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Abstract

The performance of face recognition systems that use
two-dimensional images depends on consistent conditions
w.r.t. lighting, pose, and facial appearance. We are develop-
ing a face recognition system that utilizes three-dimensional
shape information to make the system more robust to arbi-
trary view, lighting, and facial appearance. For each sub-
ject, a 3D face model is constructed by integrating several
2.5D face scans from different viewpoints. A 2.5D scan is
composed of one range image along with a registered 2D
color image. The recognition engine consists of two com-
ponents, surface matching and appearance-based match-
ing. The surface matching component is based on a mod-
ified Iterative Closest Point (ICP) algorithm. The candidate
list used for appearance matching is dynamically gener-
ated based on the output of the surface matching compo-
nent, which reduces the complexity of the appearance-based
matching stage. The 3D model in the gallery is used to syn-
thesize new appearance samples with pose and illumination
variations that are used for discriminant subspace analy-
sis. The weighted sum rule is applied to combine the two
matching components. A hierarchical matching structure is
designed to further improve the system performance in both
accuracy and efficiency. Experimental results are given for
matching a database of 100 3D face models with 598 2.5D
independent test scans acquired in different pose and light-
ing conditions, and with some smiling expression. The re-
sults show the feasibility of the proposed matching scheme.

1. Introduction

Automatic human face recognition is a challenging task
that has gained a lot of attention during the last decade [26].
While most efforts have been devoted to face recognition
from two-dimensional (2D) images [26], a few approaches
have utilized depth information provided by 2.5D range im-
ages [18, 16, 23, 12, 8, 22, 19]. Current 2D face recognition

systems can achieve good performance in constrained envi-
ronments, however, they still encounter difficulties in han-
dling large amounts of facial variations due to head pose,
lighting conditions and facial expressions [2]. Because the
human face is a three-dimensional (3D) object whose 2D
projection (image or appearance) is sensitive to the above
changes, utilizing 3D facial information should improve the
face recognition performance [9, 2]. Range images captured
explicitly by a 3D sensor [1, 4] contain facial surface shape
information. The 3D shape of facial surface represents the
facial structure, which is related to the internal anatomical
structure instead of external appearance and environment. It
is also more difficult to fake a 3D image compared to a 2D
image to fool the face recognition system.

We use 3D models to recognize 2.5D face scans, pro-
vided by a 3D sensor, such as the Minolta Vivid series [4].
A 2.5D scan is a simplified 3D (X, y, z) surface representa-
tion that contains at most one depth value (z direction) for
every point in the (x, y) plane (see Figure 1), along with a
registered color image. Each scan can only provide a sin-
gle view point of the object, instead of the full 3D view.
As the 3D imaging technology is progressing quickly [5],
non-intrusive 3D data capture along with texture informa-
tion will become readily available. In real world scenarios,
similar to the current 2D camera capture systems, 3D sen-
sors provide only partial views of the face. However, during
the training stage, 3D face model can be constructed by tak-
ing several scans from different viewpoints. Therefore, we
address the scenario that matches a 2.5D facial scan to 3D
models.

Face recognition based on range images has been ad-
dressed in a number of different ways. Lee and Milios [18]
segmented the range image to obtain the convex regions,
which correspond to distinct facial features. The Extended
Gaussian Image (EGI) is used to represent each convex re-
gion. A similarity metric between two regions is defined to
match the facial features of the two images. Gordon [16]
explored the face feature extraction for recognition based
on depth and curvature features. Tanaka et al. [23] consid-
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(b)

Figure 1. Range scan and 3D face model. (a)
One profile range scan viewed at different
viewpoints; (b) a full 3D model.

ered the face recognition problem as a 3D shape recognition
problem involving rigid free-form surfaces. Their method
is based on the curvature information. Chua et al. [12] ex-
tended the use of Point Signature to recognize frontal face
scans with different expressions, which was treated as a
3D recognition problem of non-rigid surfaces. Beumier and
Acheroy [8] extracted the profiles (curves) both from depth
and gray scale image for face verification. Pan et al. [22]
utilized the partial directed Hausdorff distance to align and
match two range images for verification. Work by Chang
et al. [10] demonstrated that improvements can be made if
a system uses a combination of texture and shape informa-
tion. They applied PCA to both 2D and 3D face data.

While different methods have been used to address face
recognition based on range images, most of them have fo-
cused on the frontal view face recognition. Further, most of
these methods only use the shape information. But the tex-
ture component also plays an important role in face recogni-
tion process, especially when the shapes of two faces in the
gallery are similar. Although the 3D shape will not change
due to pose and lighting variations, it can still change due to
expression and the aging factor. Therefore, using 3D shape
information alone can not yet fully handle all the variations
which the face recognition system encounters.

