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Abstract

Many approaches have been developed for holistic face
recognition with impressive performance. However, few s-
tudies have addressed the question of how to recognize an
arbitrary image patch of a holistic face. In this paper we ad-
dress this problem of partial face recognition. Partial faces
frequently appear in unconstrained image capture environ-
ments, particularly when faces are captured by surveillance
cameras or handheld devices (e.g. mobile phones). The pro-
posed approach adopts a variable-size description which
represents each face with a set of keypoint descriptors. In
this way, we argue that a probe face image, holistic or par-
tial, can be sparsely represented by a large dictionary of
gallery descriptors. The proposed method is alignment free
and we address large-scale face recognition problems by a
fast filtering strategy. Experimental results on three pub-
lic domain face databases (FRGCv2.0, AR, and LFW) show
that the proposed method achieves promising results in rec-
ognizing both holistic and partial faces.

1. Introduction
Face recognition deals with verifying or identifying a

face from its image. It has received substantial attention
and its performance has advanced significantly over the last
three decades due to its value both in understanding how
the face recognition process works in humans as well as in
addressing many applications, including access control and
video surveillance. While face recognition in controlled
conditions (frontal face and uniform illumination) has al-
ready achieved satisfactory performance, there still exist
many challenges in uncontrolled scenarios, such as non-
frontal pose, facial occlusion, and illumination variations.

Typical applications of face recognition in uncontrolled
environments include recognition of individuals in video
surveillance frames and images captured by handheld de-
vices (e.g. a mobile phone), where a face may be captured
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(a) (b) (c)
Figure 1. Examples of partial faces. (a) Partial faces from the LFW
database [15]. (b) Many occluded faces in a crowd 1. (c) Two
persons who are trying to hide their identities by wearing hooded
sweatshirt and sunglasses 2.

Table 1. Categories of partial faces
Category Example
External occlusion occlusion by other objects
Self occlusion non-frontal pose
Facial accessories hat, sunglasses, scarf, mask
Limited field of view not completely in camera’s FOV
Extreme illumination gloomy or highlighted facial area
Sensor saturation underexposure or overexposure

in arbitrary pose without user cooperation. In such scenar-
ios, it is quite likely that the captured face image is not a
holistic face. These scenarios raise the following important
questions: (i) is it possible to recognize a person from a par-
tial image of his face? and (ii) which portion of the face and
what size of the partial face are critical for accurate recogni-
tion? We call the resulting problem as Partial Face Recog-
nition (PFR), so as to differentiate it from the holistic face
recognition problem. State-of-the-art face recognition sys-
tems [1, 2] have difficulties with the general PFR problem.

Partial face images result due to many factors, which are
categorized in Table 1. Fig. 1(a) shows some examples of
partial faces which include a non-frontal face, a face oc-
cluded by another face, and a face that is not completely
visible in the image frame. Images or videos captured in
unconstrained environments often contain partial faces that
are difficult to recognize by state-of-the-art face recognition

1http://www.textually.org/picturephoning/archives/2008/09/021247.htm
2http://www.howtovanish.com/2010/01/avoid-nosy-surveillance-

cameras/

1



systems. Therefore, research on partial face recognition is
important to advance the state of the art. As an example, a
PFR system will enable law enforcement agencies to iden-
tify a suspect in a crowd from his partial face captured by
a mobile phone and match it to a watch list through a wire-
less link. Figs. 1(b) and (c) show two scenarios in uncon-
trolled environments, where (b) many occluded faces exist
in a crowd; and (c) two persons are trying to hide their iden-
tities by wearing hooded sweatshirt and sunglasses.

To our knowledge, almost all of the current face recog-
nition systems require face alignment. To align a face, the
most popular approach is to first detect the two eyes and
then normalize the face image geometrically. However, this
approach will fail as long as one eye is invisible in a par-
tial face image. Other face alignment methods include Ac-
tive Shape Model (ASM) [9] and Active Appearance Model
(AAM) [8]. They depend on localization of a certain fixed
number of landmarks in the holistic face image.

Among various types of partial faces, in practice the oc-
cluded and non-frontal ones are the most frequently en-
countered. While several papers have dealt with occlusion
[17, 24, 14, 16], they still require well aligned face images
to compensate for the occlusion effect. Ekenel and Stiefel-
hagen showed that face alignment plays a key role in recog-
nition performance in case of occlusion [10].

