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Abstract—Face detection, as the first step in automatic facial analysis, has been well studied over the past two decades.
However, challenges still remain for face detection in unconstrained scenarios, such as arbitrary pose variations and occlusions.
In this paper, we propose a method to address these challenges in unconstrained face detection. First, a new type of image
feature, called Normalized Pixel Difference (NPD) is proposed. NPD feature is computed as the difference to sum ratio between
any two pixel intensity values, inspired by the Weber Fraction in experimental psychology. Besides its computational efficiency,
the NPD feature has several desirable properties, such as scale invariance, boundedness, and ability to reconstruct the original
image. Second, we develop a method for learning the optimal subset of NPD features and their combinations via regression trees,
so that complex face manifolds can be partitioned by the learned rules. This way, only a single cascade classifier is needed to
handle unconstrained face detection. The proposed face detector is robust in handling pose, occlusion, illumination, blur and
low image resolution. Experimental results on three public face datasets (FDDB, GENKI, and CMU-MIT) show that the proposed
method outperforms the state-of-the-art methods reported to date in detecting unconstrained faces with arbitrary pose variations
and occlusions in cluttered scenes.

Index Terms—Unconstrained face detection, normalized pixel difference, regression tree, AdaBoost, cascade classifier, pose,
occlusion, blur

�

1 INTRODUCTION

The objective of face detection is to find and locate
faces in an image. It is the first step in automatic face
recognition applications. Face detection has been well
studied for frontal and near frontal faces. The Viola
and Jones’ face detector [1] is the most well known
face detection algorithm, which is based on Haar-like
features and cascade AdaBoost [2] classifier. However,
in unconstrained scenes such as faces in a crowd,
state-of-the-art face detectors fail to perform well due
to large pose variations, illumination variations, oc-
clusions, expression variations, out-of-focus blur, and
low image resolution. For example, the Viola-Jones
face detector fails to detect most of face images in
the FDDB database [3] (examples shown in Fig. 1)
due to the difficulties mentioned above. In this paper,
face detection with arbitrary facial variations is called
the unconstrained face detection problem. We are
interested in face detection in unconstrained scenarios
such as video surveillance or images captured by
hand-held devices.
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Fig. 1. Face images annotated (red ellipses) in the
FDDB database [3].

Numerous face detection methods have been de-
veloped following Viola and Jones’ work [1], mainly
focusing on extracting different types of features and
developing different cascade structures. Various com-
plex features [4], [5], [6], [7], [8], [9], [10], [11], [12], [13]
have been proposed to replace the Haar-like features
used in [1]. While these methods can improve the face
detection performance to some extent, they generate
very large number (hundreds of thousands) of fea-
tures and the resulting systems take too much time to
train. Another development in face detection has been
to learn different cascade structures for multiview
face detection, such as parallel cascade [14], pyra-
mid architecture [15], and Width-First-Search (WFS)
tree [16]. All these methods need to learn one cas-
cade classifier for each specific facial view (or view
range). In unconstrained scenarios, however, it is not
easy to define all possible views of a face, and the
computational cost increases with increasing number
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of classifiers in complex cascade structures. Moreover,
these approaches require manual labeling of face pose
in each training image.

While previous methods [14], [15], [16] handled
multiview faces alone, they did not simultaneously
consider other challenges such as occlusion. In fact,
since these methods require to partition multiview
data into known poses, occlusion is not easy to handle
in this way. On the other hand, while several studies
addressed face detection under occlusion [17], [18],
[19], [20], [21], they constrained themselves to detect
frontal faces under occlusion. As discussed in [22], a
robust face detection algorithm should be effective un-
der arbitrary variations in pose and occlusion, which
is still an unresolved challenging problem.

In this paper, we are interested in developing effec-
tive features and robust classifiers for unconstrained
face detection with arbitrary facial variations. First,
we propose a simple pixel-level feature, called the
Normalized Pixel Difference (NPD). An NPD is com-
puted as the ratio of the difference between any two
pixel intensity values to the sum of their values, in the
same form as the Weber Fraction in experimental psy-
chology [23]. The NPD feature has several desirable
properties, such as scale invariance, boundedness,
and ability to reconstruct the original image. Besides,
it is easy to compute, involving only one addition,
one subtraction, and one division between two pixel
values per feature computation.

Secondly, we develop a method to construct a s-
ingle cascade classifier that can effectively deal with
complex face manifolds and handle arbitrary pose
and occlusions. While the individual NPD feature
may have “weak” discriminative ability, our work
indicates that a subset of NPD features can be opti-
mally selected by AdaBoost learning and combined to
construct more discriminative features in a regression
tree. This is a “divide and conquer” strategy to tackle
unconstrained face detection in a single classifier,
without pre-labeling of views in the training set of
face images. The resulting face detector is robust to
variations in pose, occlusion, and illumination, as well
as to blur and low image resolution. The robustness
and performance of the proposed face detector come
from the advantages of the NPD features and the way
the classifier is constructed.

The novelty of this work is summarized as follows:
• A new type of feature, called NPD is proposed,

which is efficient to compute and has several
desirable properties, such as scale invariance,
boundedness, and enabling reconstruction of the
original image.

• A subset of NPD features is automatically learned
and combined in regression trees to boost their
discriminability. In this way only a single cas-
cade AdaBoost classifier is needed to handle un-
constrained faces with occlusions and arbitrary
viewpoints, without pose labeling or clustering

in the training stage.
The advantages of the proposed approach include:
• A total of (20×20)×(20×20−1)/2 = 79, 800 NPD

features are computed in a 20× 20 face template
for feature representation. While the Viola-Jones
face detector [1] requires image normalization
and integral image computation, our feature rep-
resentation does not need such computation.

• No complex cascade structure is required for pose
invariant face detection; pose labeling or cluster-
ing in the training stage is also not required.

