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Abstract

One of the major challenges encountered by face recog-
nition lies in the difficulty of handling arbitrary poses vari-
ations. While different approaches have been developed for
face recognition across pose variations, many methods ei-
ther require manual landmark annotations or assume the
face poses to be known. These constraints prevent many
face recognition systems from working automatically. In
this paper, we propose a fully automatic method for multi-
view face recognition. We first build a 3D model from each
frontal target face image, which is used to generate syn-
thetic target face images. The pose of a query face image
is also estimated using a multi-view face detector so that
the synthetic target face images can be generated to resem-
ble the pose variation of a query face image. Procrustes
analysis is then applied to align the synthetic target images
and the query image, and block based MLBP features are
extracted for face matching. Experimental results on two
public-domain databases (Color FERET and PubFig), and
a Mobile face database collected using mobile phones show
that the proposed approach outperforms two state-of-the-
art face matchers (FaceVACS and MKD-SRC) in automatic
multi-view face recognition. The proposed approach can
also be easily extended to leverage existing face recognition
systems for automatic multi-view face recognition.

1. Introduction
The goal of automated face recognition (AFR) is to au-

tomatically recognize a person from digital images or video
sequences containing his face. AFR has attracted substan-
tial attention in the past decades due to its wide applications
in real-world scenarios [31] ranging from mobile phone au-
thentication to surveillance. While AFR in controlled con-
ditions, such as frontal or near-frontal poses, neutral expres-
sions and near uniform illumination, has shown impressive
performance, AFR in uncontrolled environments, such as
arbitrary poses, non-uniform illumination, and partial oc-
clusion, remains a challenging problem [31].

Figure 1. Scenarios and examples of images of face recognition
in uncontrolled environments. (a) Profile face image which led
to arrest1, (b) Non-frontal face image in FERET dataset [27], (c)
Non-frontal face image in the Mobile dataset collected in our lab-
oratory, (d) Non-frontal face image in PubFig dataset [17].

One typical application of AFR in uncontrolled condi-
tions is identification or authorization of individuals with
face images or videos captured by mobile devices, such as
handheld terminals, mobile phones, or surveillance cameras
(see Fig. 1). In these scenarios, there is a high possibility
that the face images are captured without the cooperation of
subjects. As a result, faces in the query images can be of ar-
bitrary poses. Fig. 1 (a) shows an example where a profile
face image led to the arrest of a robbery suspect. Despite
the potential value of non-frontal face images in forensic
applications, the arbitrary pose variations have become one
of the primary stumbling blocks for most existing systems
to perform face recognition automatically.

This paper proposes a fully automatic multi-view face
recognition method that

1. does not necessitate manual landmark annotations or
the assumption of known poses within a limited range,

2. achieves higher performance than two state-of-the-art
face matchers in several scenarios with different pose
variations,

3. and naturally facilitates the application of existing
AFR systems in uncontrolled environments.

1http://tonn.rssing.com/chan-1762138/all_p47.
html
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Table 1. A comparison of existing methods for multi-view face recognition.

Publication Approach Pose assumed Manual annotation Databases used
to be known? required for non- (pose variations)frontal face image?

Sharma et al. [33]
Partial Least Squares,

Yes Yes
FERET (±60◦)

Bilinear Model, CMU-PIE (±90◦)
Canonical Correlation Analysis Multi-PIE (±90◦)
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Li et al. [19] Partial Least Squares Yes Yes Multi-PIE(±90◦)
CMU-PIE (±90◦)

Fischer et al. [10] Partial Least Squares Yes Yes Multi-PIE (±90◦)

Prince et al. [29] Tied Factor Analysis Yes Yes
FERET (±90◦)
CMU-PIE (±90◦)
XM2VTS (±90◦)

Li et al. [18] Linear Regression Yes Yes FERET (±60◦)
CMU-PIE(±90◦)

Blanz and Vetter [6] 3D Morphable Model No Yes FERET (±60◦)
CMU-PIE(±90◦)

Wang et al. [36] Orthogonal No No
FERET(±25◦)

Discriminant Vector CMU-PIE(±15◦)
Yale B, AR

L
oc

al

Kanade and Yamada [16] Subregion Based Yes Yes CMU-PIE (±90◦)Probabilistic Model
Ashraf et al. [4] Probabilistic Stack-flow Yes Yes FERET (±60◦)

