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Abstract

Human face recognition based on 3D surface matching
is promising for overcoming the limitations of current 2D
image-based face recognition systems. The 3D shape is in-
variant to the pose and lighting changes, but not invariant
to the non-rigid facial movement, such as expressions. Col-
lecting and storing multiple templates for each subject in a
large database (associated with various expressions) is not
practical. We present a facial surface modeling and match-
ing scheme to match 2.5D test scans in the presence of both
non-rigid deformations and large pose changes (multiview)
to a neutral expression 3D face model. A geodesic-based
resampling approach is applied to extract landmarks for
modeling facial surface deformations. We are able to syn-
thesize the deformation learned from a small group of sub-
jects (control group) onto a 3D neutral model (not in the
control group), resulting in a deformed template. A person-
specific (3D) deformable model is built for each subject in
the gallery w.r.t. the control group by combining the tem-
plates with synthesized deformations. By fitting this gen-
erative deformable model to a test scan, the proposed ap-
proach is able to handle expressions and large pose changes
simultaneously. Experimental results demonstrate that the
proposed matching scheme based on deformation modeling
improves the matching accuracy.

1. Introduction

Current 2D face recognition systems can achieve good
performance in constrained environments. However, they
still encounter difficulties in handling large amounts of fa-
cial variations due to head pose, lighting conditions and
facial expressions [1]. Since human face is a three-
dimensional (3D) object whose 2D projection (image or
appearance) is sensitive to the above changes, utilizing 3D
facial information can improve the face recognition perfor-
mance [5].

Face recognition based on range images has been inves-
tigated by a number of researchers [13, 10, 21, 4, 17], but
only a few of them have addressed the deformation (ex-
pression) issue. Chua et al. [8] extended the use of Point
Signature to recognize frontal face scans with different ex-
pressions, which was treated as a 3D recognition problem
of non-rigid surfaces. Bronstein et al. [7] proposed an algo-
rithm based on geometric invariants, in an attempt to deal
with facial expression variations in 3D face recognition,
again for frontal face scans, and the proposed algorithm as-
sumed that the mouth was closed in all facial expressions.

We address the problem of matching multiview 2.5D fa-
cial scans (range images) in the presence of expression vari-
ations to 3D face models (or 2.5D facial scans) with neutral
expression. To account for the large intra-subject difference
in 3D shapes caused by expression changes, we propose
to explicitly model the 3D deformation. Gross et al. [11]
showed that person-specific deformable model is more ro-
bust than the generic deformable model (across subjects).
However, to build a person-specific deformable model, a
large number of training samples for a user are needed; col-
lecting and storing 3D data of each subject in a large gallery
with multiple expressions is not practical. Further, it is dif-
ficult to collect face scans to cover all possible variations
even for the same type of expression, because the expres-
sion deformation is a continuous facial movement.

We collect data on 3D facial deformations from only a
small group of subjects, i.e., the control group. The ex-
tracted deformations from the control group are transferred
to and synthesized for all the 3D neutral face models in the
gallery, yielding deformed templates with synthesized ex-
pressions. Multiple deformed templates for the same sub-
ject based on members in the control group are combined to
build deformable models for each subject in the gallery.

Our deformation transfer and synthesis falls under the
performance-driven framework [22, 19, 16, 20]. Unlike pre-
vious methods designed for realistic animation, we simplify
the deformation transfer problem and provide a reasonable
approximation for 3D matching. Besides the fiducial fa-



Figure 1. Deformation modeling for 3D face matching.

cial landmarks, such as eye and mouth corners, a geodesic-
based surface resampling approach is applied to extract
landmarks in the facial area with little texture, e.g., cheeks.
We use the thin-plate-spline (TPS) mapping to transfer the
landmark-based deformation. The deformation synthesis is
also driven by TPS to interpolate the new positions of sur-
face vertices in-between the landmarks.