• A single face detector is able to handle illumina-
tion variations, pose variations, occlusions, out-
of-focus blur, and low resolution face images in
unconstrained scenarios.

The remainder of this paper is organized as follows.
In Section 2 we review the related work. In Section 3
we introduce the NPD feature space. The proposed
NPD based face detection method is presented in Sec-
tion 4. Experimental results are provided in Section 5.
Finally, we summarize the contributions in Section 6.

2 RELATED WORK

As indicated in a recent survey of face detection
methods [24], most popular face detection methods
are appearance based1, which use local feature rep-
resentation and classifier learning like boosting or
SVM. Viola and Jones’s work [1] was the first one
to apply rectangular Haar-like features in a cascaded
AdaBoost classifier for real-time face detection. Since
then, many approaches have been proposed to ad-
vance the state of the art in face detection. Several
researchers have tried to extend the original Haar-
like features proposed in [1]. Lienhart and Maydt [4]
proposed an extended set of Haar-like features, where
45◦ rotated rectangular features were introduced. Li
et al. [5] proposed another extension of Haar-like
features, where the rectangles can be spatially set
apart with a flexible distance. A similar feature, called
the diagonal filter was also proposed by Jones and Vi-
ola [6]. Various other local texture features have been
introduced for face detection, such as the modified
census transform [7], local binary pattern (LBP) [8],
MB-LBP [11], LBP histogram [10], and the locally
assembled binary feature [12]. These features have
been shown to be more robust to illumination vari-
ations. Mita et al. [9] proposed the joint Haar-like
features to capture the co-occurrence of effective Haar-
like features. Huang et al. [16] proposed a sparse
feature set in a granular space, where granules were
represented by rectangles, and each individual sparse
feature was learned as a combination of granules.
A problem with the approaches in [9] and [16] is
that the joint feature space is very large, making the

1. Skin color based face detection [22], [25], [26] is another
promising method. Please refer to [22], [26] for surveys along this
direction.
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optimal combination a difficult task. Recently, Jain
and Learned-Miller [27] proposed an online domain
adaption approach to improve the Viola-Jones face
detector’s performance on the FDDB database [3]. Li
et al. [13] proposed the use of SURF feature [28] in an
AdaBoost cascade for face detection, which achieved
impressive results on the FDDB database [3].

While complex features may provide better discrim-
ination power than Haar-like features for the face de-
tection task, they generally increase the computational
cost. In contrast, ordinal relationships among image
regions are simple yet effective image features [29],
[30], [31], [32], [33], [34]. Sinha [29] studied several
robust ordinal relationships in face images and de-
veloped a face detection method accordingly. Liao
et al. [32] further showed that ordinal features can
be effectively learned by AdaBoost classifier for face
recognition. Sadr et al. [30] showed that pixelwise
ordinal features (ordinal relationship between any two
pixels) can faithfully encode image structures. Simi-
lar ideas for exploiting ordinal relationships between
pixels were also proposed in [31], [33], [34]. Baluja et
al. [31] showed that simple pixelwise ordinal features
are good enough for discriminating between five fa-
cial orientations, a relatively simpler task than face
detection. Wang et al. [34] applied the random forest
classifier together with pixelwise ordinal features for
facial landmark localization. Abramson and Steux [33]
proposed a pixel control point based feature for fast
face detection, where each feature is associated with
two sets of pixel locations (control points). However, it
is not easy to learn these optimal control point based
features because of the huge number of control points
combinations.

Besides different feature representations, some re-
searchers have also tried different AdaBoost algo-
rithms and weak classifiers. For weak classifiers uti-
lized in boosting, Lienhart et al. [35] and Brubaker et
al. [36] have shown that classification and regression
trees (CART) [37] work better than simple decision
stumps. In this paper, we show that optimal ordinal
features and their combinations can be learned by
integrating the proposed NPD features in a regression
tree to represent the intrinsic object structure, and in
this way, arbitrary pose variations can be automati-
cally partitioned into different leaves of the learned
regression tree.

Given that the original Viola-Jones face detector has
limitations in multiview face detection [24], various
cascade structures have been proposed to tackle mul-
tiview face detection [6], [14], [15], [16]. Jones and
Viola [6] extended their face detector by training one
face detector for each specific pose. To avoid evaluat-
ing all face detectors on each scanning subwindow,
they developed a pose estimation step (similar to
Rowley et al. [38]) before face detection, and then only
the face detector trained on that estimated pose was
applied. In this two-stage detection structure, if the

pose estimation is not reliable, the face is not likely
to be detected in the second stage. Wu et al. [14]
proposed a parallel cascade structure for multiview
face detection, where all face detectors of different
views have to be evaluated for each scanning win-
dow; they did use the first several cascade layers of
all face detectors to estimate the pose for speedup.
Li and Zhang [15] proposed a coarse-to-fine pyramid
architecture for multiview face detection, where the
whole range of face poses was divided into increas-
ingly smaller subranges, resulting in a more efficient
detection structure. Huang et al. proposed a WFS
tree based multiview face detection approach, which
also works in a coarse-to-fine manner. They proposed
the Vector Boost algorithm for multiclass learning,
which is well suited for multiview pose estimation.
However, all these methods have to learn one cascade
classifier for each specific view (or view range) of face,
requiring an input face image to go through different
branches of the detection structure. The computation-
al cost generally increases with increasing number of
classifiers in complex cascade structures. Moreover,
these approaches require manual labeling of the face
pose in each training image.

