right” we mean that while the face can have many
possible rotations, it will not appear in the image with a mouth
on the top. This is usually the case in most face recognition
applications, including surveillance scenarios.

Fig. 4. Major components of the GTP descriptor.

to discriminate local details in the face image. Fig. 4
shows four Gabor filtered images for a local patch.
These four response images emphasize edges in four
different orientations (0◦, 45◦, 90◦, and 135◦).

For each pixel (x, y) in the normalized keypoint
region, there are four Gabor filter responses as follows

fi(x, y) = Gi(x, y) ∗ I(x, y), i = 0, 1, 2, 3, (3)

where Gi = imag(ψ2i,0) is the ith odd Gabor kernel,
and ∗ is the convolution operator. The responses of
the four filters are combined as a ternary pattern [59]

GTPt(x, y) =

3∑
i=0

3i [(fi(x, y) < −t) + 2 (fi(x, y) > t)] ,

(4)
where t is a small positive threshold (a value of 0.03 is
used in our experiments). We call this local descriptor
the Gabor Ternary Pattern (GTP). It encodes local
structures from the responses of odd Gabor filters in
four different orientations. The local ternary pattern
provides a discriminative encoding of the four Gabor
filters. Also, these encodings are insensitive to image
noise and illumination variation, because the quan-
tization range is tolerant to these corruptions. There
are a total of 34 = 81 different GTP patterns. Fig. 4
demonstrates that four corresponding pixels at the
same location in the four Gabor response images form
a GTP pattern. Next, the 40 × 40 region is divided
into 4 × 4 = 16 sub grid cells, each of size 10 × 10
pixels. A histogram of GTPs is calculated in each grid
cell, and all histograms are concatenated to form a
1296-dimensional (4×4×81) feature vector. To reduce
the influence of outliers in the histogram, the feature
vector is first normalized to unit length, followed by
a sigmoid function, tanh(ax), where a is a constant
(a=20 in this paper), to suppress extreme values, and a
renormalization step. Finally, we apply PCA to reduce
the feature dimensionality to M (M = 128 in this
paper). The major components in computing the GTP
descriptor are shown in Fig. 4. Compared to SIFT, GTP
performs better for face recognition in uncontrolled
scenarios, as will be seen in the experiment section.

3 MKD-SRC
Wright et al. [7] showed that representing a probe im-
age by a sparse linear combination of gallery images is
very effective for classification. They call the resulting
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algorithm SRC. In this paper, we propose to apply
SRC on a large dictionary of keypoint descriptors
instead of applying it directly to raw face image
pixels; this is the key to the proposed alignment-free
partial face recognition approach.

3.1 Gallery Dictionary Construction
The gallery dictionary is constructed as follows. First,
an MKD representation (as introduced above) is con-
structed for each image. Suppose kc keypoints, say,
pc1 ,pc2 , · · · ,pckc

, are detected for class (subject) c in
the gallery. If class c has multiple face images in the
gallery, we simply pool the keypoints extracted from
all of them. The corresponding kc GTP descriptors are
denoted by dc1 ,dc2 , · · · ,dckc

, where each descriptor is
an M -dimensional vector (in our case, M = 128). Let

Dc = (dc1 ,dc2 , · · · ,dckc
). (5)

This way the descriptors from the same class form a
sub-dictionary of size M × kc representing class c. A
gallery dictionary for all the C classes is built as

D = (D1,D2, · · · ,DC). (6)

Note that D has a total of K =
∑C

c=1 kc descriptors,
resulting in an M ×K dictionary.

Typically, K is very large (e.g. over 1 million), which
makes D an overcomplete description space of the C
classes. Therefore, any descriptor from the C classes
can be linearly represented in terms of the dictionary
D. According to the theory of compressed sensing
(CS), a sparse solution is possible for an overcomplete
dictionary [60]; therefore, we can express any descrip-
tor from a probe image by a sparse linear combination
of the dictionary D.

3.2 Multi-Task Sparse Representation
Given a probe face image with n descriptors

Y = (y1,y2, · · · ,yn), (7)

the sparse representation problem is formulated as

X̂ = argmin
X

n∑
i=1

‖xi‖0, s.t. Y = DX, (8)

where X = (x1,x2, · · · ,xn) ∈ RK×n is the sparse
coefficient matrix, and ‖ · ‖0 denotes the �0 norm of
a vector, i.e., ‖x‖0 =

∑
i I(xi �= 0), where I(s) = 1

if the statement s is true; otherwise 0. However, the
solution to this problem is NP-hard. Based on the
results from compressed sensing [61], sparse signals
can be recovered with a high probability via the �1-
minimization. Therefore, we solve the following �1-
minimization problem5 instead of Eq. (8)

X̂ = argmin
X

n∑
i=1

‖xi‖1, s.t. Y = DX, (9)

5. Some recent studies have also shown advantages of �2-norm
constraint instead of �1, including the computational efficiency and
stability [49], [62].

where ‖ · ‖1 denotes the �1 norm defined as ‖x‖1 =∑
i |xi|. This is a multi-task problem since both X and

Y have multiple columns. Equivalently, we can solve
the following set of n �1-minimization problems, one
for each probe descriptor yi

x̂i = argmin
xi

‖xi‖1, s.t. yi = Dxi, i = 1, 2, · · · , n.
(10)

A number of efficient fast �1 minimization algorithms
can be used to solve Eq. (10), including the �1 Homo-
topy method [63]. Since the n �1-minimization prob-
lems in Eq. (10) are independent, it is straightforward
to accelerate the algorithm via parallel computation.

Inspired by [7], we adopt the following multi-task
SRC to determine the identity of the probe image.

min
c

rc(Y) =
1

n

n∑
i=1

‖yi −Dcδc(x̂i)‖22 , (11)

where δc(·) is a function which selects only the co-
efficients corresponding to class c. Eq. (11) applies a
sum fusion among reconstruction residuals of the n
descriptors with respect to each class, and determines
the identity based on the least residual. Therefore, an
unknown partial face in the probe can be recognized
by computing Eqs. (10) and (11). The resulting al-
gorithm is what we call MKD-SRC, which does not
need face alignment. The flowchart of the MKD-SRC
algorithm is shown in Fig. 2.