In matching a test scan to a 3D face model in the gallery,
the person-specific deformable model is fitted to the test
scan by solving an optimization problem to yield a match-
ing distance. The proposed scheme is designed to handle
both pose and expression changes simultaneously.

2. Deformation Modeling for Matching

The proposed scheme of deformation modeling for 3D
face matching is presented in Fig. 1.

2.1. Landmark Extraction

To derive the 3D surface deformation, we use facial land-
marks to establish the correspondence [19, 16]. We man-
ually labeled the fiducial landmarks in 3D facial surfaces,
i.e., the nose tip, eye corners, and mouth corners, along
with the mouth contour. For those facial regions that have
little texture but are important for expression modeling in
3D, such as the cheeks, we extract landmarks by resam-
pling the facial surface based on geodesics, which has been
demonstrated to be insensitive across expressions [7]. The
geodesic distance and the corresponding path between two
fiducial landmarks (e.g., from one eye corner to one mouth
corner) on the facial surface are computed based on the fast

marching algorithm [12]. The derived paths encode the fa-
cial surface movement according to different expressions.
We divide each path into L segments with equal geodesic
length (L is 8 in our experiments). The segmenting vertices
are then used as the newly extracted landmarks as shown in
Fig. 2. Note that each landmark is represented by (x, y, z)
coordinates.

Figure 2. Examples of landmark extraction
using surface resampling along the geodesic
paths. Two paths are overlaid with resampled
landmarks (green dots) in this example for il-
lustration.

2.2. Deformation Transfer and Synthesis

The deformation is learned from a control group of M
subjects, who provide both neutral and non-neutral expres-
sion scans. The learned deformation is transferred to a 3D
neutral model in the gallery for synthesis, according to the
following procedure, which is illustrated in Fig. 3.



Figure 3. Deformation transfer and synthesis. (a) Landmark set (LSne) of the neutral scan in the
control group. (b) Landmark set (LSsm) of the scan with non-neutral expression in the control group.
(c) Deformation field of the landmarks from (a) to (b) after the rigid alignment. (d) Landmark set
(LMne) of the 3D neutral model (f) in the gallery. (e) Landmark set (LS′sm) after deformation transfer.
(g) 3D model after applying deformation transfer and synthesis on (f).

(1) Register the non-neutral scan with the neutral scan
to estimate the displacement vector of landmarks due to the
expression change.

(2) Establish a mapping φ from the landmark set (LSne)
of the neutral scan to that (LMne) of the 3D model;

(3) Use φ to transfer the landmarks (LSsm) in the non-
neutral scan to the 3D model as LS′sm.

(4) Establish a mapping ϕ from the landmarks (LMne)
of the 3D neutral model to LS′sm.

(5) Apply ϕ to other vertices in the 3D neutral model to
move them to the new positions caused by the expression.

We use TPS as the mapping and interpolation tool for
deformation transfer and synthesis.

2.2.1 Thin-Plate-Spline

Given a pair of point patterns with known correspondences
(landmarks) on two surfaces, U = (u1, u2, · · · , um)T and
V = (v1, v2, · · · , vm)T , we need to extract correspondence
between other surface points; uk and vk denote the (x, y, z)

coordinates of the k-th corresponding pair and m is the total
number of corresponding points. A warping function, F ,
that warps U to V subject to perfect alignment is given by
the conditions

F (uj) = vj , (1)

for j = 1, 2, · · · ,m. The interpolation deformation model
is given in terms of the warping function F (u), with

F (u) = c + A · u + WT s(u), (2)

where u ∈ g0; c, A and W are TPS parameters; s(u) =
(σ(u− u1), σ(u− u2), · · · , σ(u− um))T and σ(r) = |r|.
An analytical solution of F can be obtained for 3D points
[6, 9].