We propose a combination scheme, which integrates sur-
face (shape) matching and constrained appearance-based
methods for multi-view face matching (see Fig. 2). The
appearance-based stage is constrained to a small candi-
date list generated by the surface matching stage, which
reduces the classification complexity. In the conventional
appearance-based algorithm, all the subjects in the training
database are used for subspace analysis and construction.
When the number of subjects is large, this leads to a prob-
lem with high complexity. In our scheme, the 3D model is
utilized to synthesize training samples with facial appear-
ance variations, which are used for discriminant subspace
analysis. The scores obtained by the two matching com-
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ponents are combined to make the final decision. Further,
a hierarchical matching structure is designed to improve
the system performance in terms of both accuracy and ef-
ficiency.
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Figure 2. Face recognition based on combi-
nation of shape and appearance-based fea-
tures.

2. 3D Model Construction

The 3D face model for each subject is constructed by
stitching several 2.5D scans obtained from different view
points. The scans were stitched together using a commercial
software, called Geomagic Studio [3]. In our current setup,
5 scans are used, i.e., frontal, left 30 degrees, left 60 degrees,
right 30 degrees and right 60 degrees. The 2.5 scans are
first registered with each other in the same coordinate sys-
tem and then merged to create a surface model. Hole-filling
and basic clean-up procedures are applied to smooth the sur-
face and remove noisy points associated with hair and cloth-
ing. The end result is a smooth full view of the face for each
subject. Figure 3 demonstrates the 3D face model construc-
tion procedure. The resulting model is highly dense, con-
taining ~27,000 vertices and ~50,000 polygons. It can be
used to render new realistic facial appearance with pose and
illumination variations.

3. Surface Matching

In order to match two facial surfaces (2.5D test scan
and 3D model), we follow the coarse-to-fine strategy (see
Fig. 4).

3.1. Coarse Alignment

We applied a feature based alignment for coarse regis-
tration for its simplicity and efficiency. A minimum of three
corresponding points is needed in order to calculate the rigid
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Figure 3. 3D model construction.
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Figure 4. Surface matching streamline. The
alignment results are shown by the 3D model
overlaid on the wire-frame of the 2.5D test
scan.

transformation between two sets of 3D points. Once the
three corresponding points (anchor points) are known !, the
transformation is made using a combination of rigid trans-
formation matrices following the guidelines described in
[24]. This is done by a least squares fitting between the tri-
angles formed from the two sets of three anchor points. We
pick a combination of the inside of one eye, the outside of
that eye and the nose tip as our three anchor points. See
Fig. 5 for examples. These points are selected because they
are relatively easy to locate in the range image and they
do not change between different scans of different people
across different poses. See Fig. 4(c) for an example of a
2.5D face scan coarsely aligned to a 3D face mesh model.

1 In order to evaluate the matching scheme, we study the feature ex-
traction and matching components separately. The coarse alignment is
currently performed using manually picked anchor points. Our scheme
for automatic feature extraction is described in [13], which can extract
anchor points with about 98% accuracy on frontal face scans and 80%
on profile face scans.

Figuré 5. Anchor point labeling based on
pose: left-profile, frontal and right-profile.

3.2. Fine Alignment

Our fine registration process follows the Iterative Clos-
est Point (ICP) framework [7, 11, 25] to align two sets of
control points. The basic Iterative Closest Point scheme is
described as follows:

1. Select control points in one point set

2. Find the closest points in the other point set (corre-
spondence)

3. Calculate the optimal transformation between the two
sets based on the current correspondence

4. Transform the points; repeat step 2, until convergence.

Starting with an initial estimate of the rigid transfor-
mation, ICP iteratively refines the transform by alternately
choosing corresponding (control) points in the 3D model
and the 2.5D scan and finding the best translation and rota-
tion that minimizes an error function based on the distance
between them.

Besl [7] used point-to-point distance and a close-form
solution when calculating the transformation matrix dur-
ing each iteration. The point-to-plane distance used in [11]
makes the ICP algorithm less susceptible to local minima
than the point-to-point metric [15]. It also needs a fewer
number of iterations to converge. But point-to-plane dis-
tance based ICP has to solve a non-linear optimization prob-
lem using numerical algorithms. We integrate the two clas-
sical ICP algorithms [7, 11] in a zigzag running style, and
call it the hybrid ICP algorithm. Each iteration consists of
two steps, using Besl’s scheme to compute an estimation
of the alignment, followed by Chen’s scheme for a refine-
ment. The two different distance metrics are utilized to-
gether, which leads to a better registration than the individ-
ual metrics.