3.3 Fast Filtering
In practice, the size (K) of the dictionary D can be
of the order of millions, making it difficult to solve
Eq. (10). Therefore, we adopt a fast approximate so-
lution. For each probe descriptor yi, we first compute
the following linear correlation coefficients between
yi and all the descriptors in the dictionary D

ci = DTyi, i = 1, 2, · · · , n. (12)

Then for each yi, we keep only L (L � K) descriptors
according to the top L largest values of ci, resulting in
a small sub-dictionary D

(i)
M×L. Next, D is replaced by

D(i) in Eq. (10), and Eq. (11) is adjusted accordingly.
We set L = 100 in our algorithm. According to our

previous finding [9], this approximate solution speeds
up the computation, with no significant degradation
in recognition performance. According to Eq. (12) and
the selection of top L elements (note that this can be
done in O(K) by the Introselect algorithm [64]), the
computation time of the filtering step scales linearly
with respect to K (the number of gallery keypoints).
Thus, the algorithm scales almost linearly with respect
to the gallery size for each probe image (considering
an average number of keypoints per image). The
overall MKD-SRC algorithm is outlined in Algorith-
m 1. The parameter values used in this paper are
summarized in Table 3. They were fixed for all the
experiments reported in the paper.
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Algorithm 1: The MKD-SRC Algorithm
Input: Gallery images of C classes; probe image

I ; parameter L.
Output: Identity c of the probe image I .

1 Enrollment: Extract multi-keypoint descriptors
(GTP) from each gallery image and build the
Dictionary D = (D1,D2, · · · ,DC) ∈ RM×K .

2 Recognition:
3 Extract MKDs from the probe image:
Y = (y1,y2, · · · ,yn) ∈ RM×n;

4 for i = 1 to n do
5 Compute top L descriptors from Eq. (12),

resulting in a sub-dictionary D
(i)
M×L;

6 Solve Eq. (10) with D
(i)
M×L;

7 end
8 Solve Eq. (11) to determine the identity c;

TABLE 3
Parameter Values

Parameter t a M L
Value 0.03 20 128 100

3.4 MKD-SRC for Partial Face Verification
Given a gallery set, the residual defined in Eq. (11)
can be used as the dissimilarity score for face identi-
fication (including open-set identification). However,
while the SRC algorithm was originally proposed for
face identification, little work has been done for SRC
based face verification. In this paper, we propose
a simple extension of the MKD-SRC algorithm for
face verification. The face verification task is to judge
whether a given pair of face images, say, I and J ,
belong to the same subject or not. For this task, we use
a set of background face images together with image
I as a virtual gallery set, and the other input face
image J as the probe. Note that the set of background
face images does not contain the same subject as
either of the two input face images. Then the MKD-
SRC algorithm is applied, and the verification score
is defined as 1 − rc, where rc is defined in Eq. (11),
and c is the class for image I . To make the verification
score a symmetric function of I and J , we also put
J in the gallery set and use I as the probe, and the
average score is computed as the final score.

To handle pose variations, mirrored face images
have been used to improve FR performance in dif-
ferent views [65]. Motivated by this, the input face
image, I , is horizontally mirrored as I ′, then both I
and I ′ are put in the virtual gallery set. In this way,
there would be more chance for a left profile face
image to match with the corresponding right one.

4 EXPERIMENTS

The performance of the alignment-free MKD-SRC
partial face matching algorithm has been evaluated

on four public domain databases: FRGCv2.0 [66],
AR [67], LFW [2], and PubFig [68], which are summa-
rized in Table 4. With these four databases we focus
on three different scenarios of partial face recognition:
(i) arbitrary patch extracted from the holistic face
(FRGCv2.0), (ii) occluded face (AR), and (iii) real
face images with arbitrary occlusion and pose vari-
ations (LFW & PubFig), respectively. We conducted
three large-scale open-set identification experiments
for each of the three scenarios on FRGCv2.0, AR, and
PubFig, respectively, with only one image per subject
enrolled in the gallery. For the LFW database, we
followed the standard LFW verification benchmark
test protocol. Previously, in [9] we showed that MKD-
SRC performs much better than the SIFT matching ap-
proach [8] and the SRC algorithm [7]. In this paper, we
focus on performance comparisons with two leading
commercial face recognition SDKs, FaceVACS [3] and
PittPatt [4]. Besides these two SDKs, two additional
baseline algorithms were also compared. The first
one is a subspace method (PCA+LDA) implemented
in the CSU Face Identification Evaluation System
(csuFaceIdEval) V5.1 [69]. The other one is a local
feature based approach using LBP [33]. We followed
the same procedure as in [33], which divides the
whole face image into non-overlapping local blocks,
builds an LBP histogram descriptor for each block,
matches each block by the χ2 distance measure, and
finally fuses all block-based results by the sum-rule.
For the LBP approach we set the patch size to 16× 16
pixels, and used the LBPu2

81 operator. All the above
methods used in our comparative evaluation require
face alignment. We compared two versions of the pro-
posed alignment free MKD-SRC approach, one with
the SIFT descriptor [8] and the other with the newly
proposed GTP descriptor, denoted as MKD-SRC-SIFT
and MKD-SRC-GTP, respectively. MKD-SRC-SIFT was
proposed in our preliminary work [9].