2.2.2 Deformation Transfer

The deformation transfer can be formulated as follows:
given a pair of source surfaces represented by meshes, S
and S′, and a target mesh T , generate a new mesh T ′ such



that the relationship between T and T ′ is similar to the re-
lationship between S and S′. Our deformation transfer is
based on extracted landmarks. Figure 3(a) shows the proto-
col of landmark labeling on the face scans. The same set of
landmarks is labeled on the 3D neutral model for deforma-
tion transfer (see Fig. 3(d)).

In order to separate non-rigid facial expressions from
rigid head motion, a rigid transformation (translation and
rotation), is applied to align the neutral scan and the non-
neutral scan based on those landmarks that move very little
due to expression changes, such as eye corners and nose
tip. This normalizes the facial (geometry) position, (see
Fig. 3(c)). After the rigid alignment of neutral and non-
neutral scans, the estimated displacement vectors need to
be transferred to the 3D neutral model. Since facial geom-
etry and aspect ratios are different between the scans in the
control group and the 3D models in the gallery, source dis-
placements cannot be simply transferred without adjusting
the direction and magnitude of each motion vector. We es-
tablish a TPS mapping from the landmark set of the neutral
scan in the control group to that in the 3D model. Since the
TPS mapping contains the affine component and the distor-
tion component, both the scale and orientation of the mo-
tion vectors are also adjusted. The landmarks for the non-
neutral scans are mapped onto the corresponding positions
in the coordinate system of the 3D model by applying the
estimated TPS mapping.

2.2.3 Deformation Synthesis

The estimated TPS is applied as an interpolation approach
to obtain an approximate movement for the surface vertices
in-between the landmarks. For the vertices in-between the
convex hull spanned by these points, the interpolation can
be done by TPS. However, for those vertices which lie out-
side this convex hull (e.g., vertices in-between the dots and
stars in Fig. 4(a)), an extrapolation has to be performed,
leading to distortions, such as in Fig. 4(c). Therefore, we
add a few additional landmarks, which specify the bound-
ary constraints. These landmarks are mapped to themselves.
By computing the TPS based on this augmented landmark
set (dots plus stars in Fig. 4(a)), the interpolation can gener-
ate a better synthesis result as shown in Fig. 4(c).

2.3. Deformable Model Construction

Facial expression change is a continuous motion process,
while a synthesized template (model) captures only a single
frame. Further, since each single synthesized template is
obtained by transferring the deformation from one member
in the control group, it is not likely to be the true expression
of the gallery model. Therefore, a more general expression
deformation is learned from all M members in the control

group. This leads to a person-specific deformable model
that is a linear combination of multiple deformed templates
(models), each obtained as a result of deformation transfer
from the members of the control group.

We use a shape vector S0 to represent each surface
model: S0 = (x1, y1, z1, · · · , xn, yn, zn)T , where each
triple (xk, yk, zk) is the location of the surface vertex k, and
n is the total number of vertices. For each subject, let Sne

denote the original neutral model and Si be the deformed
template with the same type of expression synthesized from
Sne. Notice that since all Si’s are synthesized from Sne, the
correspondence between them is automatically established.
The deformable model for this subject is constructed as

S = Sne +
M∑

i=1

αi · (Si − Sne), (3)

where M is the total number of synthesized templates from
Sne and αi’s are the weights. The deformable model con-
sists of two components, the first component is the neutral
model Sne and the second is the variation component rep-
resented as a linear combination of model differences. Sne

is used to control the identity, whereas the variation compo-
nent is used for the deformation adaptation by adjusting the
weights αi.

(a) (b) (c)

Figure 4. Deformation synthesis. (a) 3D neu-
tral model with landmarks. The dots are
the landmarks in correspondence to those in
the control group (see Fig. 3(a)). The star
points are used for boundary constraints. (b)
Synthesis result without fixed-point bound-
ary constraints. (c) Synthesis result with
fixed-point boundary constraints.

In principle, the synthesized models of different expres-
sions can be integrated into a single deformable model by
adding new linear components in Eq. 3, but this increases
the complexity of the model. Therefore, currently for each
subject, we construct one deformable model for each type
of expression.