Figure 6 shows the grids used for control point selec-
tion for various poses. Regions around the eyes and nose
were selected because these regions are less malleable than
other parts of the face (such as the region around the mouth,
which changes greatly with facial expression.) The fine
alignment results are demonstrated in Fig. 4(d).

3.3. Surface Matching Distance

The root mean square distance minimized by the ICP al-
gorithm is used as the primary matching distance of face
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Figure 6. Automatic control point selection,
based on three anchor points, for a left pro-
file, frontal, and right profile scan. (About 100
control points are selected in each scan).

scans. We use the point-to-plane distance metric M D;cop
defined in [11].

N,
LN
MDicp = \| 7 >_d2(¥ (1), S:). (1)
¢ i=1

where d(-) is the point-to-plane metric; W(-) is the rigid
transformation applied to each control point p; in the 2.5D
test scan; S; is the corresponding tangent plane in the 3D
model w.r.t. p;; N, is the number of control points. The
smaller the M D¢ p, the better the surface matching.

4. Constrained Appearance-based Matching

The appearance-based algorithm requires the training
and test samples to be aligned. In our approach, the test
scan and the 3D model are aligned by the ICP registra-
tion procedure, i.e., the pose is normalized. By synthesiz-
ing new appearance from the constructed 3D model, addi-
tional appearance-based training samples become available.
We applied the linear discriminant analysis (LDA) based
method for appearance-based matching [6, 20]. Instead of
using all the subjects in the database, the LDA is applied
only to a small list of candidates, generated dynamically by
the surface matching stage for each test scan. We call this
as the constrained appearance-based matching.

4.1. Appearance Synthesis

Each subject only has one face model with neutral ex-
pression in the database. In order to apply the subspace anal-
ysis based on the facial appearance, many training samples,
which are aligned with the test sample, are needed [6, 20].
After the surface registration (pose normalization), the 3D
model is aligned with the test scan and so it is easy to
synthesize new appearance with lighting variations. As the
alignment may not be perfect, small pose variations are also
synthesized in our framework. In principle, the number of
available synthesized samples can be arbitrarily large.

Pose variation synthesis is straightforward by simply ro-
tating and shifting the 3D model. Lighting is simulated by

adding a virtual light source around the reconstructed face
surface. Different illumination variations are generated by
changing the position of the light source. Phong shading
technique is employed to render lighting effects on the face
surface [14].

Based on the anchor points (eye corners and the nose tip)
and registration results, the critical area in the face is deter-
mined, which is used to automatically crop the synthesized
images. Examples of the cropped synthesized images are
shown in Fig. 7.

(b) (9 (h) (i) )
Figure 7. Cropped synthesized training sam-
ples for discriminant subspace analysis. (a)
2.5D test (scan) image; (b) 3D model after
pose normalization (alignment); (c-f) synthe-
sized images of (b) with shift displacement in
horizontal and vertical directions; (g-j) syn-
thesized images with lighting changes.

4.2. Dynamic Candidate Selection in LDA

In the conventional LDA, all the subjects in the train-
ing database (gallery) are used for subspace construction.
When the number of subjects is large, the complexity of
the recognition problem is increased due to large intra-class
variations and large inter-class similarities, resulting in low
recognition accuracy. Therefore, in our approach, for each
test scan, the gallery used for subspace analysis and match-
ing is dynamically generated based on the output of the sur-
face matching. Only a small fraction of the subjects in the
database is selected for the appearance-based matching, so
that the number of subjects to be matched to the test scan
is small. In our experiments, the top M candidates in the
sorted matching list are selected (M = 30).
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S. Integration
5.1. Weighted Sum Rule

Surface matching and appearance-based matching pro-
vide two scores based on different cues. Each of them can
be considered as a classifier. Since they explore different
properties of the face, namely, shape and texture, these two
classifiers are not highly correlated. A combination of these
two classifiers has the potential to outperform each individ-
ual classifier [17]. We applied the weighted sum rule to in-
tegrate the surface matching and appearance-based match-
ing distances as follows:

MDcompy = MDicp+a-MDprpa, 2

where MDyppa = (1—MSLpa)/2, MSLpa is the matching
score generated by the appearance-based matching compo-
nent, converting the matching score (similarity) to match-
ing distance (dissimilarity). The weighting parameter o bal-
ances the two matching components, which can be set be-
forehand or learned from an independent validation dataset.