Instead of designing detection structures, Lin and
Liu [19] proposed that multiview face detector can
be learned in a single cascade classifier. They derived
a multiclass boosting algorithm, called MBHBoost by
sharing features among different classes. This is a
more straightforward approach for multiview face
detection than designing complex cascade structures.
Nevertheless, it still requires manual labeling of poses.
In uncontrolled environments, however, it is not easy
to define specific views of a face by discretizing the
pose space, because a face could be in arbitrary pose
simultaneously in yaw (out-of-plane), roll (in-plane),
and pitch (up-and-down) angles. To avoid manual
labeling, Seemann et al. [39] suggested learning view-
point clusters automatically for object detection. How-
ever, for human faces, Kim and Cipolla [40] showed
that clustering by traditional techniques like K-Means
does not result in categorized poses. They hence
proposed a multiple classifier boosting (MCBoost) for
human perceptual clustering of object images, which
was shown to be promising for clustering face poses.
However, it is not necessary that their clustering out-
put be only related to pose variations. For example, in
addition to different pose clusters, they also obtained
clusters with various illumination variations.

Face detection in presence of occlusion is also an
important issue in unconstrained face detection, but
it has received less attention compared to multiview
face detection. This is probably because, compared to
pose, it is more difficult to categorize occlusions into
several predefined classes; faces in unconstrained sce-
narios can be occluded in arbitrary ways. Hotta [17]
proposed a local kernel based SVM method for face
detection, which was shown to be more reliable than
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global kernel based SVM in detecting frontal faces
occluded by sunglasses or scarf. Lin et al. [18] tried to
handle 8 kinds of manually defined facial occlusions
by training 8 additional cascade classifiers besides
the standard face detector, which led to improved
performance in detecting occluded faces. Lin and
Liu [19] further proposed the MBHBoost algorithm to
handle faces with one of 12 in-plane rotations or one
of 8 types of occlusions, where each kind of rotation
or occlusion is treated as a different class. But, in
their study pose and occlusion were not simultane-
ously present in the face. Chen et al. [20] proposed a
modified Viola-Jones face detector, where the trained
detector was divided into sub-classifiers related to
several predefined local patches, and a classifier fu-
sion was considered for the outputs of sub-classifiers.
Goldmann et al. [21] proposed a component-based ap-
proach for face detection, where four components (the
two eyes, nose, and mouth) were detected separately,
and further connected in a topology graph to achieve
face detection. However, none of the above methods
considered face detection with both occlusions and
pose variations simultaneously in unconstrained sce-
narios. As discussed in [22], a robust face detection al-
gorithm should be effective under arbitrary variations
in pose and occlusion, which is still an unresolved
challenging problem.

3 NORMALIZED PIXEL DIFFERENCE FEA-
TURE SPACE

The Normalized Pixel Difference (NPD) feature be-
tween two pixels is defined as

f(x, y) =
x− y

x+ y
, (1)

where x, y ≥ 0 are intensity values of the two pixels2

in an image patch, and f(0, 0) is defined as 0 when
x = y = 0.

The NPD feature measures the relative difference
between two pixel values. The sign of f(x, y) tells the
ordinal relationship between the two pixels x and y
(see Lemma 2 below), and the magnitude of f(x, y)
measures the relative difference (as a percentage of
the joint intensity x + y) between x and y. Note that
the definition of f(0, 0) � 0 is reasonable between
two pixels because in this case there is no difference
between the two pixels x and y. Compared to the
absolute difference |x − y|, NPD is invariant to scale
change of the pixel intensities (see Lemma 3 below).

Weber, a pioneer in experimental psychology, stated
that the just-noticeable difference in the magnitude
change of a stimulus is proportional to the magnitude
of the stimulus, rather than its absolute value [23].
This is known as the Weber’s Law. In other words, the

2. For ease of representation, sometimes we also say x and y are
two pixels. We use subscripts to differentiate between pixel and
pixel values only when pixel locations are under discussion.

human perception of difference in stimulus is often
measured as a fraction of the original stimulus, that
is, in a form ΔI/I , which is called the Weber Fraction.
Chen et al. [41] proposed a local image descriptor,
called Weber’s Law Descriptor for face recognition,
which was computed from Weber Fractions of pixels
in a 3× 3 local image region. The proposed measure-
ment of the difference to sum ratio in Eq. (1) has
also been used in other fields such as remote sensing,
where the Normalized Difference Vegetation Index
(NDVI) [42] is defined as the difference to sum ratio
between the visible red and the near infrared spectra
to estimate the green vegetation coverage.

The NPD feature has a number of desirable prop-
erties, as stated in the following Lemmas.

Lemma 1 (Antisymmetry): The NPD feature is an-
tisymmetric with respect to exchange of variables, that
is,

f(x, y) = −f(y, x), ∀x, y. (2)

Given this property, either f(x, y) or f(y, x) is ade-
quate for feature representation, resulting in a reduced
feature space. Therefore, in an s × s image patch
(vectorized as p × 1, where p = s · s), NPD feature
f(xi, xj) of every pixel pair 1 ≤ i < j ≤ p is computed
to form the feature set, resulting in d = p(p − 1)/2
features. For example, in a 20×20 face template, there
are (20×20)×(20×20−1)/2 = 79, 800 NPD features in
total. We call the resulting feature space NPD feature
space, denoted as Ωnpd (∈ R

d).
Lemma 2 (Ordinal Relationship): ∀x, y, f(x, y) > 0

if and only if x > y; f(x, y) < 0 if and only if x < y;
and f(x, y) = 0 if and only if x = y.

This Lemma states that the sign of f(x, y) is an
indicator of the ordinal relationship between x and y.
Ordinal relationship has been shown to be an effective
encoding for object detection and recognition [29],
[30], [32] because ordinal relationship encodes the
intrinsic structure of an object image and it is invariant
under various illumination changes [29]. However,
simply using a threshold of zero to encode the ordinal
relationship is likely to be sensitive to noise when x
and y have similar values. In the next section we will
show how to learn robust ordinal relationships with
NPD features.

Lemma 3 (Scale Invariance): The NPD feature is s-
cale invariant, that is, given any constant factor a �= 0,

f(ax, ay) = f(x, y), ∀x, y. (3)

With this property, the NPD feature is expected
to be robust against illumination changes. This is
important for image representation, since illumination
change is always a troublesome issue for both object
detection and recognition.