Lucey and Chen [22] Patch-whole No Yes FERET (±60◦)Sparse Registration
Castillo and Jacobs [7] Stereo Matching No Yes CMU-PIE (±90◦)

Arashloo and Kittler [3] Markov Random Field No No2 CMU-PIE (±90◦)
XM2VTS

Liao et al. [21] Multi-keypoint Descriptor No No PubFig (Arbitrary)
Chai et al. [8] Linear Regression Yes No CMU-PIE(±45◦)

Sarfraz and Hellwich [32] Multivariate Regression Yes No CMU-PIE (±90◦)
FERET (±60◦)

Li et al. [20] Morphable Displacement Field Yes No FERET (±60◦)
CMU-PIE (±90◦)
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To
fr
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ta

l Teijeiro-Mosquera et al. [35] Active Appearance Model No No CMU-PIE(±45◦)

Asthana et al. [5] No No

FERET(±40◦)
View Based CMU-PIE(±45◦)

Active Appearance Model Multi-PIE(±45◦)
FacePix(±45◦)

Ding et al. [9] Random Forest Embedded No No
FERET(±60◦)

Active Shape Model CMU-PIE(±67.5◦)
CAS-PEAL(±45◦)

To
no

n-
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ta

l Prabhu et al. [28] 3D Generic Elastic Model No No Multi-PIE (±60◦)
Video Clips

Han and Jain [12] 3D Modeling from two images No Yes FERET (±22.5◦)

Our approach 3D Based Pose Regularization No No
FERET(±90◦)
Mobile (±90◦)
PubFig (Arbitrary)

1.1. Related Work

Over the past couple of decades, many methods have
been proposed to handle the pose variation problem in AFR
(see Table 1). These approaches for multi-view face recog-
nition can be grouped into two main categories: (i) pose in-
variant feature extraction, and (ii) pose normalization. Ap-
proaches in the first category aim to provide a common
representation which maximizes the correlation among sub-
ject’s face images with different poses. They can be further
classified into (i) holistic representation, and (ii) local rep-
resentation. For holistic representation, linear regression,
partial least squares (PLS), Bilinear Model (BLM), Canoni-
cal Correlation Analysis (CCA), 3D Morphable Model, are
widely used approaches [6, 10, 18, 19, 29, 33, 36] that
project face images with different poses into latent spaces,

2A bounding box is required, but it is not clear if the bounding box is
obtained manually or automatically.

where a pose-independent representation is obtained. The
merit of these approaches is that the pose variation prob-
lem and feature representation are solved simultaneously.
However, many holistic methods assume that the poses of
face images are known. For example, the poses provided in
the databases are directly used to build pose-specific mod-
els, and only the model covering the pose of a testing im-
age is used for recognition. Additionally, holistic repre-
sentation can easily be affected by face deformations due
to large pose variations. By contrast, local representations
that extract features from individual patches of a face are
more robust to large pose variations. Markov Random Field
[3], subregion based probabilistic model [16], probabilis-
tic stack-flow [4], patch-whole sparse registration [22], and
stereo matching [7] are representative approaches of this
category. However, most local representation based ap-
proaches [3, 4, 7, 16, 22] require manual landmarks to es-
tablish the local patch correspondence between frontal and
non-frontal face images.



Figure 2. An overview of the proposed approach for multi-view automated face recognition.

Approaches for pose invariant feature extraction usu-
ally involves the design of new feature representation and
matching methods. By contrast, pose normalization ap-
proaches which transform face images with different poses
into face images with the same pose, make it possible to
directly use existing feature representation and matching
methods for multi-view face recognition. Since face recog-
nition techniques for frontal or near-frontal poses have been
widely studied, a natural approach is to transform non-
frontal face images into frontal images . Linear and multi-
variate regressions, Active Shape Model (ASM), and Active
Appearance Model (AAM) are representative approaches
[5, 8, 9, 20, 32, 35] that are used to recover frontal face
images from non-frontal views. However, as observed in
[5], the recovered frontal face images can be bad due to the
self-occlusion under large poses. Li et al. [20] avoided the
matching of corrupted facial regions in the recovered frontal
images by generating occlusion masks. Instead of recov-
ering a frontal image and dropping its corrupted facial re-
gions, a different approach is to generate non-frontal views
from frontal images, so that the generated non-frontal views
are able to resemble the poses in testing face images. This
idea was explored by Park et al. [25] using 3D face data.
However, 3D sensing is still expensive and the acquisition
time can be slow. Also, 2D images constitute the legacy
databases; subjects may not be available to provide their 3D
images. Under these circumstances, 3D face models recon-
structed from frontal face images can be the substitutions
for real 3D faces. 3D Morphable Model and 3D generic
elastic model (3D GEM), are typical approaches [12, 28]
used for generating non-frontal images from frontal views.