5.2. Hierarchical Matching

The surface matching in Section 3 focused on the face
region that is more robust to deformation due to expres-
sion changes. We call it the ‘local’ scheme. But to solve
the ambiguity between shapes, larger facial area may pro-
vide more evidence, especially for the faces with the same
expression as that of the 3D models (neutral expression in
our experiments). Therefore, a hierarchical matching frame-
work is designed, where a ‘global’ surface matching com-
ponent is introduced. Figure 8 illustrates the hierarchical
system and Fig. 9 shows the global control point sampling
scheme . Only those test scans for which the surface match-
ing component does not have sufficient evidence to make
the decision, are fed to the combination stage. This cascad-
ing framework also provides the potential to reduce the to-
tal computation cost. In our current implementation, if the
shape matching distance (M Djcp in Eq. (1)) is below a
pre-defined threshold 4, then it is considered as a good sur-
face matching. Since the surface matching distance is mea-
sured by the root mean square distance among the control
points, it has a physical meaning. We choose § equal to 1
in units of millimeters. The value of ¢ depends on the noise
level of the scans and the performance of the anchor point
locator.

Best Match with

min global MD 0

Figure 9. Global control point sampling
based on three anchor points, for a left pro-
file, frontal, and right profile scans.

6. Experiments and Discussion
6.1. Data

There is no publicly available multi-view range (with
registered texture) face database, along with expression
variations. All range images (downsampled to 320 x 240
with a depth resolution of ~ 0.1mm) were collected us-
ing a Minolta Vivid 910 scanner [4] in our laboratory. This
scanner uses structured laser light to construct the face im-
age in less than a second. Each point in a scan has a tex-
ture color (1, g, b) as well as a location in 3D space (X, Yy,
z). Each facial scan has around 18, 000 effective points (ex-
cluding the background).

There are currently 100 subjects in our database. Five
scans with neutral expression for each subject were cap-
tured to construct the 3D model. For each subject, another
six scans are captured for testing, including 3 scans with
neutral expression and 3 with smiling expression. For a few
subjects fewer than 6 test scans are available. So, there are
a total of 100 3D models stored in the gallery database and
598 independent 2.5D scans for testing. The representative
3D models and test scans are shown in Fig. 10 and Fig. 11,
respectively.
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6.2. Surface Matching

In order to test the matching scheme, the three anchor
points (eye corners and the nose tip) are manually labeled in
the current implementation. (Our scheme for automatic fea-
ture extraction is described in [13].) Coarse alignment finds
the rotation and translation parameters to align the two tri-
angles (built by the anchor points) from the test scan and
the 3D model. Based on the anchor points, control points
are automatically sampled for the ICP registration. Figure 6
shows the control point sampling scheme. Examples of the
registration results are given in Figs. 4(c) and 4(d).

Our matching process is conducted in the identification
mode. Each test scan is matched to all the 3D models stored
in the gallery. The surface matching distance distributions
for genuine users and impostors are provided in Fig. 12.

03r -
—— genuine

- impostor

0.25+

percentage

1 2 34 5 & 7 8 9 10
matching distance
Figure 12. Distribution of surface matching

distance.

6.3. Combination of Surface and Appearance-
based Matching

In the constrained appearance-based matching, 4 images
with different shift displacements and 4 images with dif-
ferent lighting conditions are synthesized. Hence, 9 images
for each model are used for the LDA calculation (8 synthe-
sized version plus the original one, see Figs. 7(b)-(j) for an
example). The LDA is only applied to the first 30 matched
candidates based on the surface matching distance. By ap-
plying surface matching and constrained appearance-based
schemes separately to this set, we found that the sets of mis-
classified test scans are significantly different for these two
matching schemes, implying that these two schemes are not
highly correlated.

A summary of the experimental results is given in Ta-
ble 1. Out of the 54 errors in 598 test scans (correspond-
ing to 91% accuracy), 49 scans are with smiling expression.
So, almost all the errors are due to expression changes that
nonlinearly deform the 3D shape of the test scan. Figure 13
shows some of the test scans that are correctly classified.
The rank-one matching accuracy for 312 neutral expression
test scans (frontal and non-frontal) is ~ 98%. The cumu-
lative match score curves for the three different matching
schemes are provided in Fig. 14.

Figure 13. Test scans (top row), and the cor-
responding 3D models (bottom row) correctly
matched. The 3D model is shown roughly
in the same pose as the corresponding test
scan.