Lemma 4 (Boundedness): ∀x, y ≥ 0, the NPD fea-
ture f(x,y) is well bounded in [-1,1]. In addition,
f(x, y) = 1 if and only if x > 0 and y = 0; and
f(x, y) = −1 if and only if x = 0 and y > 0.
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Fig. 2. A plot of the NPD function f(x, y).

Appendix A contains a proof of Lemma 4. The
bounded property makes the NPD feature amenable
to some popular operations like histogram binning or
threshold learning in tree-based classifiers [1]. Fig. 2
shows that f(x, y) is a bounded function and it defines
a nonlinear surface.

Theorem 1 (Reconstruction): Given the NPD fea-
ture vector f = (f(x1, x2), f(x1, x3), . . . ,f(xp−1, xp))

T

∈ Ωnpd, the original image intensity values I =
(x1, x2, . . . , xp)

T can be reconstructed up to a scale
factor.

The proof of Theorem 1 is shown in Appendix B.
The proof also gives a linear-time approach to re-
construct the original image subject to a scale factor.
Theorem 1 states that there exists a preimage of a
point in Ωnpd, and the preimage is a one-dimensional
subspace of the original pixel intensity space. In
contrast, Lemma 3 says that every one-dimensional
subspace (it is in fact half of the subspace given the
nonnegative constraint) in the original pixel intensity
space is “compressed” to a point in the bounded
feature space Ωnpd. Therefore, Ωnpd is a feature space
which is invariant to scale variations, but it carries all
the necessary information from the original space.

In practice, the NPD feature set is still large, and
a feature selection procedure needs to be applied to
obtain an optimal subset of NPD features for face
detection, as described in the next section.

4 NPD FOR FACE DETECTION

4.1 Learning Object Structures
Ordinal relationship [29] is a very simple and basic
concept: it compares the brightness of any two image
regions, and encodes the result with 1 (brighter) or
0 (darker) accordingly. Sinha [29] showed that ordi-
nal features can represent the intrinsic structure of
objects such as a human face, and they are insensitive
to illumination changes. Instead of encoding ordinal
relationship between two image regions, in this paper,
we learn robust ordinal relationships from pairwise
pixel values via the NPD feature. For a face pattern
which is well structured, automatically learned com-
binations of ordinal features may represent it better

Fig. 3. Learning and combining ordinal features in
a regression tree. Left: four pixelwise ordinal features
are automatically selected in the learning process.
Right: the four features are optimally combined in a
regression tree for face/nonface prediction.

than manual configurations. Therefore, we propose to
learn the combination of simple ordinal features by
boosted regression trees [37]. By providing a training
set of face and nonface images, a weak classifier
is learned by a regression tree. Regression tree is a
simple classifier that is well suited for ordinal features.
At each node, the tree checks the optimal ordinal
feature value, and then sends the input data to the
next branch accordingly. Fig. 3 demonstrates the idea
of learning and combining binary ordinal features
automatically in regression trees. Regression tree is
also well suited for face detection with free pose
variations, since similar views can be clustered in the
same leaf node of the regression tree.

Ordinal relationship can always be generated by
the default threshold 0, which is likely to be sensitive
to noise when the two pixels to be compared have
similar values. In this paper, we propose to learn
robust ordinal relationships and their combinations
by learning regression trees with NPD features. In
this way, regression trees not only learn optimal NPD
features at each branch node, but also learn optimal
thresholds for splitting. Generally, either of the two
cases below are leaned for each NPD feature at a
branch node to represent the object structure. These
two cases are

f(x, y) =
x− y

x+ y
< θ1 < 0, (4)

f(x, y) =
x− y

x+ y
≥ θ2 > 0, (5)

where θ1 and θ2 are the two thresholds. Eq. (4) applies
if the object pixel x is notably darker than pixel y,
while Eq. (5) covers the case when pixel x is notably
brighter than pixel y. This way, the optimally learned
thresholds make the ordinal encodings in the learned
regression trees better represent the intrinsic object
structure. To learn such regression trees, we apply the
CART algorithm [37] with the NPD features.

4.2 Face Detector
Given that the proposed NPD features contain re-
dundant information, we also apply the AdaBoost
algorithm to select the most discriminative features
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and construct strong classifiers [1]. We adopt the Gen-
tle AdaBoost algorithm [2] to learn the NPD feature
based regression trees.

As in [1], a cascade classifier is further learned for
rapid face detection. We only learn one single cascade
classifier for unconstrained face detection robust to
occlusions and pose variations. This implementation
has an advantage that there is no need to label the
pose of each face image manually or cluster the poses
before training the detector. In the learning process,
the algorithm automatically divides the whole face
manifold into several sub-manifolds by regression
trees, so that face images with different poses are
separated.

Below is a summary of how the proposed method
is effective in handling various aspects of the uncon-
strained face detection problem.

• Pose. Pose variations can be handled by learning
NPD features in boosted regression trees, where
different views can be automatically partitioned
into different leaves of the regression trees.

• Occlusion. As indicated in [18], Haar-like fea-
tures or similar rectangle based features are sensi-
tive to occlusions, because the encodings affected
by occluded regions are no longer reliable. In
contrast, each of the proposed NPD feature is
computed by only two pixel values, hence, the
number of affected NPD features by occlusion is
much less than that of rectangular features which
generally cover large areas.

• Illumination. The proposed NPD features are
scale invariant, and they are converted to ordinal
features with optimally learned threshold in re-
gression trees. Therefore, NPD features are robust
to illumination changes.

• Blur or low image resolution. Because the NPD
feature involves only two pixel values, it does
not require rich texture information on the face.
Therefore, the proposed method is also effective
in handling blurred or low resolution face im-
ages.