As indicated in [72], the open-set identification
task is a more general scenario, with both closed-
set identification and verification being its special
cases. The watch-list task is an important application
that requires open-set identification. Two sub-tasks,
detection and identification, are involved in the open-
set identification process. In the detection sub-task,
the system has to decide if the probe image is in the
gallery or not. In the identification task, the system
has to report the identity of the accepted probe. The
performance evaluation of the open-set identification
task involves three sets of images. The first set is
the gallery set G , which contains all images that are
known to the system. The other two are probe sets PG

and PN . While PG consists of subjects in the gallery
set G but with different images, PN includes subjects
that are not present in G . Two performance measures,
the detection and identification rate (DIR) PDI , and
the false alarm rate (FAR) PFA, are calculated for
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TABLE 4
Databases and algorithms used in our experiments

Database FRGCv2.0+ AR+ PubFig+ LFW

Scenario Partial patch Occlusion Pose & Pose &
occlusion occlusion

#Subjects 20,466 20,135 5,140 5,749
#Gallery 10,466 10,135 5,083 6,000
#Probe 25,562 11,530 8,027 6,000

Methods MKD-SRC

MKD-SRC, MKD-SRC, [70],
PittPatt, PittPatt, [71],

FaceVACS, FaceVACS,
PCA+LDA, PCA+LDA,

LBP LBP

Notes: (1) Open-set identification was conducted on each database
with 1 image/subject in the gallery, with the exception that
verification was done on LFW. (2) “#Subjects” denotes the
number of subjects in both the gallery and probe sets, while
“#Gallery” and “#Probe” denotes the number of images in each
set. (3) FRGC database has been randomly cropped to generate
partial face images as probe, for which the alignment-based
algorithms cannot be applied. (4) Some background images from
databases other than these specific databases were added to
enlarge the gallery set. Please see the text for more details.

evaluation [72]. They are formulated as

PDI(τ) =
|{p|p ∈ PG , s(g∗, p) ≥ τ, and id(g∗, p) = 1}|

|PG | ,

PFA(τ) =
|{p|p ∈ PN , and s(g∗, p) ≥ τ}|

|PN | ,

(13)

where s(·, ·) is the similarity score function, τ is
the decision threshold, g∗ = argmaxg∈G s(g, p), and
id(g, p) is an indicator whether g and p belong to the
same identity. By changing the decision threshold τ , a
Receiver Operating Characteristic (ROC) curve can be
drawn by plotting DIR versus FAR. Note that when
FAR=100%, the corresponding DIR is the traditional
rank-1 accuracy of the closed-set identification task
with the gallery set G and the probe set PG .

4.1 Partial Face Recognition for Arbitrary Patch
We synthetically generated a large database of partial
faces from 16,028 frontal face images of 466 subjects
from the Face Recognition Grand Challenge Ver2.0
(FRGCv2.0) database [66]. We conducted a large-scale
open-set identification experiment on this database.
The gallery set G contained 466 full face images of
the 466 subjects, with just one image per subject. To
make the identification problem more challenging, we
included an additional 10,000 full frontal face images
(1 image per subject) from a private database to
enlarge the gallery set to 10,466 subjects in total. The
probe set PG consisted of 15,562 partial face images
of the 466 subjects from the FRGC database. The other
probe set PN included 10,000 partial face images of
10,000 subjects from the private database, where none
of these subjects were present in the gallery set. The
extended database is denoted as FRGCv2.0+ to avoid
confusion with the original FRGCv2.0 database.

(a) gallery (b) probe

Fig. 5. Example face images for experiments with
partial face patches: (a) gallery images from the
FRGCv2.0 database (upper row) and the extend-
ed gallery set (bottom row); (b) partial face images
cropped from the FRGCv2.0 database (upper row) for
PG and the private database (bottom row) for PN .

Fig. 6. ROC curves for open-set identification on
face patches extracted from the FRGCv2.0+ database.
Note that other algorithms (FaceVACS, PittPat, P-
CA+LDA and LBP) used in our comparative study
could not be applied for arbitrary partial face patches
since they all require alignment.

All gallery face images were cropped to 128 × 128
pixels based on the two eye coordinates. Fig. 5(a)
shows examples of cropped face images in the gallery.
To generate partial face patches as probe, a full face
image was first randomly rotated according to a Gaus-
sian distribution with mean 0 and standard deviation
10◦. Next, a face patch at random position of a random
size was extracted to represent a partial face. Finally,
the cropped patch was scaled to h×w, where both h
and w are uniformly distributed in [64, 256]. Fig. 5(b)
shows some instances of partial face patches. Notice
that these randomly rotated and scaled face patches
are clearly not aligned with the gallery images.

The two commercial face matchers (PittPatt and
FaceVACS) and the two baseline algorithms (P-
CA+LDA and LBP) could not be evaluated in this
experiment. Because they all require face alignment
which is not possible for the arbitrary partial face
patches in the probe set. Fig. 6 shows the ROC
curves of the proposed MKD-SRC-GTP and the MKD-
SRC-SIFT methods for open-set identification, where
MKD-SRC-GTP performs better than MKD-SRC-SIFT
in this experiment. These results show that while the
proposed algorithm can operate on these partial face
images, it is still a challenging problem.

To compare MKD-SRC with other methods, we
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Fig. 7. ROC curves for open-set identification on full
face images from the FRGCv2.0+ database.

conducted another open-set identification experiment
with full face images. This time the probe face images
were all aligned and fully cropped as in Fig. 5 (a), so
that the two commercial SDKs and the two baseline al-
gorithms could be applied. All other settings were the
same as in the previous experiment. The ROC curves
of all the compared algorithms are depicted in Fig. 7.
Note that in this open-set identification experiment
with the full face images in FRGCv2.0+, the proposed
MKD-SRC-GTP method performs much better than
PittPatt, and slightly better than FaceVACS. Fig. 7 also
shows that both MKD-SRC-SIFT and LBP perform
better than MKD-SRC-GTP when FAR<1%. Finally,
PCA+LDA does not perform well in this large-scale
open-set identification experiment.

4.2 Holistic Face Recognition with Occlusion
The AR database contains 135 subjects, including face
images wearing sunglasses or a scarf. We selected
135 non-occluded face images (1 image/subject) with
neutral expression from the AR database as the gallery
set G . Again, an additional 10,000 full frontal faces
(1 image/subject) were included, making the gallery
size 10, 135. For the probe set PG , 1,530 images from
the AR database were selected, all with sunglasses
or scarf. Each probe image may have left or right
side illumination. For the probe set PN , 10,000 sub-
jects (not present in the gallery set) with full frontal
faces (1 image/subject) were selected from the private
database. The extended database is denoted as AR+

to avoid confusion with the original AR database.
For the proposed alignment-free methods, all images
were cropped to 128× 128 pixels after face detection.
Fig. 8 shows some cropped face images from the
AR database, which are not very well aligned. For
PittPatt and FaceVACS, face alignment was done by
their respective SDKs (as in all other experiments).
For the PCA+LDA and the LBP methods, alignment
was done using manually labeled eye locations. Faces
were cropped to 128× 128 pixels for the LBP method
after alignment.