The performance change with respect to « is shown in
Fig. 15. In practice, the ‘optimal’ value of @ can be learned
from the validation data.

6.4. Hierarchical Matching

In order to explore additional shape information con-
tained in the facial area, especially for those scans with
the same expression as that of the 3D models, a hierarchi-
cal matching framework from global to local is designed
as shown in Fig. 8. Fig. 16 provides detailed experimen-
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Rank-one accuracy
(598 test scans)

Matching scheme

Rank-one accuracy

(312 neutral expression test scans)

Surface matching (ICP only) 87% 97%
Appearance-based (LDA only) 7% 84%
Surface matching + Appearance-based 91% 98%

Table 1. Matching accuracy with equal weights for ICP and LDA components (i.e., « = 1 in Eq. (2)).

|
o
3
w
£
Q
]
£
£
8
S ool
E | —a— |CP Only
O pa8st —o— LDA Only
= —0— ICP+LDA
0gs|
1 2 3 4 5 6 7 8 9 10
Rank

Figure 14. Cumulative matching perfor-
mance.

Accuracy
o
o
©

o
@
@

0.87

0'860 1 2 3 4 5 6 7

Figure 15. Identification accuracy based on
the combination strategy with respect to «.

tal results when applying the proposed framework to our
database. The comparative study is shown in Table 2, which
demonstrates that the hierarchical matching scheme slightly
improves the system recognition accuracy. Furthermore, for
our database, due to the introduction of the hierarchical
structure, 432 out of 598 test samples are not fed into the
appearance-based matching stage, which reduces the com-
putation cost with a good tradeoff in the accuracy (only 3
errors with smiling expression are generated at this stage).
The remaining 166 test scans, for whom the surface match-

ing component does not have sufficient evidence to make
the decision, are fed to the next combination stage.

3D Models |[Tot # = 598, .

ne ne | sm Tot# = 351
100 | 312[286 fie | sm
277 74 - _ Err#=1
frin(Global MD)>—1 HestMatohwityy _igvea) sm
<1 min global MD 0 1
Tot # = 247 N I}
ne [ sm Tot # = 81
35 | 212 y neIsm s
18 | 63 = - M=
fin(Local MB)>——————p( 25t Malch wi wen| sm
< min local MD o2
Tot# = 166 N _ )
ne [ sm | estMatch witfy | Eflife= 0%
17 [ 149 min local MD ne [ sm
4 \ 63 | ()
A =
(Surface Matching + Best Match with Bl
Constrained LDA min combined MD ”19 { 54T
Tot #: Total number of test samples at the current stage (v)

Err #: The number of misclassified samples generated at the current stage
ne: W/ neutral expression

sm: W/ smiling expression

MD: Matching Distance

Figure 16. Hierarchical matching scheme

(o =1).
Scheme w/o hierarchical | w/ hierarchical
structure structure
Surface matching 87% 88%
Surface matching + 91% 92%

Appearance-based

Table 2. Rank-one matching accuracy (o = 1)
with and without hierarchical structure.

7. Conclusions and Future Work

We have presented a face recognition system that
matches 2.5D scans of faces with pose, lighting and ex-
pression variations to a database of 3D models. A
combination scheme is proposed, which integrates sur-
face (shape) matching and a constrained appearance-based
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method. The surface matching is achieved by a hy-
brid ICP scheme. The appearance-based identification
component is constrained to a small candidate list gener-
ated by the surface matching component, which reduces the
classification complexity. The registered 3D model is uti-
lized to synthesize training samples with facial appear-
ance variations, which are used for discriminant subspace
analysis. The scores obtained by the two matching com-
ponents are combined using the weighted sum rule to
make the final decision. Given the anchor points, the en-
tire matching scheme is fully automatic, including sur-
face registration/matching, dynamic candidate list selec-
tion, 3D model-based synthesis, sample image cropping,
LDA, and appearance-based matching. In our current im-
plementation, matching one 2.5D test scan to a 3D model
takes about 30 seconds. Fast algorithms are being pur-
sued to improve the speed. A hierarchical matching
framework is designed to further improve the system per-
formance in both accuracy and efficiency.

This research is an encouraging first-step in designing
a system that is capable of recognizing faces with arbitrary
pose and illumination. More sophisticated surface matching
schemes are being pursued to improve the surface matching
accuracy, including exploring models that can be deformed
to deal with non-rigid variations [21], which are caused by
changes in expression and aging effects. To make the whole
matching system fully automatic, a robust and accurate an-
chor point locator is being developed.
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