5 EXPERIMENTS

In the following, we evaluate the performance of
the proposed NPD face detector on three public face
databases, FDDB [3], GENKI [43], and CMU-MIT [38].
We also provide an analysis to explain how the pro-
posed method works, and report unconstrained face
detection performances under illumination variations,
pose variations, occlusions, and blur, respectively.

5.1 Implementation of NPD Face Detector
A subset of the training data3 in [13] was used to
train our detector, including 12,102 face images and

3. https://sites.google.com/site/leeplus/publications/
facedetectionusingsurfcascade

Fig. 4. Example face (left) and nonface (right) images
from [13] for face detector training.

12,315 nonface images (some private face images and
the Corel5k nonface images were not available so
could not be used). Fig. 4 shows some example face
and nonface images from this training dataset. For
a composition of this training dataset, please refer
to [13]. The detection template was 20 × 20 pixels.
The detector cascade contained 15 stages, and for each
stage, the training goal of false accept rate was 0.5,
with a detection rate of 0.999. For the depth of the
regression trees, we set a constraint that each leaf node
must contain at least (1/16)th of the total number
of training samples. Under this constraint, the tree
depth is at most 5, and in the test phase at most 4
NPD features need to be computed for each regression
tree. The final detector contains 176 weak classifiers
(regression trees) constructed by 2,035 NPD features.
In contrast, the Viola-Jones detector [1] contains 6,061
Haar-like features in total. The first five stages of our
detector include 3, 4, 6, 7, 9 weak classifiers, respec-
tively. On average, each 20× 20 scanned subwindow
needs to evaluate 34 NPD features. Notice that our
method does not require any image preprocessing.
Fig. 5 shows the learned NPD features contained in
the three regression trees in the first stage. It can
be observed that most of the learned features are
around eyes, eyebrows, and nose. Besides, the learned
features in the three regression trees are distributed
in different parts of the facial region. This is because
in the boosting scheme all samples are reweighted
when a weak classifier is learned, so that the next
weak classifier can focus on the training samples that
can not be correctly classified in the current step. The
face shown in Fig. 5 is a frontal face, but it should be
kept in mind that the face can have pose variations,
and some learned features may be only effective for
a specific pose.

In the test stage, a scale factor of 1.2 was set for the
pyramid detection. A postprocessing method similar
to the OpenCV face detection module was implement-
ed, which merges nearby detections by the disjoint
set algorithm. For each detected face, we summarized
scores of AdaBoost classifiers in all stages of the
cascade to be the final score, and used this score to
generate the Receiver Operating Characteristic (ROC)
curve as a measure of performance.
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Tree 1 Tree 2 Tree 3

Fig. 5. The learned NPD features by boosting regres-
sion trees in the first stage.

Our face detector is implemented in MATLAB, with
a C-Mex function for NPD feature extraction and clas-
sifier evaluation. For processing VGA image frames
(640× 480) containing 1 to 8 faces per frame, the cur-
rent implementation runs at 21.6 frames per second
(FPS), on average, on a PC with Intel Quad 2.66GHz
CPU. We have also tested four different implemen-
tations of the Viola-Jones face detector provided in
OpenCV2.4.1. These four detectors run at 21.8 FPS,
19.9 FPS, 17.0 FPS, and 16.1 FPS, respectively, for the
same VGA frames on the same computer. All the five
detectors tested were configured with a scaling factor
of 1.2 and a minimal face of 48 × 48 to detect, and
with parallel computing enabled. Therefore, our NPD
face detector implemented in MATLAB can achieve
a comparable speed to the fastest Viola-Jones face
detector in OpenCV that has been well optimized for
real-time performance.

We used three public face databases, FDDB [3],
GENKI [43], and CMU-MIT [38], to evaluate our face
detection algorithm. The details of these databases are
presented below.

5.2 Evaluation on FDDB Database

Face Detection Data set and Benchmark (FDDB) is a
face detection database for challenging scenarios, de-
veloped by Jain and Learned-Miller [3] at the Univer-
sity of Massachusetts, Amherst. The FDDB database
contains 2,845 images with 5,171 faces, with a wide
range of challenging scenarios including arbitrary
pose, occlusions, different lightings, expressions, low
resolutions, and out-of-focus faces. All faces are anno-
tated with elliptical regions. Fig. 1 shows some exam-
ples of the annotated faces from the FDDB database.

For benchmark evaluation, Jain and Learned-
Miller [3] also provided an evaluation code for a com-
parison of different face detection algorithms. There
are two metrics for performance evaluation based
on ROC: discrete score metric and continuous score
metric, which correspond to coarse match (similar to
previous evaluations in the face detection literature)
and precise match, respectively, between the detection
and the ground truth. Two experimental setups are
proposed in [3]. The first experiment requires a 10-
fold cross-validation, while the second experiment al-
lows unrestricted training, which means that training
data outside of FDDB can be used for face detector

Fig. 6. Face images cropped from the FDDB
database [3].

Fig. 7. Modified images from the FDDB database [3]
for bootstrapping nonface samples.

training. We followed both experimental protocols.
For Experiment 1, we trained 10 face detectors, with
the same training settings described in Section 5.1,
and tested the 10 subsets separately in 10-fold cross-
validation manner. On average, we used about 4,500
face images annotated in FDDB to train a single face
detector. Fig. 6 shows some face images that were
cropped from the FDDB database for training our face
detectors. It can be observed that the face appearance
has large variations. Since FDDB does not provide a
set of nonface images, we replaced all annotated face
regions with black patches in the FDDB images and
then used the resulting images to bootstrap nonface
samples. Fig. 7 illustrates such modified images.

For Experiment 2, we used the detector trained
with data outside FDDB, as described in the previous
subsection. For evaluation, this detector was applied
on each subset of the FDDB database separately, and
an average performance was obtained.