Wright et al. introduced sparse representation classifi-
cation (SRC) scheme for face recognition [34], which was
further improved in [32] to compensate for some possible
registration errors. Good performance under small amounts
of pose and occlusion variations was reported. However, S-
RC is not applicable to partial face images with large pose
variations or limited field of view (see Fig. 1(a)).

Non-frontal face recognition has also attracted signifi-
cant attention, including multi-view [4, 26] and cross-view
face recognition [30, 11, 13, 33]. A critical step in these ap-
proaches is to localize a certain fixed number of represen-
tative facial landmarks and establish landmark correspon-
dences between the input image and the target image in dif-
ferent views. As a result, both images are required to have
visible anchor points. This requirement would not be satis-
fied in case of external occlusion or limited field of view.

Yi et al. developed a recognition method [35] for frontal,
near infrared images with limited field of view. While this
method achieved promising matching accuracy, it requires
high resolution images with good skin texture, and it has
difficulty with pose variations.

Some research on partial face recognition that only re-
quire face sub-images as input has been reported. Sato et
al. [29] showed that certain facial sub-images (such as eye,
nose, and ear) could be used for recognition. Gutta et al.
[12] showed that a half (left or right) of the face is sufficient
for the recognition task. Park et al. showed that the peri-
ocular region is useful for identification [25]. Nevertheless,

these approaches require the presence of expected and pre-
defined facial components in the face image for recognition.

Instead of holistic representation, some face recognition
approaches adopted part-based fusion to deal with occlu-
sion and pose variation [6, 26, 13, 22]. These approach-
es either manually divide the face image into several sub-
regions, or automatically detect several predefined compo-
nents (e.g. eye, nose, and mouth), and fuse results from in-
dividual parts for recognition. However, their performance
deteriorates when some of the facial portions are invisible
and cannot be localized.

For images that are difficult to align (e.g. flowers), bag-
of-words (BoW) representation is frequently used for vi-
sual object categorization, which applies clustering tech-
niques to build “visual words”. However, histogram of vi-
sual words of a partial face may be quite different from that
of the whole face. In [20], the BoW representation was ap-
plied for face recognition, but it required pre-alignment so
that face images could be divided into regular blocks.

In this paper, we present a general formulation of the
partial face recognition problem. We do not know a prior-
i whether the input face is holistic or partial. Further, we
do not assume the presence of the eyes or any other facial
component in the image, and we do not assume any pri-
or information about face alignment. We provide a general
matching solution to all types of partial faces listed in Table
1. Our goal is to recognize an arbitrary partial face with-
out alignment. This is achieved by first deriving a multi
keypoint descriptor based representation and constructing a
gallery dictionary accordingly. Then multi-task sparse rep-
resentation is learned from features of each probe face, and
recognition is done by the returned sparse coefficients. We
call the proposed method as multi keypoint descriptor based
sparse representation classification (MKD-SRC).

The various approaches we have reviewed along with the
proposed one are summarized in Table 2. The novelties of
the proposed approach are: (i) it addresses the general par-
tial face recognition problem without an alignment stage;
(ii) by applying multi keypoint descriptors in SRC, it is a u-
nified face recognition framework for both holistic and par-
tial faces; (iii) a fast filtering strategy is proposed to address
large-scale face recognition.

2. Proposed Approach

2.1. Gallery Dictionary Construction

To allow for general partial face recognition capability,
we construct a large gallery dictionary of multi keypoint
descriptors (MKD) as follows. First, we detect multiple
SIFT keypoints [21] in each image, and compute the cor-
responding descriptors. For each class (subject) c in the
gallery, suppose kc keypoints, say, pc1 ,pc2 , · · · ,pckc

, are
detected. Note that if class c has multiple images, we sim-
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Table 2. A comparison of partial face recognition approaches along with the proposed one
Problem addressed Approach Face image requirement Gallery size

Occlusion

Subspace [17, 24]

Frontal, aligned and cropped ≤ 1, 196
SRC [34, 32]
SVM [14, 16]

Part-based fusion [6, 26, 13, 22]
Single component [29, 12, 25]

Pose Multi-view [4, 26] Alignment via landmarks ≤ 250Cross-view [30, 11, 13, 33]
Limited FOV Skin texture [35] Frontal, partial face alignment 114

Occlusion, pose, limited FOV MKD-SRC (proposed) Alignment free > 10, 000

ply pool the keypoints extracted from all the images from
class c. The corresponding kc SIFT descriptors are denot-
ed as dc1 ,dc2 , · · · ,dckc

, where each descriptor is an M -
dimensional vector (in our case, M = 128). Let

Dc = (dc1 ,dc2 , · · · ,dckc
). (1)

Then the descriptors from the same class form a sub-
dictionary of size M × kc representing class c. A gallery
dictionary for all the C classes is built as

D = (D1,D2, · · · ,DC). (2)

Note that D has a total number of K =
∑C

c=1 kc descrip-
tors. Hence the dictionary size is M ×K.