Despite various studies in pose invariant feature extrac-
tion and pose normalization, most face recognition systems
cannot perform fully automatic multi-view face recognition
due to the requirements of manual landmark annotations
and assumption of known poses. These constraints limit
the application of these systems in real scenarios.

3For face images with large pose variations, one of the two eyes is

1.2. Proposed Method

The proposed method presents a new fully automatic
multi-view face recognition method via 3D model based
pose regularization, and extends existing face recogni-
tion systems into multi-view scenarios. Fig. 2 illus-
trates the proposed approach which consists of two main
modules: (i) Pose regularization based on 3D model,
and (ii) Face matching with block based multi-scale LBP
(MLBP) features. Unlike previous pose normalization ap-
proaches, where non-frontal face images were transformed
into frontal images, the proposed 3D model based pose reg-
ularization method generates synthetic target images to re-
semble the pose variations in query images. We should
point out that generating non-frontal views from frontal face
images is much easier and more accurate than recovering
frontal views from non-frontal face images. This is because
it is difficult to automatically detect accurate landmarks un-
der large pose variations which are required to build a 3D
face model. Additionally, since many areas of a face are sig-
nificantly occluded under large pose variations, it is prob-
lematic to recover the frontal view for the occluded facial
regions.

The proposed pose regularization approach is similar to
the novel view rendering based on 3D GEM [28], but the
proposed method uses a simplified 3D Morphable Model
[6]. Additionally, instead of aligning the synthetic target
images and testing face images based on eye positions3,
we perform face alignment using Procrustes analysis un-
der large pose variations. Moreover, our face matching
method with blocked MLBP features provides better robust-
ness against face illumination and expression variations4.
Finally, we show the expansibility of the proposed approach
by replacing our MLBP based face matcher with two state-
of-the-art face matching systems.

invisible. Under these circumstances, face alignment based on two eyes no
longer works.

4Following the discussions in [13], additional face preprocessing meth-
ods might be integrated with MLBP to further improve the robustness.



2. 3D Model Based Pose Regularization
As shown in Fig. 2, to perform pose regularization, we

first build a 3D model from each frontal target face image,
which is used to generate synthetic target face images. The
pose of a query face image is also estimated so that the gen-
erated synthetic target face images are able to resemble the
pose variation of a query face image.

2.1. 3D Modeling from A Frontal Image

In this work, we utilize a simplified 3D Morphable
Model [6] without the texture fitting due to its robustness
and computational efficiency. We derive our 3D shape
model from the USF Human ID 3-D database [2], which
includes 3D face shape and texture of 100 subjects captured
with a 3D scanner. The original 3D face includes 75,972
vertices, but for efficient computation, we interactively se-
lect 76 vertices based on the 76 keypoints defined in an open
source Active Shape Model (Stasm [23]). Given the 100 3D
faces, the 3D shape of a new face can be represented using
a PCA model

S = S̄+

K∑

k=1

αkWk, (1)

where S is the shape of a new 3D face, S̄ is the average
3D shape of 100 3D faces from the USF Human ID 3-D
database, Wk is the shape eigenvector corresponding to the
k-th largest eigenvalue, and αk is a coefficient for the k-th
shape eigenvector.

A 2D face image is a projection of a 3D face onto a 2D
plane under a set of transformations such as translation, ro-
tation, scaling, and projection. Based on such a face imag-
ing process, the shape of a 3D face can be recovered from
its 2D projection (facial landmarks in a 2D face image) by
minimizing the following cost function [26]

e(P,R,T, s, {αk}Kk=1) = ||P2D − s ·PRTS||L2 , (2)

where P2D is a set of facial landmarks that are detected us-
ing Stasm, P is an orthogonal projection from 3D to 2D,
and R,T, s are the rotation, translation and scaling opera-
tions for the 3D face shape S, respectively.