We compared our method with state-of-the-art re-
sults reported on the FDDB website4. The ROC curves
of various algorithms are depicted in Fig. 8 for the
discrete score metric and in Fig. 9 for the continuous
score metric. In both figures, “NPD-FDDB” is the
proposed detector for Experiment 1, while “NPD-
Outside” is the proposed detector for Experiment
2. “Viola-Jones” is the Viola-Jones face detector [1]
implemented in OpenCV (reported in [3]). “SUR-
F Cascade” is the SURF descriptor based cascade
method proposed by Li et. al. in [13], which is the best
published method to date. “Olaworks, Inc.” is a com-
mercial face detector. Note that the proposed NPD-
FDDB is the only detector that follows the Experiment

4. http://vis-www.cs.umass.edu/fddb/results.html
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1 protocol, while all others report results only for the
Experiment 2 protocol. Note also that “NPD-Outside”
used a sub training set that was previously used for
“SURF Cascade”.

Fig. 8. ROC curves for face detection on the FDDB
database [3] with the discrete score metric.

Fig. 8 shows that the NPD detector outperforms
both the SURF cascade and the Viola-Jones detector
with the discrete score metric. The NPD detector is
also much better than the Olaworks’ detector when
the number of false positives (FP) is lower than 10. For
example, when FP=0 (cannot be shown in log scale),
our detector can detect about 60% of the annotated
FDDB faces in coarse sense (50% overlap with ground
truth), while the detection rates of all other detectors
are below 40%. It is also observed that the perfor-
mance of NPD-FDDB is comparable to NPD-Outside.

As for the continuous score metric (see Fig. 9),
the NPD detector outperforms both the SURF cas-
cade method and the Viola-Jones detector. NPD-FDDB
outperforms the commercial detector Olaworks, Inc.,
especially when FP< 20. In this test, FP=285 generally
means one false detection per image, on average. In
addition, NPD-Outside does not perform as good as
NPD-FDDB, though the training data size for NPD-
Outside is several times larger than that for NPD-
FDDB. This result indicates that FDDB contains suffi-
cient training data for unconstrained face detection.
However, it is not easy to handle all this data in
training a single detector (recall the large appearance
variations as seen in Fig. 6). The proposed method

Fig. 9. ROC curves for face detection on the FDDB
database [3] with the continuous score metric.

makes a success in that generic NPD feature is learned
in regression trees to divide and conquer the complex
face manifolds.

Fig. 10 shows some examples of detected faces in
the FDDB database by the proposed NPD method.
Rotated, occluded, and out-of-focus faces can be suc-
cessfully detected by the proposed method in Fig. 10.
Some occluded faces (e.g. 4th row and 2nd column
of Fig. 10) and blurred faces (e.g. top-right image
in Fig. 10) that are not annotated in the ground
truth can still be detected by the proposed method.
However, there are still a number of faces that cannot
be detected by the proposed method, especially in
very crowded scenes, observed in the 1st image and
the 3rd image in row 1, and the bottom-right image
of Fig. 10.

5.3 Evaluation on GENKI Database
The GENKI database [43] was collected by the Ma-
chine Perception Laboratory, University of California,
San Diego. We evaluated the current release of the
GENKI database, GENKI-R2009a, on its SZSL sub-
set, which contains 3,500 images collected from the
Internet. These images include a wide range of back-
grounds, illumination conditions, geographical loca-
tions, personal identity, and ethnicity. Some examples
of face images from the GENKI database are shown
in Fig. 12, with labeled detections by the proposed
NPD method. Most images in the GENKI dataset
contain only one face. Therefore, the GENKI dataset is
not as challenging as the FDDB dataset. Some of the
images in the GENKI-SZSL dataset contain faces that
are not labeled, therefore they are not suitable for the
face detection evaluation task. After removing such
unlabeled images, we are left with 3,270 images for
face detection evaluation. For performance evaluation,
it is not fair to apply the learned detector described
in Section 5.1, because the training data used for
that detector contained face images from the GENKI
database5. Therefore, we evaluated the NPD face de-
tector trained on the first fold of the FDDB 10-fold
cross validation. We also evaluated the Viola-Jones
face detector implemented in OpenCV2.4.1, and a
state-of-the-art commercial face detector PittPatt [44].
We used the benchmark evaluation code by Jain and
Learned-Miller [3] for performance evaluation, but
slightly modified the code for allowing ground truth
annotations of rectangles. The ROC curves of the three
methods are shown in Fig. 11 for both the discrete
and continuous score metrics. The results show that
the proposed NPD face detector performs much better
than both the Viola-Jones and PittPatt face detectors,
indicating that the proposed algorithm is more suited
for the general unconstrained face detection task.

5. This training data is provided by the authors of [13]. We
cannot remove the GENKI face images from this training data
because we can only access the raw face images in binary format,
without knowing the corresponding filenames and sources.



9

Fig. 10. Detected faces in the FDDB database [3] by the proposed NPD method. Green boxes are detections by
the proposed method, while red ellipses are ground truth annotations.

(a) discrete (b) continuous

Fig. 11. ROC curves for face detection on the GENKI-
SZSL dataset [43] with (a) discrete and (b) continuous
score metrics.

5.4 Evaluation on CMU-MIT Database

The CMU-MIT face dataset [38] is one of the ear-
ly benchmark dataset for face detection and it has
been routinely used for evaluation of face detection
algorithms. The CMU-MIT frontal face data set con-
tains 130 gray-scale images with a total of 511 faces,
most of which are not occluded. We applied the
same NPD detector described in Subsection 5.1 on
this database. We also used the modified benchmark
evaluation code from Jain and Learned-Miller [3] with
the discrete score metric for performance evaluation.
Fig. 13 shows the ROC curves for the proposed NPD
face detector, the Soft cascade method [45], the SURF
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Fig. 12. Detected faces in the GENKI-SZSL dataset [43] by the proposed NPD method.