Fig. 9 shows that MKD-SRC-SIFT and MKD-SRC-
GTP have comparable performances, and both outper-
form other face recognition algorithms with a notable

Fig. 8. Sample images from the AR database. Top row:
gallery images. Bottom row: probe images.

Fig. 9. ROC curves for open-set identification on the
AR+ database.

margin. At an FAR of 1%, MKD-SRC-GTP can reject
99% of impostors, while correctly detecting and iden-
tifying more than 55% of genuine probes. In contrast,
both FaceVACS and PittPatt perform worse in this
experiment. The second best algorithm, FaceVACS,
has almost half the recognition rate of MKD-SRC.
Note that this experiment is quite challenging because
(i) all gallery face images in G are holistic without
occlusion, but all probe images in PG have faces
with sunglasses or scarf and also contain illumination
variations; (ii) all probe images in PN contain holistic
faces without occlusion; and (iii) only one sample per
class is available in the gallery set. Therefore, all the
impostor match pairs by comparing PN against G
consist of two well-aligned holistic face images with-
out occlusion, which appear to be more similar than
all the genuine match pairs comparing PG against
G , which consist of one occluded face image and one
non-occluded face image. This is why the two baseline
algorithms PCA+LDA and LBP perform very poor, as
observed in Fig. 9.

4.3 Face Recognition on LFW
The Labeled Faces in the Wild (LFW) database [2] con-
sists of realistic and naturally occurring face images

Fig. 10. Sample images from the LFW database.



10

captured in uncontrolled environments and down-
loaded from the internet. The LFW database includes
13,233 images of 5,749 subjects. Face images in LFW
contain large variations in pose, illumination, and
expression, and may be arbitrarily occluded. Fig. 10
shows some example images from this database. Un-
like many other approaches (e.g. [71]) which used
aligned face images (either the “LFW-a” set by com-
mercial software or the “funneled” set) provided at
the LFW website [2], we applied our algorithm on
the original unaligned LFW images directly. Each
face image in LFW was detected and centered using
the OpenCV implementation of the Viola-Jones face
detector, and the cropping region returned by the
detector was enlarged by a factor of 2.2 and then
scaled to 250 × 250 pixels. Since the enlarged images
contain many background pixels (see Fig. 10), we
cropped the center 150× 100 pixels of each image for
matching, as shown in Fig. 12. For PCA+LDA, we
used PittPatt to detect the two eye locations required
by the csuFaceIdEval system. For all the 13,233 im-
ages, 13,124 (99.18%) pairs of eyes were detected. For
the LBP approach, we used the funnel aligned LFW
images, and cropped the face region with 150 × 100
pixels.

We follow the LFW benchmark test protocol in
View 2, where the dataset is divided into 10 subsets
for cross validation, with each subset containing 300
pairs of genuine matches and 300 pairs of impostor
matches for verification. The mean values of FAR and
GAR (Genuine Accept Rate) with fixed thresholds
over all the 10 subsets are plotted in an ROC curve
for performance evaluation. For the proposed MKD-
SRC approach, the procedure described in Section 3.4
was applied for verification. In particular, for each
of the 10 test subsets, 100 images were randomly
selected from the other 9 subsets to compose the
virtual gallery set for our algorithm. Note that the
actual identity information about the selected images
was not used in training; therefore, our method fol-
lows the LFW image-restricted training protocol as
described in [2]. Furthermore, as all the faces can be
detected automatically, we applied a spatial constraint
that only keypoints within a distance of 0.1h in the
vertical dimension were filtered out in the filtering
stage described in Section 3.3, where h = 150 is
the height of the cropped face. We did not consider
the horizontal direction because there are large pose
variations in this direction. We found that this spatial
constraint improved the performance by about 2%.

Fig. 11 shows the ROC curves of the various
face recognition algorithms. The proposed MKD-SRC-
GTP method outperforms the commercial match-
er FaceVACS and the best published method (V1-
like/MKL) [71] which strictly follows the LFW image-
restricted training protocol. But, the proposed method
does not perform as well as PittPatt. However, a

Fig. 11. ROC curves for the LFW database.

sum score fusion6 of MKD-SRC-GTP with PittPatt
improves PittPatt’s performance (MKD-SRC-GTP also
improves FaceVACS’s performance by fusion), show-
ing that our alignment-free partial face recognition
method is able to provide complementary information
to commercial holistic FR systems. The sum score
fusion of MKD-SRC-GTP and PittPatt was applied
after min-max score normalization (separately trained
in the cross-validation setting for the 10 subsets),
and the two matchers were equally weighted. More-
over, the fused result of MKD-SRC-GTP and PittPat-
t outperforms the best published result (Associate-
Predict) [70] on the LFW database when FAR is below
1%. Note that the Associate-Predict method used a
large-scale dataset in addition to LFW for training.
Furthermore, MKD-SRC-GTP improves the perfor-
mance of our previous method MKD-SRC-SIFT [9]
significantly, suggesting that the new GTP descriptor
is more effective than SIFT in uncontrolled scenarios.
Compared to the two baseline algorithms PCA+LDA
and LBP, our MKD-SRC based methods also perform
better. Interestingly, LBP performs much better than
PCA+LDA, since the holistic appearance of a face
varies drastically in uncontrolled scenarios.

Fig. 12 shows some example face image pairs that
can be correctly recognized by MKD-SRC-GTP but not
by PittPatt at FAR=1%. Similar to the AR database,
MKD-SRC-GTP performs better with faces wearing
sunglasses. Besides, MKD-SRC-GTP can also match
faces in different views, especially when a mirrored
image is included in the virtual gallery set to learn
the sparse representation (see Section 3.4).