We directly use the input frontal face image as the tex-
ture corresponding to the frontal 3D facial shape. When
a novel view of the face is generated, we directly map the
frontal face image to a novel view based on Delaunay tri-
angulation of the 2D facial landmarks. Compared with a
statistical face texture model used in 3D Morphable Model,
texture mapping in our simplified 3D Model is more effi-
cient. Additionally, texture mapping retains detailed and
realistic features that are important for face recognition.

2.2. Generating Synthetic Target Images

The recovered 3D facial shape S from (1) and (2) is with
a frontal pose. By transforming S using different transla-

tion, rotation, scaling, and projection transformations, we
can easily generated novel synthetic target images from a
target face image. Figs. 3 (a) and (b) show two target face
images and their synthetic images under 19 novel views
(±90◦ with an interval of 10◦) using our 3D face model.

However, the synthetic face images should not be gen-
erated arbitrarily. In fact, to reduce the pose difference be-
tween a target face image and a query face image, the syn-
thetic target face images should be generated to resemble
the pose of a query face image. Although in some public-
domain face databases (e.g. FERET) the poses for individ-
ual face images are available, in many other multi-view face
databases, the poses are not known. Under these circum-
stances, automatic pose estimation from arbitrary face im-
ages is necessary in order to perform fully automatic face
recognition. In our approach, we utilize a mixture of tree-
structured part models (MTSPM) [37] to estimate the pose
from a single query face image5. With the MTSPM, we are
also able to detect a set of facial landmarks, which makes it
possible for us to perform alignment between the synthetic
target images and the query image. Based on the pose esti-
mation for a query image, only synthetic target face images
with similar poses will be generated for face matching.

However, generating synthetic target images online
would increase the computational cost of face matching too
much. In our approach, we adopt a more efficient strategy.
Specifically, after we build a 3D model from each target face
image, 19 synthetic target images are generated for each tar-
get image offline. Upon the matching of a target image to
a query image, only synthetic images with similar poses to
the query image will be selected for matching6. In our ex-
periments, five synthetic target images are typically used for
face matching (see the red rectangles in Fig. 3). This strat-
egy makes it possible for our system to perform large scale
face recognition without increasing the computational cost
significantly.

2.3. Face Alignment

By building a 3D model and generating synthetic target
face images to resemble the the poses of query images, we
are able to reduce the pose disparity between them. How-
ever, face alignment is still necessary for the following fea-
ture extraction and face matching steps. Holistic face align-
ment based on two eyes (e.g. Inter-Pupil Distance (IPD))
has been a widely used approach for frontal or near-frontal
face images [28]. However, IPD based face alignment be-
comes problematic for non-frontal poses. Under large pose
variations one of the two eyes is often not visible, and even

5In [37], the authors discussed the computational cost of MTSPM, and
stated that pose estimation with MTSPM could be performed in real-time.

6Since the estimated pose by MTSPM is prone to error, instead of using
only one synthetic image, multiple synthetic images with similar poses will
be used for matching.



Figure 3. Examples of (a) original target face images, (b) syn-
thetic target images generated offline using 3D face models, and
(c) query images. The red rectangles indicate the online selection
of synthetic target images based on the pose estimation from query
images.

when both eyes are visible in non-frontal images, IPD based
alignment can lead to an artificial increase in the overall size
of the face image.

In our approach, we apply Procrustes analysis [11] to
align the synthetic target images and a query image based
on the facial landmarks from a 3D face model and keypoints
that are detected by MTSPM. Although the numbers of key-
points defined in a 3D face model and MTSPM are differ-
ent, the keypoint sequence in each model is fixed. This
makes it possible for us to manually establish the keypoint
correspondence between two models. We have manually
identified 19 landmarks in MTSPM that have correspond-
ing landmarks in a 3D model. The Procrustes analysis is
performed based on 19 corresponding landmark pairs.

3. Face Matching
Given the aligned synthetic target face images and a

query face image, we extract MLBP [24] features for face
matching. In our experiments, we use MLBP features
which are a concatenation of LBP histograms with 8 neigh-
bors sampled at different radii R = {1; 3; 5; 7}. We first di-
vide a holistic face image (256×192) into 768 sub-regions
(8×8 non-overlapped blocks). Then, MLBP features are ex-
tracted from individual blocks and concatenated together to
represent a face.