Inspired by [34], we adopt a sparse representation
scheme for recognition, and express any descriptor from a
probe image in terms of a sparse linear combination of the
gallery dictionary D.

2.2. Multi-Task Sparse Representation

Let us consider a probe face image with k descriptors

Y = (y1,y2, · · · ,yk). (3)

We aim to solve a multi-task l1-minimization problem

X̂ = argmin
X

k∑
i=1

‖xi‖1, s.t.Y = DX, (4)

where X = (x1,x2, · · · ,xk) ∈ RK×k is the sparse coeffi-
cient matrix, and ‖ · ‖1 denotes the l1 norm of a vector. This
is equivalent to solving the following k l1-minimization
problems for each probe descriptor yi

x̂i = argmin
xi

‖xi‖1, s.t. yi = Dxi, i = 1, 2, · · · , k.
(5)

We adopt the following multi-task sparse representation
based classification to determine the identity of the probe
image, which is inspired from [34]

min
c
rc(Y) =

1

k

k∑
i=1

‖yi −Dcδc(x̂i)‖22, (6)

(a) SIFT (Genuine)

(b) SIFT (Impostor) (c) MKD-SRC

Figure 2. Matching examples with a partial face image as probe.
(a) SIFT matching: 3 keypoints are matched for a genuine pair. (b)
SIFT matching: 5 keypoints are matched for an impostor pair. (c)
MKD-SRC coefficient distribution and the corresponding match-
es. Horizontal axis: keypoints correspond to columns of D; ver-
tical axis: coefficient strength, as computed by

∑k
j=1 |x̂ij |, i=1,

2, · · · , K, where k=15 in this example. The maximum coefficien-
t strength corresponds to a genuine match (right subplot), where
8 correspondences are drawn because 8 probe descriptors get the
maximum coefficients at gallery keypoints of this user. In contrast,
the left subplot corresponds to an impostor match.

where δc(·) is a function which selects only the coefficients
corresponding to class c. We call the resulting algorithm
as multi keypoint descriptor based SRC (MKD-SRC). Note
that MKD-SRC does not need an alignment stage.

Fig. 2(c) illustrates the MKD-SRC approach, where the
solution is indeed sparse with zero or near zero coefficients
at many keypoints, and the probe partial face is correctly
recognized. In contrast, the direct SIFT matching approach
[21] misclassifies the same probe image (Figs. 2(a) & (b)).
This example shows that MKD-SRC successfully exploits
the gallery class information and suppresses matches be-
tween impostor pairs by seeking the sparsest representation
among all the gallery images.

2.3. Fast Filtering

Taking into account the very large value of K (in prac-
tice, K can be of the order of millions) in the dictionary
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D, solving Eq. (5) will be computationally challenging in
practice. Therefore, we adopt a fast approximate solution.
For each probe descriptor yi, we first compute the follow-
ing linear correlation coefficients between yi and all the de-
scriptors in the dictionary D

ci = DTyi, i = 1, 2, · · · , k. (7)

Then for each yi, we filter out only L (L� K) descriptors
according to the top L largest values in ci, resulting in a
small sub-dictionary D

(i)
M×L. Next, D is replaced by D(i)

in Eq. (5), and Eq. (6) is adjusted accordingly.
As we will see later, this approximate solution is much

faster, with no significant degradation in performance.
From Eq. (7) and the selection of top L elements (note that
this can be done in O(Klog2L) by the partial quick sort
algorithm) we know that the computation time of the filter-
ing step scales linearly with respect to K (the number of
gallery keypoints) and k (the number of probe keypoints),
and hence scales almost linearly with respect to the gallery
size for each probe image (considering an average number
of keypoints per image).

2.4. Differences with Related Methods

The differences between the proposed method and three
related methods for face recognition are listed in Table 3.
Both SIFT [21] and MKD-SRC use variable-size descrip-
tion; they are alignment free and can be used for both holis-
tic and partial face recognition. In contrast, both SRC [34]
and LBP-SRC [7] (which uses LBP histograms instead of
pixel values in SRC) use a fixed-length description; they
require face alignment and can not be applied to general
partial face recognition problem. All SRC based method-
s exploit gallery class information for face recognition, but
SIFT matches each pair of images separately.