To further understand the strength of the proposed

6. We found that the fusion of PittPatt and FaceVACS did not
perform better than PittPatt, as provided in the supplementary file.
This is because PittPatt performs much better than FaceVACS in this
experiment, and it appears that the two matchers are not comple-
mentary to each other. While we don’t know the actual algorithms
utilized in these two SDKs, both are alignment based, which is
quite different from our alignment-free approach. Therefore, it is
expected that the alignment-based and alignment-free approaches
would provide sufficient complementary information. That is why
the fusion of PittPatt and MKD-SRC-GTP performs better.
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Fig. 12. Pairs of face images from the LFW database
that can be correctly recognized by MKD-SRC-GTP but
not by PittPatt at FAR=1%.

Fig. 13. Genuine pairs of partial face images from a
subset of the LFW database.

alignment-free partial face recognition method, we
did another experiment with a subset of the LFW
database. From the 10 folds of the View 2 experiments,
we selected 500 genuine pairs, where either one, or
both the face images to be matched have sunglasses,
hats, occlusions by hand or other objects, or large
pose variations (> 45◦). All these selected images are
partial face images as categorized in Table 1. Some
examples of the selected genuine pairs are shown in
Fig. 13. We used the same 3,000 impostor pairs as
in View 2. The resulting ROC curves are shown in
Fig. 14. Comparing with Fig. 11, the performances
of all algorithms degrade on this more challenging
subset of LFW. Nevertheless, the proposed MKD-
SRC-GTP method now performs better than both
PittPatt and FaceVACS. Besides, the fusion of PittPatt
and MKD-SRC-GTP further improves the recognition
performance. This shows that MKD-SRC-GTP is more
suitable for general partial face recognition scenarios.

4.4 Face Recognition on PubFig
The PubFig database [68] contains 58,797 face images
of 200 famous personalities collected from the inter-
net, where 60 subjects are used for algorithm develop-
ment and 140 subjects are used as the evaluation set.
Due to many broken links to the original images (on
various websites like Flickr), we could not download
the whole PubFig database for testing. For the evalua-
tion set we downloaded 23,121 images of the 140 sub-
jects. From this available data, we conducted an open-
set identification experiment. The gallery set contains
83 full and near frontal face images of 83 subjects from
the PubFig database, plus 5,000 full face images of

Fig. 14. ROC curves for a subset of the LFW database.

Fig. 15. Probe face images (top) and the correspond-
ing gallery images (bottom) from the PubFig database.

5,000 subjects (not overlapping with PubFig) from the
LFW database. This extended database is denoted as
PubFig+ to avoid confusion with the original PubFig
database. The probe set PG includes 817 images of the
same 83 subjects in the gallery set. All faces in PG are
partial faces with sunglasses, hats, occluded by hair,
hand, or other objects, extreme illumination, or large
pose variations (> 45◦). Fig. 15 shows some examples
of genuine pairs of images used in our experiment.
The probe set PN contains 7,210 holistic or partial
face images of 57 subjects from the PubFig database.
For each image, a face is annotated by a bounding box
provided by a commercial face detector. We cropped
the face according to the bounding box, and scaled
it to 100 × 100 pixels for the proposed MKD-SRC
methods. For PCA+LDA and LBP, we used PittPatt to
detect the two eyes, with a detection rate of 98.33%.
Faces were cropped to 128 × 128 pixels for the LBP
approach after alignment.

The challenges associated with this experiment in-
clude: (i) large-scale open-set identification; (ii) one
sample per class in the gallery; (iii) real-word partial
faces, with large intra-class variations in pose, illu-
mination, expression, and occlusions. We compared
the proposed MKD-SRC algorithm with PittPatt and
FaceVACS, and also the two baseline algorithms P-
CA+LDA and LBP. The ROC curves are shown in
Fig. 16. We can observe that while all algorithms
perform poorly in this very challenging experiment,
MKD-SRC-GTP performs the best.
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Fig. 16. ROC curves for the PubFig+ database.

4.5 Parameter Values

All the parameter values (t, a, M and L) for the pro-
posed algorithm were fixed for all our experiments on
the four databases (see Table 3). In this subsection, we
provide a sensitivity analysis of parameter values on
our algorithm’s performance. We used the develop-
ment set of the LFW database in View 1 in Image Re-
stricted Configuration. The training set contains 1,100
pairs of genuine samples, and 1,100 pairs of impostor
samples. From the training set we random selected
100 images for the virtual gallery set of our algorithm.
The testing set contains 500 pairs of genuine samples
and 500 pairs of impostor samples for verification
experiments. We used the Area Under Curve (AUC)
for performance comparison. Each time we evaluated
one parameter while fixing the other three parameters.
The performance influence of our algorithm in terms
of parameter values is demonstrated in Fig. 17. From
Fig. 17(a) it can be observed that our choice of the
LTP encoding is better than the LBP encoding, and a
good range of values for the parameter t is [0.01, 0.07].
Fig. 17(b) shows that applying a sigmoid function
to the histogram descriptor is better than without it,
and a good range of values for a is [5, 30]. For the
number of PCA dimensions, Fig. 17(c) shows that
M ∈ [128, 256] performs well. However, larger values
of M increase both the memory and computational
costs. Finally, Fig. 17(d) shows that our algorithm is
very stable when L ≥ 50, with lower values of L
resulting in faster computation. Therefore, applying
the fast filtering technique proposed in Section 3.3
improves the efficiency of the proposed algorithm
without loss of accuracy.