Fig. 14. Detected faces in the CMU-MIT dataset [38] by the proposed NPD method.

cascade method [13], and the Viola-Jones detector [1].
The results show that, compared to the Viola-Jones
frontal face detector, the NPD detector performs better
when the number of false positives, FP < 50, while
it is slightly worse than Viola-Jones at higher FPs.
Compared to the SURF cascade detector, the NPD
detector is better when FP < 3, but SURF cascade
method outperforms NPD at higher FPs. Note that
the SURF cascade method used a face template of size
40 × 40 pixels, which is four times larger than our
face detection template (20 × 20 pixels). Generally, a
larger face template contains more features for face
description, but is computationally more expensive
and may have a limitation in detecting blurred faces.
In addition, the proposed method is not as good as the
Soft cascade, the state-of-the-art method on the CMU-
MIT dataset. The proposed NPD method can detect
about 80% of the frontal faces without false positives,
which is promising since we did not focus on training
a frontal face detector. Some detected faces on the
CMU-MIT dataset by the proposed NPD method are
shown in Fig. 14.

5.5 Analysis of Contributions
Since the proposed face detector is a combination of
regression tree and the NPD features, it is instructive
to determine the contribution of each of these two
components. First, we trained a detector based on
the NPD features, but with the stump classifier [1],
which can be regarded as a basic tree classifier with

Fig. 13. ROC curves for face detection on the CMU-
MIT dataset [38].

only one splitting node. This stump classifier based
detector contains 1,597 weak classifiers. In contrast,
the regression tree based detector contains 176 weak
classifiers, indicating that combining NPD features
in a regression tree is much more effective in con-
structing a weak classifier for AdaBoost learning.
Furthermore, in cascade processing, each scanning
subwindow needs to evaluate 37 NPD features, on
average, for the stump classifier based detector. On
the other hand, for the regression tree based detector,
34 NPD features need to be evaluated, which means
that for the whole detector, using regression tree as
a weak classifier does not increase the computation
cost. The face detectors based on the stump classifier
and the regression tree were tested on the FDDB
database. The ROC curves of these two detectors are
shown in Fig. 15 for both the discrete score metric and
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(a) discrete (b) continuous

Fig. 15. ROC curves for face detection on the FDDB
database [3] with (a) discrete and (b) continuous score
metrics.

continuous score metric. We include the SURF cascade
method [13] as a baseline in these two figures, which
also used the same training set. As illustrated, using
regression trees instead of stump classifier improves
the performance by about 2% – 10% for discrete metric
and 1% – 7% for continuous metric. The improvement
is larger at smaller false positives. Interestingly, the
proposed method with either regression tree or stump
based weak classifier clearly outperforms the SURF
cascade method, which represents the best published
result on the FDDB database to date.

Next, we fixed the regression tree based weak learn-
er, but tried two other local features, namely pixelwise
ordinal feature (POF) [34] and LBP [46]. Since LBP
is a discrete label, we treated it as a categorical
variable in the regression tree learning, that is, for
branching each tree node, the algorithm finds the
optimal criterion that splits the discrete LBP codes
into two groups. In [11], it is shown that LBP feature is
better than Haar-like feature for face detection. Using
the same training set as in Section 5.1, we trained
the two detectors using POF and LBP, respectively.
The POF detector learned 276 weak classifiers with
3,082 POF features, while the LBP detector learned 108
weak classifiers with 1,269 LBP features. In contrast,
the NPD detector learned 176 weak classifiers with
2,035 NPD features. However, it should be noted
that each LBP feature needs to compare 8 pairs of
pixels and convert the resulting binary string to the
corresponding decimal number. The three detectors
were tested on the FDDB database, and the corre-
sponding ROC curves are shown in Fig. 16 for both
the discrete and continuous score metrics. The SURF
cascade method [13] trained on the same dataset is
also included for comparison. It can be observed that
the NPD detector performs better than both the POF
detector and the LBP detector with the regression tree
based weak learners. NPD is better than POF, because
with NPD features the regression tree learns optimal
thresholds to form more robust ordinal rules. At low
false positives, both NPD and POF are better than LBP,
indicating that combining optimal pixel-level features
in regression trees provides better discrimination be-
tween real faces and difficult nonface samples. Besides

(a) discrete (b) continuous

Fig. 16. ROC curves for face detection on the FDDB
database [3] with (a) discrete and (b) continuous score
metrics.

these findings, the experimental results show that, the
NPD, POF, and LBP detectors in our learning frame-
work perform much better than the SURF cascade
method in detecting unconstrained faces.

5.6 Evaluation with Major Challenges
In the following, we evaluate how the proposed NPD
face detector performs under four major challenges
for unconstrained face detection, namely, illumination
variation, pose variation, occlusion, and blur (or low
resolution). Note that these four challenges are often
encountered simultaneously, which means that each
testing image may involve more than one type of
challenge. In our selection of the four subsets, we
focused on the main challenge of each image. For each
challenge, we selected 100 images from the FDDB
database [3] (examples are shown in Fig. 17), and
ran the NPD detector described in Subsection 5.1 on
these four subsets separately, resulting in ROC curves
shown in Fig. 18. It can be observed that the NPD face
detector performs the best on the illumination subset,
which is due to the proposed NPD feature’s robust-
ness against illumination variations. Further, the NPD
method performs better for face images with pose
variation than with occlusion or blur. These results
indicate that occlusion and blur are the two major
challenges for unconstrained face detection, which
have not been well addressed in the literature.

The NPD face detector is also compared with
the Viola-Jones face detector implemented in
OpenCV2.4.1, and the commercial face detector
PittPatt on the four subsets of FDDB discussed above
and shown in Fig. 17. The resulting ROC curves with
the discrete score metric are shown in Fig. 19. These
plots show that the proposed NPD face detector
outperforms both the Viola-Jones and the PittPatt
face detectors on the four subsets. The reasons for the
superior performance of the proposed method under
illumination variations, pose variations, occlusions,
and blur, were discussed in Subsection 4.2.