The difference among SRC, LBP-SRC and MKD-SRC
lies in the feature representation. Since both SRC and LBP-
SRC require face alignment and use a single fixed-size fea-
ture vector to represent an image, each column of their
corresponding dictionaries is related to one gallery image.
However, in such a scheme a partial face might have d-
ifficulty in alignment and representation due to some un-
known missing facial regions. In contrast, MKD-SRC uses
a variable-size description; each image is represented by a
set of descriptors. The MKD dictionary is composed of a
large number of gallery descriptors, making it possible to
sparsely represent descriptors from a probe face, regardless
of being holistic or partial. Note that although LBP-SRC al-
so extracts local features (LBP histograms) from the image,
they are extracted at a certain fixed number of predefined
locations after alignment.

Some other existing face recognition approaches based
on SIFT include [5, 18, 20, 19], however, all of them depend
on pre-aligned face images.

Table 4. Databases used in our experiments
Database FRGCv2.0 AR LFW
Scenario partial patch occlusion pose & occlusion
#Gallery 11,398 1,331 20,489
#Probe 14,630 1,530 2,744
#Subjects 10,466 1,331 15,749

3. Experiments

In this section, we provide experimental results on three
public domain databases: FRGCv2.0, AR, and LFW, which
are summarized in Table 4. With these three databases we
focus on three scenarios of partial face recognition: arbi-
trary patch of holistic face, occluded face, and face images
with arbitrary occlusion and pose variations, respectively.
Since in surveillance scenarios, identification is a more rea-
sonable mode than verification, we performed identification
experiments on these three databases and used the Cumula-
tive Matching Characteristic (CMC) curve for performance
evaluation. We compared the proposed MKD-SRC method
to the SIFT matching approach [21], as well as a commer-
cial face recognition software FaceVACS [1] and the origi-
nal SRC algorithm [34] if they are applicable.

3.1. Partial Face Recognition with Arbitrary Patch

3.1.1 Database

To evaluate the proposed method, we synthetically gener-
ated a large database of partial faces. We used 16,028
frontal face images of 466 subjects from the Face Recog-
nition Grand Challenge Ver2.0 (FRGCv2.0) database [28].
The selected images were randomly divided into gallery and
probe subset. The gallery set consisted of 1,398 images
of 466 subjects, with 3 images per subject. The remaining
14,630 images composed the probe set. To make the iden-
tification problem more challenging, we included an addi-
tional 10,000 frontal face images (1 image per subject) from
a private database to enlarge the gallery set. Therefore, the
gallery set contained 11,398 images in total.

All gallery face images were cropped to 128 × 128 pix-
els according to the two eye coordinates provided. Fig. 3(a)
shows some examples of cropped face images. The probe
images were first cropped in the same manner as the gallery
images. Next, for each cropped probe image, a patch at
random position of a random size h × w was cropped to
represent a partial face, where both h and w were uniform-
ly distributed in [50,100]. Fig. 3(b) shows some instances
of such randomly cropped face patches. Our objective is
to recognize these arbitrary patches (we assume they have
been manually cropped, as commonly made in forensic ap-
plications), which can be viewed as partial faces with exter-
nal occlusions or limited FOV. Note that the position infor-
mation of how these patches were cropped was not known
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Table 3. Differences between the proposed and three related face recognition algorithms
SIFT [21] SRC [34] LBP-SRC [7] MKD-SRC

Size of descriptor per image variable fixed fixed variable
Face image requirement alignment free aligned and cropped aligned and cropped alignment free
Gallery class information not used utilized utilized utilized

Holistic face yes yes yes yes
Arbitrary partial face yes no no yes

(a) gallery (b) probe
Figure 3. Example face images: (a) gallery images from the
FRGCv2.0 database (upper row) and the extended gallery set (bot-
tom row); (b) partial face images cropped from FRGCv2.0.

L Accuracy Time
101 78.33% 0.2s
102 82.62% 0.3s
103 83.48% 0.8s
104 82.62% 4.7s
= K 83.05% 50.4s

Figure 4. Performance in both speed (average computation time
per probe for a gallery of 1,398 images) and rank-1 accuracy, with
respect to the parameter L, on the FRGCv2.0 database.

to any of the recognition algorithm used in our evaluation.
Next we built an MKD based dictionary from the gallery

images, and also extracted multi keypoint descriptors for
each probe image. The MKD dictionary was of size 128 ×
1, 181, 514, while the number of descriptors for all probe
images was 280, 838. To solve Eq. (5), we utilized the L1
Homotopy MATLAB toolbox [3].