5 SUMMARY AND FUTURE WORK

We have addressed the problem of recognizing a
face from its partial image, and proposed an align-
ment free approach, called MKD-SRC. Our approach
represents each face image with a set of keypoint
descriptors (GTP and SIFT), and constructs a large
dictionary from all the gallery descriptors. In this

(a) parameter t (b) parameter a

(c) parameter M (d) parameter L

Fig. 17. Sensitivity analysis of parameters. The red line
in (a) is the result of LBP encoding instead of LTP. The
red line in (b) is the result without a sigmoid function.

way descriptors of a partial probe image can be
sparsely represented by the dictionary, and the iden-
tity of the probe can be inferred accordingly. The
proposed approach shows promising results on syn-
thesized partial faces (from the FRGCv2.0 database),
occluded holistic faces (AR database), and occluded or
non-frontal faces collected in unconstrained scenarios
(LFW and PubFig databases). A comparison with two
commercial face matchers, FaceVACS and PittPatt,
shows that MKD-SRC, particularly with the proposed
GTP descriptor, is well suited for general partial face
recognition problem. In case a partial face cannot be
detected, our approach can still provide a matching
score given a manually cropped face region. Given the
general framework of MKD-SRC, it would be useful
to apply MKD-SRC to other image classification areas,
such as object categorization.

ACKNOWLEDGMENTS

This research was supported by the Chinese Academy
of Sciences Visiting Professorship for Senior Interna-
tional Scientists Grant No. 2011T1G18, and partly sup-
ported by NSFC #61203267. Part of Anil Jain’s research
was supported by the WCU (World Class University)
program funded by the Ministry of Education, Sci-
ence and Technology through the National Research
Foundation of Korea (R31-10008). All correspondence
should be directed to Anil K. Jain.

REFERENCES

[1] G. Hua, M.-H. Yang, E. Learned-Miller, Y. Ma, M. Turk,
D. J. Kriegman, and T. S. Huang, “Introduction to the special
section on real-world face recognition,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 33, no. 10, pp.
1921–1924, 2011.



13

[2] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller,
“Labeled faces in the wild: A database for studying face
recognition in unconstrained environments,” University of
Massachusetts, Amherst, Tech. Rep. 07-49, October 2007,
http://vis-www.cs.umass.edu/lfw/.

[3] FaceVACS Software Developer Kit, Cognitec Systems GmbH,
http://www.cognitec-systems.de.

[4] PittPatt Software Developer Kit, Pittsburgh Pattern Recogni-
tion, Inc., http://www.pittpatt.com.

[5] “Police use facial recognition technology to nab rioters,”
http://www.msnbc.msn.com/id/44110353/ns/
technology and science-tech and gadgets/#.TkR lnO4KsJ.

[6] “Face recognition technology fails to find UK rioters,”
http://www.newscientist.com/article/mg21128266.000-face-
recognition-technology-fails-to-find-uk-rioters.html.

[7] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma,
“Robust face recognition via sparse representation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 31,
pp. 210–227, 2009.

[8] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” International Journal of Computer Vision, vol. 60, pp.
91–110, 2004.

[9] S. Liao and A. K. Jain, “Partial face recognition: an alignment
free approach,” in Proceedings of the IAPR/IEEE International
Joint Conference on Biometrics (IJCB 2011), Oct. 11-13 2011.

[10] T. F. Cootes, C. J. Taylor, D. Cooper, and J. Graham, “Active
shape models - their training and application,” Computer Vision
and Image Understanding, vol. 61, no. 1, pp. 38–59, Jan 1995.

[11] T. Cootes, G. Edwards, and C. Taylor, “Active appearance
models,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 23, no. 6, pp. 681–685, June 2001.

[12] A. Wagner, J. Wright, A. Ganesh, Z. Zhou, H. Mobahi, and
Y. Ma, “Toward a practical face recognition system: Robust
alignment and illumination by sparse representation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 34,
no. 2, pp. 372–386, Feb. 2012.

[13] S. Z. Li, X. W. Hou, and H. J. Zhang, “Learning spatially lo-
calized, parts-based representation,” in IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2001.

[14] J. Kim, J. Choi, J. Yi, and M. Turk, “Effective representation
using ICA for face recognition robust to local distortion and
partial occlusion,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 27, pp. 1977–1981, 2005.

[15] H. J. Oh, K. M. Lee, and S. U. Lee, “Occlusion invariant face
recognition using selective local non-negative matrix factoriza-
tion basis images,” Image and Vision Computing, vol. 26, no. 11,
pp. 1515–1523, 2008.

[16] K. Hotta, “Robust face recognition under partial occlusion
based on support vector machine with local gaussian sum-
mation kernel,” Image and Vision Computing, vol. 26, no. 11,
pp. 1490–1498, 2008.

[17] H. Jia and A. Martı́nez, “Support vector machines in face
recognition with occlusions,” in IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, June 2009.

[18] H. Ekenel and R. Stiefelhagen, “Why is facial occlusion a
challenging problem?” in Proceedings of the 3rd IAPR/IEEE
International Conference on Biometrics, 2009.

[19] D. Beymer, “Face recognition under varying pose,” in IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition, June 1994, pp. 756–761.

[20] A. Pentland, B. Moghaddam, and T. Starner, “View-based and
modular eigenspaces for face recognition,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
1994, pp. 84–91.

[21] T. Vetter and T. Poggio, “Linear object classes and image
synthesis from a single example image,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 733–
741, 1997.

[22] D. Graham and N. Allison, “Face recognition from unfamiliar
views: subspace methods and pose dependency,” in Proceed-
ings of the 3rd International Conference on Automatic Face and
Gesture Recognition, 1998, pp. 348–353.

[23] L. Wiskott, J.-M. Fellous, N. Krüger, and C. von der Malsburg,
“Face recognition by elastic bunch graph matching,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 19,
no. 7, pp. 775–779, 1997.

[24] V. Blanz, S. Romdhani, and T. Vetter, “Face identification across
different poses and illumination with a 3D morphable model,”
in Proceedings of the Fifth International Conference on Face and
Gesture Recognition, 2002, pp. 202–207.

[25] R. Gross, I. Matthews, and S. Baker, “Fisher light-fields for face
recognition across pose and illumination,” Pattern Recognition,
pp. 481–489, 2002.

[26] B. Heisele, P. Ho, J. Wu, and T. Poggio, “Face recognition:
component-based versus global approaches,” Computer Vision
and Image Understanding, vol. 91, no. 1-2, pp. 6–21, 2003.