2.4. Robust 3D Face Matching

Two types of transformations are applied to a 3D de-
formable model, when it is matched to a given test scan
with a claimed identity: (i) rigid transformation due to the
head pose changes, which can be represented by a rotation
matrix and a translation vector; (ii) non-rigid deformation,
which can be modeled by the weights αi in Eq. 3. Fitting
the deformable model to a given test scan is formulated as
an optimization problem to minimize the cost function

E = ‖(R · S + T )− St‖2

= ‖R · (Sne +
M∑

i=1

αi · (Si − Sne)) + T − St‖2,
(4)

where R and T are the rotation matrix and translation vec-
tor, respectively; S is the 3D deformable model (weights
αis are embedded) and St denotes the test scan. To reduce
the computation cost in the optimization process, we sub-
sample the test scan surface.

We factorize the rigid and nonrigid components and
solve for them using the following iterative procedure:

1. Initialize the deformable model parameters to gener-
ate a 3D model; estimate a coarse alignment between the
model and the test scan using three pairs of points.

2. The iterative closest point (ICP) algorithm is uti-
lized to solve for the rotation and translation parameters (R,
T) [3], while fixing αi’s.

3. Given R and T obtained in step 2, minimize the cost
function E by solving for αi’s.

4. Use the αi’s computed in step 3 to generate a new
instance of the 3D model; repeat steps 2 to 4 until the con-
vergence is reached.

After the fitting process, the root-mean-square distance
calculated by the ICP algorithm is used as the matching
distance. A fitting example is provided in Fig. 5. Since
each subject has multiple deformable models for different
expressions, for each subject, we match all its deformable
models of different expressions to a given test scan. The
minimum of all the obtained matching distances is used as
the final matching distance.

3. Experiments and Discussion

The proposed matching scheme is evaluated on three
databases. Since there is no publicly available 3D fa-
cial scan database containing simultaneous expression and
(large) pose changes, we collected two databases (I and II)
in our lab. All the range images (downsampled to 320×240
with a depth resolution of ∼ 0.1mm) were collected using
a Minolta Vivid 910 scanner [2]. To build the 3D gallery
models, for each subject, five scans (different from the scans

Figure 5. Deformable model fitting. (a) Test
scan. (b) 3D neutral model. (c) Deformed
model after fitting to (a). Registration re-
sults of (a) to models (b) and (c), are given
in (d), (e), respectively (the test scan (yellow
wire-frame) is overlaid on the 3D model); the
matching distances are 2.7 and 1.3, respec-
tively.

used to evaluate the matching performance) with neutral ex-
pression were captured at different viewpoints and stitched
to construct the full view 3D neutral model using a commer-
cial software [15]. Database III is built from FRGC Ver.2.0
benchmark [18], where both gallery models and test scans
are 2.5D frontal scans. We evaluate the proposed scheme
on these three databases in an identification mode, match-
ing a test scan to all the gallery models. In Step 1 of the
modeling fitting procedures (see Sec. 2.4), we use three fea-
ture points (two eye corners and the nose tip) to initialize a
coarse alignment [15]. In order to evaluate the proposed
deformation modeling scheme without introducing feature
extraction errors, three manually labeled feature points are
applied. An automatic feature point extraction algorithm
has been proposed in [14].

3.1. Experiment I

Database I contains range images of 10 subjects at 3 dif-
ferent poses (frontal, left 30 degrees, left 60 degrees) with
7 different expressions, which are neutral, happy, angry,
smile, surprise, deflated, inflated [7]. The data collection
protocol for one subject is provided in Fig. 6. In total, there
are 210 (3× 7× 10) scans and 10 3D gallery models. Five
subjects are randomly chosen as the control group and the
remaining 5 subjects are used as the gallery. There are 105
(5×7× 3) test scans in total. For the subjects in the control



Mean Std
Without deformation modeling 87.6% 3.6%
With deformation modeling 92.1% 3.4%

Table 1. Identification accuracy of 10-fold
cross-validation in experiment I.

group, only frontal scans are used for deformation model-
ing. The recognition accuracy based on 10-fold cross vali-
dation is provided in Table 1.