3.1.2 Parameter Selection and Computation Time

Our MATLAB implementation of MKD-SRC runs on a PC
server with Intel Core i7 2.93GHz CPU and 16GB memo-
ry. There is one parameter L in the proposed algorithm, as
described in Section 2.3. We tried different values of L and
evaluated the resulting performance in both speed and ac-
curacy, as shown in Fig. 4. We used a subset of the selected
data, including 1,398 gallery images and 466 probe images
of the 466 subjects. This resulted inK=111,643 for the dic-
tionary. Using all theK gallery descriptors (Eq. (7) was not
computed), the rank-1 recognition rate is 83.05%, with an
average recognition time of 50.4 seconds per probe. From
Fig. 4 we can see that L=100 and L=1000 have a good bal-
ance between computation time and accuracy. We decided
to set L=100 for all the following experiments.

Next we evaluated MKD-SRC on the large-scale dataset

Figure 5. CMC curves on face patches extracted from the
FRGCv2.0 database.

(11,398 gallery images and 14,630 probe images). The av-
erage number of keypoints per gallery image and per probe
image were 104 and 19, respectively. A complete solution
of the MKD-SRC framework consists of three steps: key-
point detection, gallery keypoint filtering (by Eq. (7)), and
multi-task sparse representation and classification. For a
probe image, the average computation times for the first and
the last steps are 0.07 and 0.61 seconds, respectively, which
are independent of the gallery size. For the second step, it
takes 0.80 seconds per probe, on average. As analyzed in
Section 2.3, the computation time of the second step scales
approximately linearly with respect to the gallery size. In
summary, the whole matching process takes 1.48 seconds
per probe for a gallery of 11,398 images.

3.1.3 Performance and Comparison

The proposed MKD-SRC algorithm was compared to the
SIFT matching approach with the same keypoints and de-
scriptors [21]. The SRC algorithm was not compared be-
cause it is not applicable to partial face recognition without
prior alignment. Fig. 5 shows the performance of the cu-
mulative matching characteristic (CMC) curves of the two
algorithms. It can be seen that the proposed MKD-SRC al-
gorithm significantly improves partial face recognition per-
formance compared to that of the SIFT matching. The rank-
1 recognition rate of MKD-SRC is 81.31%, while that of
SIFT matching is 58.70%.

Figs. 6 and 7 show examples of some correctly and in-
correctly recognized partial faces, respectively, from the
FRGCv2.0 database. It appears that the periocular region
contains rich information for recognition, while face patch-
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Figure 6. Correctly recognized partial faces (first row) synthesized
from the FRGCv2.0 database and the corresponding gallery im-
ages (second row).

Figure 7. Misclassified partial faces (top row) cropped from the
FRGCv2.0 database, and the corresponding true gallery images
(bottom row) and the false matches at rank-1 (middle row).

Figure 8. Partial face images with no keypoints detected.

es with closed eyes, or partial mouth/cheek are not easy
to recognize (note that only three images per subject were
randomly selected in the gallery set). For a partial mouth
patch or a cheek patch, very few keypoints could be detect-
ed. Fig. 8 shows some probe images where no keypoints
could be detected.

3.2. Holistic Face Recognition with occlusion

For a more convincing experimental evaluation and com-
parison, we performed two additional experiments on holis-
tic faces with staged occlusions and real occlusions. The
first experiment was done on the AR database [23] with
staged occlusions. The AR database contains 135 subject-
s with 76 males and 59 females. We selected one image
(neutral expression) per class as the gallery set, and 1,530
images, all with sunglasses or scarf, as the probe set. Each
probe image may have left-side or right-side illumination.
We added 1,196 frontal images from the FERET database
[27] to increase the gallery size. All images were cropped
to 128× 128 pixels after face detection. No alignment was
done between the probe and gallery sets. Fig. 9 shows some
cropped face images from the AR database. It can be seen
that they are not aligned very well.

We compared the proposed method to SIFT matching
[21], SRC [34], and FaceVACS [1]. The alignment stage
was used only in FaceVACS. Fig. 10 shows the CMC

Figure 9. Typical face images from the AR database. Top row:
gallery images. Bottom row: probe images.