[27] J. Yang, S. Liao, and S. Z. Li, “Automatic partial face alignment
in NIR video sequences,” in Proceedings of the 3rd IAPR/IEEE
International Conference on Biometrics, 2009.

[28] D. Yi, S. Liao, Z. Lei, J. Sang, and S. Li, “Partial face matching
between near infrared and visual images in MBGC portal
challenge,” in Proceedings of the 3rd IAPR/IEEE International
Conference on Biometrics, 2009.

[29] K. Sato, S. Shah, and J. Aggarwal, “Partial face recognition
using radial basis function networks,” in Proceedings of the
Third IEEE International Conference on Automatic Face and Ges-
ture Recognition, 1998, pp. 288–293.

[30] S. Gutta, V. Philomin, and M. Trajkovic, “An investigation into
the use of partial-faces for face recognition,” in Proceedings of
International Conference on Automatic Face and Gesture Recogni-
tion, 2002, pp. 33–38.

[31] U. Park, A. Ross, and A. Jain, “Periocular biometrics in the
visible spectrum: A feasibility study,” in IEEE 3rd International
Conference on Biometrics: Theory, Applications, and Systems, 2009.

[32] A. Martı́nez, “Recognizing imprecisely localized, partially oc-
cluded, and expression variant faces from a single sample
per class,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, no. 6, pp. 748–763, June 2002.

[33] T. Ahonen, A. Hadid, and M. Pietikainen, “Face description
with local binary patterns: Application to face recognition,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 28, no. 12, pp. 2037–2041, 2006.

[34] K. Pan, S. Liao, Z. Zhang, S. Li, and P. Zhang, “Part-based
face recognition using near infrared images,” in Proceedings of
IEEE International Workshop on Object Tracking and Classification
in and Beyond the Visible Spectrum, 2007.

[35] R. Min, A. Hadid, and J.-L. Dugelay, “Improving the recogni-
tion of faces occluded by facial accessories,” in IEEE Conference
on Automatic Face and Gesture Recognition, 2011.

[36] R. Brunelli and T. Poggio, “Face recognition: Features versus
templates,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 15, no. 10, pp. 1042–1052, 1993.

[37] C. Sanderson and K. Paliwal, “Polynomial features for robust
face authentication,” in International Conference on Image Pro-
cessing, vol. 3, 2002, pp. 997–1000.

[38] F. Cardinaux, C. Sanderson, and S. Marcel, “Comparison of
MLP and GMM Classifiers for Face Verification on XM2VTS,”
in Audio- and Video-Based Biometric Person Authentication, 2003.

[39] S. Lucey and T. Chen, “A GMM parts based face representa-
tion for improved verification through relevance adaptation,”
in IEEE Conf. on Computer Vision and Pattern Recognition, 2004.

[40] F. Cardinaux, C. Sanderson, and S. Bengio, “User authentica-
tion via adapted statistical models of face images,” IEEE Trans.
on Signal Processing, vol. 54, no. 1, pp. 361–373, 2006.

[41] C. Chan and J. Kittler, “Sparse representation of (Multiscale)
histograms for face recognition robust to registration and illu-
mination problems,” in The 17th IEEE International Conference
on Image Processing (ICIP), 2010, pp. 2441–2444.

[42] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray, “Vi-
sual categorization with bags of keypoints,” in ECCV Workshop
on statistical learning in computer vision, 2004.

[43] D. Sun and Z. Qiu, “Bag-of-words vector quantization based
face identification,” in International Symposium on Electronic
Commerce and Security (ISECS’09), vol. 2, 2009, pp. 29–33.

[44] Z. Li, J. Imai, and M. Kaneko, “Robust face recognition using
block-based bag of words,” in the 20th International Conference
on Pattern Recognition, Aug. 2010.

[45] M. Bicego, A. Lagorio, E. Grosso, and M. Tistarelli, “On the use
of SIFT features for face authentication,” in IEEE Conference on
Computer Vision and Pattern Recognition Workshop, 2006.

[46] J. Luo, Y. Ma, E. Takikawa, S. Lao, M. Kawade, and B. Lu,
“Person-specific SIFT features for face recognition,” in IEEE
Conference on Acoustics, Speech and Signal Processing, 2007.



14

[47] D. Kisku, A. Rattani, E. Grosso, and M. Tistarelli, “Face iden-
tification by SIFT-based complete graph topology,” in IEEE
Workshop on Automatic Identification Advanced Technologies, 2007.

[48] A. Mian, M. Bennamoun, and R. Owens, “An efficient multi-
modal 2D-3D hybrid approach to automatic face recognition,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 29, no. 11, pp. 1927–1943, November 2007.

[49] L. Zhang, M. Yang, and X. Feng, “Sparse representation or
collaborative representation: Which helps face recognition?”
in IEEE International Conference on Computer Vision, 2011.

[50] D. Yi, R. Liu, R. Chu, Z. Lei, and S. Z. Li, “Face matching
from near infrared to visual images,” in Proceedings of the 2nd
IAPR/IEEE International Conference on Biometrics, August 2007.

[51] T. Lindeberg, “Feature detection with automatic scale selec-
tion,” International Journal of Computer Vision, vol. 30, no. 2,
pp. 79–116, 1998.

[52] J. Canny, “A computational approach to edge detection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 8,
no. 6, pp. 679–698, 1986.

[53] K. Mikolajczyk, A. Zisserman, and C. Schmid, “Shape recog-
nition with edge-based features,” in Proceedings of the British
Machine Vision Conference, 2003.

[54] K. Mikolajczyk and C. Schmid, “Scale & affine invariant in-
terest point detectors,” International Journal of Computer Vision,
vol. 60, no. 1, pp. 63–86, 2004.

[55] ——, “An affine invariant interest point detector,” in Proceed-
ings of the European Conference on Computer Vision, 2002.

[56] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide-
baseline stereo from maximally stable extremal regions,” Image
and Vision Computing, vol. 22, no. 10, pp. 761–767, 2004.