6 SUMMARY AND FUTURE WORK

We have proposed a method for unconstrained face
detection in cluttered scenes, which is based on the
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(a) illumination (b) pose

(c) occlusion (d) blur

Fig. 17. Example images and annotated faces for four
subsets from the FDDB database [3].

(a) discrete (b) continuous

Fig. 18. ROC curves of the proposed NPD face detec-
tor on four subsets from the FDDB database [3] with
(a) discrete and (b) continuous score metrics.

(a) occlusion (b) pose

(c) illumination (d) blur

Fig. 19. ROC curves for face detection on four subsets
from the FDDB database [3] with the discrete score
metric.

normalized pixel difference (NPD) feature in conjunc-
tion with boosted regression trees. We have shown
that the proposed NPD features are discriminative
and robust for the unconstrained face detection task.
An analysis of NPD feature shows its property of scale
invariance, boundedness, and reconstruction ability.
We have developed a method for learning optimal
NPD features and their combinations by boosted
regression trees to handle complex distribution of
faces in unconstrained conditions. It is shown that, a
single cascade AdaBoost classifier is able to achieve
promising results for unconstrained face detection
with large pose variations and occlusions. Evaluations
on the FDDB, GENKI, and CMU-MIT datasets show
that the proposed method outperforms state-of-the-art
methods for unconstrained face detection. The speed
of the proposed NPD face detector implemented with
MATLAB is also shown to be comparable to that of
the Viola-Jones face detector implemented in OpenCV.
The reported results also show that occlusions and
blur are two big challenges for unconstrained face
detection. Our future work will use the NPD feature
and the classifier learning method for other applica-
tions such as face attribute classification (e.g. pose
estimation, age estimation, and gender classification)
and pedestrian detection.

APPENDIX A
PROOF OF LEMMA 4
From the definition of NPD we know that x ≥ 0, y ≥
0, and f(0, 0) = 0 ∈ [−1, 1]. When either x or y is
nonzero, for example, y ≥ 0 but x > 0, Eq. (1) can be
reformulated as

f(x, y) =
x− y

x+ y
=

2x

x+ y
− 1 =

2

1 + y
x

− 1 ≤ 1. (6)

The inequality is because of y ≥ 0, and the last
equality holds if and only if x > 0 and y = 0. Similarly,
when x ≥ 0 but y > 0, Eq. (1) can be reformulated as

f(x, y) =
x− y

x+ y
= 1− 2y

x+ y
= 1− 2

x
y + 1

≥ −1. (7)

The inequality is because of x ≥ 0, and the last
equality holds if and only if x = 0 and y > 0. �

APPENDIX B
PROOF OF THEOREM 1
Denote fij = f(xi, xj). From Eq. (1) we have

fij(xi + xj) = xi − xj . (8)

Equivalently,

(fij − 1)xi + (fij + 1)xj = 0. (9)

Therefore, we have the following linear equations

Fx = 0, (10)
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where

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

f12 − 1 f12 + 1 0 · · · 0
f13 − 1 0 f13 + 1 · · · 0
· · · · · · · · · · · · · · ·

f1p − 1 0 0 · · · f1p + 1
0 f23 − 1 f23 + 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · fp−1,p + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)
is a sparse d × p matrix with each row containing
at most two nonzero entries. Furthermore, from the
formulation of F we know that each row of F contains
at least one nonzero entry, because fij − 1 �= fij + 1
always holds for all i and j. Without loss of gener-
ality, let’s assume f12 + 1 �= 0. Then it follows that
f1j+1 �= 0, ∀j. Because if ∃j such that f1j+1 = 0, then
from Lemma 4 we know that x1 = 0. This will further
lead to f12 + 1 = 0, a conflict with the assumption.
Therefore, the first p−1 rows are linearly independent
of each other.

We will further prove that rank(F) = p − 1. In
fact, any other row of the matrix F can be linearly
expressed by the first p − 1 rows. To show this, let’s
denote the row containing fij − 1 and fij + 1 by rij .
We will show that

rij = −fij − 1

f1i + 1
r1i − fij + 1

f1j + 1
r1j , (12)

holds for all i > 1 and j > i. In fact, it is easy to verify
that the above equation holds for all columns of rij ,
r1i, and r1j after the first column. So, we only need
to show that, for the first column, we have

− (f1i − 1)(fij − 1)

f1i + 1
− (f1j − 1)(fij + 1)

f1j + 1
= 0, (13)

which is equivalent to

f1if1jfij − f1i + f1j − fij = 0. (14)

This can be verified by substituting each feature with
its definition in Eq. (1).

Given rank(F) = p−1, we know that the nullspace
of F contains only one nonzero vector, which is a
solution to Eq. (10). Furthermore, from Lemma 4 we
can infer that (fij − 1)(fij + 1) ≤ 0, hence Eq. (9) tells
that xixj ≥ 0, ∀i, j. Consequently, Eq. (10) always has
a nonnegative solution x̂, and all solutions to Eq. (10)
must be cx̂, where c is a scale factor. �

We make four observations below:
• For a solution, c can be any real value, but to

satisfy the constraint that all pixel intensity values
are nonnegative, c should be positive.

• The solution to Eq. (10) spans a one-dimensional
subspace (the nullspace).

• A specific solution can be obtained by assigning
x1 = 1 and solving for the other variables from
the first p− 1 rows of Eq. (10) in linear time.

• When the original image is x = 0, it can also be
reconstructed by cx̂ where x̂i = 1, ∀i, and c = 0.

However, in this case a solution with c > 0 is
not generally regarded as a scaled version of the
original image x = 0.
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