Figure 10. CMC curves on the AR database.

curves of these methods on the AR database. These re-
sults indicate that MKD-SRC outperforms other algorithms
with a notable margin, achieving rank-1 recognition rate of
76.01%. As expected, FaceVACS does not perform very
well (49.41% rank-1 accuracy) on these occluded probe im-
ages. The rank-1 recognition rate for SIFT and SRC are
36.86% and 8.30%, respectively. Note that this experimen-
t is really challenging because all the probe images have
faces with sunglasses or scarf and also contain illumina-
tion variations; meanwhile, only one sample per class with
neutral expression is available in the gallery set. While
Wright et al. demonstrated that their SRC algorithm showed
promising performance on well aligned AR faces with sun-
glasses and scarf, and with sufficient number of training
samples [34], our experiments show that the performance
of SRC is not good on unaligned faces with only one train-
ing sample per class.

3.3. Face Recognition on LFW

While the above experiments were done on synthesized
or studio-controlled databases, we performed another ex-
periment on more realistic face images captured in uncon-
trolled environments: Labeled Faces in the Wild (LFW)
[15]. The LFW database was created in an effort to chal-
lenge face recognition algorithms in real scenarios. All im-
ages in this database were downloaded from the internet.
The only condition for including an image in this database
was that the face can be detected by the Viola-Jones face de-
tector [31]. The LFW database includes 13,233 images of
5,749 subjects. Face images from LFW contain large varia-
tions in pose and illumination, and they might be arbitrarily
occluded. Fig. 11 shows some examples from this database.

For our experiments on the LFW database, we select-
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Figure 11. Sample images from the LFW database.

Figure 12. CMC curves on the LFW database.

ed all the 5,749 subjects with up to 10 images per subject
to compose the gallery set, which included 10,489 images.
The remaining 2,744 images were selected as the probe
set. We also added an additional 10,000 background im-
ages to enlarge the gallery set. Note that the original LFW
bench mark protocol is for 1-vs-1 verification mode. Here,
we conducted an identification experiment to simulate the
surveillance scenario. Further, we used unaligned versions
of LFW images in our experiments. These images contain
extended windows (a ratio of 2.2) output by the Viola-Jones
face detector, and re-scaled to 250 × 250 pixels. We used
the face detector output (the center part of 114×114 pixels)
directly for our experiments.

The CMC curves of three face recognition algorithms
are depicted in Fig. 12. One can observe that the perfor-
mance of the proposed MKD-SRC algorithm is similar to
that of the state-of-the-art algorithm FaceVACS, and both
of them achieve higher recognition rates than SIFT. The
rank-1 recognition rates for MKD-SRC, FaceVACS, and
SIFT are 56.23%, 54.96%, and 13.99%, respectively. No-
tice that although the recognition rates of both MKD-SRC
and FaceVACS are not very satisfactory for this challenging
database, it is promising that MKD-SRC could also deal
with non-frontal faces. A sum score fusion of MKD-SRC
and FaceVACS, also depicted in Fig. 12, shows an improved
rank-1 accuracy of 62.79%. Fig. 13 shows examples of
probe images that are correctly and incorrectly recognized
by MKD-SRC. While MKD-SRC is able to recognize some
non-frontal, occluded, or incorrectly localized faces, there
still exist many challenging examples that are hard to rec-
ognize.

Figure 13. Correctly (top row) and incorrectly (bottom row) rec-
ognized face images from the LFW database using the proposed
method.

4. Summary and Future Work
We have addressed the problem of recognizing a face

from its partial image. We have proposed a novel alignment
free approach, called MKD-SRC to deal with this problem
in general. MKD-SRC represents each face image with a
set of keypoint descriptors, and constructs a large dictio-
nary from all the gallery descriptors. In this way descriptors
of a probe image can be sparsely represented by the dictio-
nary and the identity of the probe face image can be inferred
accordingly. We have shown promising results on synthe-
sized partial faces (from the FRGCv2.0 database), occluded
holistic faces (in the AR database), and arbitrarily occlud-
ed or non-frontal faces (in the LFW database). Compari-
son with state-of-the-art approaches shows that the MKD-
SRC is well suited for the general partial face recognition
problem. Our future work would address to improve the
description step for a better handling of illumination varia-
tions. Furthermore, due to the general framework of MKD-
SRC, it may be interesting to also apply MKD-SRC to other
image classification areas, such as recognition of biometric
modalities other than face, and object categorization.
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