[57] “Scale & affine invariant feature detectors.” [Online]. Avail-
able: http://www.robots.ox.ac.uk/˜vgg/research/affine/
det eval files/extract features2.tar.gz

[58] C. Liu and H. Wechsler, “Gabor feature based classification
using the enhanced fisher linear discriminant model for face
recognition,” IEEE Transactions on Image Processing, vol. 11,
no. 4, pp. 467–476, 2002.

[59] X. Tan and B. Triggs, “Enhanced local texture feature sets for
face recognition under difficult lighting conditions,” in IEEE
International Workshop on Analysis and Modeling of Faces and
Gestures, 2007.

[60] R. Tibshirani, “Regression shrinkage and selection via the
lasso,” Journal of the Royal Statistical Society, Series B, vol. 58,
pp. 267–288, 1994.

[61] E. Candès, J. Romberg, and T. Tao, “Stable signal recovery from
incomplete and inaccurate measurements,” Communications on
Pure and Applied Mathematics, vol. 59, no. 8, pp. 1207–1223,
2006.

[62] H. Xu, C. Caramanis, and S. Mannor, “Sparse algorithms are
not stable: A no-free-lunch theorem,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 34, no. 1, pp. 187–
193, 2012.

[63] D. Donoho and Y. Tsaig, “Fast solution of �1-norm mini-
mization problems when the solution may be sparse,” IEEE
Transactions on Information Theory, vol. 54, no. 11, pp. 4789–
4812, 2008.

[64] D. Musser, “Introspective sorting and selection algorithms,”
Software Practice and Experience, vol. 27, no. 8, pp. 983–993,
1997.

[65] D. Beymer and T. Poggio, “Face recognition from one example
view,” in International Conference on Computer Vision, 1995.

[66] P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang,
K. Hoffman, J. Marques, J. Min, and W. Worek, “Overview of
the face recognition grand challenge,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2005.

[67] A. Martinez and R. Benavente, “The AR face database,” CVC
Technical Report, Tech. Rep., 1998.

[68] N. Kumar, A. C. Berg, P. N. Belhumeur, and
S. K. Nayar, “Attribute and simile classifiers for
face verification,” in IEEE International Conference on
Computer Vision (ICCV), Oct. 2009. [Online]. Available:
http://www.cs.columbia.edu/CAVE/databases/pubfig/

[69] CSU Face Identification Evaluation System,
http://www.cs.colostate.edu/evalfacerec/.

[70] Q. Yin, X. Tang, and J. Sun, “An associate-predict model for
face recognition,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2011.

[71] N. Pinto, J. DiCarlo, and D. Cox, “How far can you get with a
modern face recognition test set using only simple features?”
in IEEE Conference on Computer Vision and Pattern Recognition,
2009.

[72] P. J. Phillips, P. Grother, and R. Micheals, “Evaluation methods
in face recognition,” in Handbook of Face Recognition, 2nd ed.,
S. Z. Li and A. K. Jain, Eds. Springer, Sep. 2011, pp. 551–574.

Shengcai Liao received the B.S. degree in
mathematics and applied mathematics from
the Sun Yat-sen University, Guangzhou, Chi-
na, in 2005 and the Ph.D. degree from the
Institute of Automation, Chinese Academy of
Sciences, Beijing, China, in 2010. He was a
Post Doctoral Fellow in the Department of
Computer Science and Engineering, Michi-
gan State University during 2010-2012. He
is currently an Assistant Professor in the
Institute of Automation, Chinese Academy of

Sciences. His research interests include computer vision, pattern
recognition, and machine learning, with a focus on image and
video analysis, particularly face recognition, object detection and
recognition, and video surveillance. He was awarded the Motorola
Best Student Paper award and the 1st Place Best Biometrics Paper
award at the International Conference on Biometrics in 2006 and
2007, respectively, for his work on face recognition.

Anil K. Jain is a university distinguished
professor in the Department of Computer
Science and Engineering at Michigan S-
tate University. His research interests include
pattern recognition and biometric authenti-
cation. He served as the editor-in-chief of
the IEEE TRANSACTIONS ON PATTERN
ANALYSIS AND MACHINE INTELLIGENCE
(1991-1994). The holder of six patents in
the area of fingerprints, he is the author of
a number of books, including Handbook of

Fingerprint Recognition (2009), Handbook of Biometrics (2011),
Handbook of Multibiometrics (2006), Handbook of Face Recognition
(2005), BIOMETRICS: Personal Identification in Networked Society
(1999), and Algorithms for Clustering Data (1988). He served as
a member of the Defense Science Board and The National A-
cademies committees on Whither Biometrics and Improvised Explo-
sive Devices. Dr. Jain received the 1996 IEEE TRANSACTIONS ON
NEURAL NETWORKS Outstanding Paper Award and the Pattern
Recognition Society best paper awards in 1987, 1991, and 2005.
He is a fellow of the AAAS, ACM, IAPR, and SPIE. He has received
Fulbright, Guggenheim, Alexander von Humboldt, IEEE Computer
Society Technical Achievement, IEEE Wallace McDowell, ICDM Re-
search Contributions, and IAPR King-Sun Fu awards.

Stan Z. Li received the B.Eng. degree
from Hunan University, Changsha, China, the
M.Eng. degree from the National University
of Defense Technology, China, and the Ph.D.
degree from Surrey University, Surrey, U.K.
He is currently a Professor and the Direc-
tor of Center for Biometrics and Security
Research (CBSR), Institute of Automation,
Chinese Academy of Sciences (CASIA). He
worked at Microsoft Research Asia as a re-
searcher from 2000 to 2004. Prior to that, he

was an Associate Professor at Nanyang Technological University,
Singapore. His research interest includes pattern recognition and
machine learning, image and vision processing, face recognition,
biometrics, and intelligent video surveillance. He has published over
200 papers in international journals and conferences, and authored
and edited eight books. Dr. Li is currently an Associate Editor of the
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE
INTELLIGENCE and is acting as the Editor-in-Chief for the Ency-
clopedia of Biometrics. He served as a co-chair for the International
Conference on Biometrics 2007 and 2009, and has been involved
in organizing other international conferences and workshops in the
fields of his research interest.