Figure 6. Data collection for experiment I (7
expressions at 3 poses).

3.2. Experiment II

The control group is composed of the 10 subjects in
database I. Another 90 subjects formed the gallery. For each
subject in the control group, only frontal scans are used to
learn and transfer the deformation. Another six scans were
captured for each subject in the gallery for testing at differ-
ent viewpoints, including 3 scans with neutral expression
and 3 scans with smiling expression. So, there are a total
of 90 3D models stored in the gallery and 533 independent
2.5D scans for testing (for a few subjects fewer than 6 test
scans are available). The representative test scans are shown
in Fig. 7. The CMC curves are provided in Fig. 8.

Figure 7. Test scan examples in database II.

3.3. Experiment III

Preliminary experiments on a subset of FRGC Ver2.0
dataset are conducted. FRGC dataset contains only (near)

Figure 8. CMC curves of experiment II.

Figure 9. Examples of test scans (top row)
that are incorrectly identified without defor-
mation modeling but correctly identified with
deformation modeling. Middle row: cor-
responding genuine 2.5D neutral templates;
bottom row: deformed templates after mod-
eling fitting.

frontal 2.5D facial scans and no 3D models are available.
But, the proposed deformation modeling scheme is still ap-
plicable. 50 subjects are randomly selected. For each sub-
ject, the scan with neutral expression and the earliest time
stamp is used as the template; another 3 scans of the subject
(one neutral, one smiling, and one surprise) are chosen as
test scans. In total, there are 50 2.5D gallery scans and 150
independent 2.5D test scans for testing. The 10 subjects in
database I formed the control group, based on which the ex-
pression deformation is learned and the deformable model
(a 2.5D frontal template) is constructed for each subject.
The rank-1 identification accuracy is 97% with deformation
modeling scheme integrated, compared to 81% without de-



formation modeling. Fig. 9 shows examples that are incor-
rectly matched without deformation modeling but correctly
matched by integrating the proposed deformation modeling
scheme.

3.4. Discussion

These experimental results demonstrate that the pro-
posed deformation modeling scheme improves the match-
ing accuracy in the presence of expression variations along
with large pose changes. One possible reason for the match-
ing errors is that the current model fitting process is subject
to local minimum. In addition, in our experiments, the con-
trol group only contains 10 subjects, which is not adequate
to cover all variations of the same type of expression across
a large population.

Each fitting (matching) of the deformable model to a test
scan takes ∼ 5 seconds on a Pentium 4 2.8GHz CPU. Cur-
rent Matlabr-based implementation along with the algo-
rithm is being optimized to reduce the computational cost
for practical applications.

4. Conclusions and Future Work

We have proposed a framework for robust 3D face
matching in the presence of nonrigid deformation (due to
expression changes) and large pose changes simultaneously
in the test scan. Landmarks in facial surfaces in regions with
little texture are automatically extracted using the geodesic-
based approach. 3D deformation learned from a small con-
trol group is transferred to the 3D models with neutral ex-
pression in the gallery. The corresponding deformation is
synthesized in the 3D neutral model to generate a deformed
template. A person-specific deformable model is built by
combining the deformed templates from each member in
the control group. The matching is performed by fitting
the deformable model to a given test scan, which is for-
mulated as a minimization of a cost function. Experimental
results demonstrate the capabilities of the proposed scheme
to learn and synthesize the deformation on new face mod-
els and to make the 3D face surface matching system more
robust across expression and pose.

Landmark labeling is needed in deformation modeling.
Currently, fiducial landmark labeling is done manually. Al-
though this is conducted in the offline training stage, it
would be more desirable to make it a fully automatic pro-
cess in many applications. Reducing the computational cost
is also being pursued.
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