Given two MLBP histograms x and y with n dimensions
which are extracted from two face images, chi-squared dis-
tance χ2 is calculated as a measure of similarity between
two face images:

χ2(x,y) =

n∑

i=1

(xi − yi)
2

(xi + yi)/2
(3)

where xi and yi are the features for i-th bin. Since we have
multiple synthetic target images, multiple distances are cal-
culated. The final distance between a target and a query is
calculated by finding the minimum of these distances.

7The LFW database [14] also includes arbitrary pose variations, but the

4. Experiments and Results
4.1. Databases and Baselines

Two public-domain databases (Color FERET [27] and
PubFig [17]7) and a Mobile dataset collected in our labo-
ratory using mobile phones are used to evaluate the perfor-
mance of the proposed approach for fully automatic multi-
view face recognition. The Color FERET database includes
facial images with multiple poses from 994 subjects. We
use one frontal image (fa) per subject as the target, and
images with 6 non-frontal poses (ql, qr, hl, hr, pl, pr) as
the query. The FERET database has advanced the develop-
ment of multi-view face recognition systems in the past ten
years. However, the FERET database is collected under a
well controlled scenario. For example, the participants are
required to rotate the head and body to pre-designed direc-
tions8, and the background and illumination in face images
are nearly uniform. To replicate the scenarios of face recog-
nition from images or videos captured using mobile devices,
we have collected a Mobile dataset consisting of 112 sub-
jects using iPhone 4S. For each subject, one or two frontal
face images9 and around 10 non-frontal face images were
captured at several locations inside a building (see some
example images in Fig. 7). Compared with the FERET
database, the Mobile dataset has less subjects but more chal-
lenging background and illumination variations, as well as
motion blurs due to the movement of the hand. The PubFig
database [17] contains 200 famous personalities collected
from the Internet, where 60 subjects are designed for algo-
rithm development, and the remaining 140 subjects are de-
signed for algorithm evaluation. Since our method is a non-
learning based approach, we directly evaluate our method
using the 140 subjects from the evaluation set. One frontal
face image per subject is used as the target set, and 513 non-
frontal images with arbitrary poses are used as the query set.

The proposed approach is fully automatic in performing
multi-view face recognition. For fair comparison, a state-of-
the-art system (Multi-keypoint descriptor based sparse rep-
resentation (MKD-SRC) [21]) reviewed in Table 1 that is
also fully automatic in multi-view face recognition is used
as the baseline10. Additionally, we also compare the pro-
posed approach with a Commercial-Off-The-Shelf (COTS)
face matching system (FaceVACS [1]).

While most existing systems are evaluated under small
yaw rotations, we evaluate the proposed approach under
three scenarios: (i) Small yaw rotations (Typically two eyes
are visible.); (ii) Large yaw rotations, and (iii) Arbitrary
pose variations. We also investigated the extensibility of

images of many subjects are captured in the same environment.
8http://www.itl.nist.gov/iad/humanid/feret/

feret_master.html
9Only one frontal face image per subject is used as a target.

10We would like to provide comparisons with more existing systems,
but most are unavailable.



Figure 4. Face verification under the scenario of small yaw rota-
tions on the (a) FERET and (b) Mobile databases.

the proposed method by incorporating pose regularization
in our approach with two state-of-the-art matchers (MKD-
SRC and FaceVACS).

For databases with limited subjects and images, face ver-
ification experiments are more convincing than face identi-
fication experiments. Thus, in all our experiments below,
face verification is performed under three scenarios, and the
performance is reported in terms of receiver operating char-
acteristic (ROC) curve.

4.2. Small Yaw Rotations

Face images with small yaw rotations are commonly
used by existing multi-view face matching systems in their
evaluations (see Table 1). In this section, we also provide
an evaluation of the proposed approach under small yaw ro-
tations. Considering that there is no standard definition for
small or large yaw rotations, we regard the yaw rotations
where two eyes can be automatically detected by FaceVACS
as small poses in our experiments, and vice versa. Face im-
ages with small yaw rotations from the FERET and Mobile
datasets are used in this experiments.

Figures 4 (a) and (b) show the performance of the
proposed approach, MKD-SRC, and FaceVACS on the
FERET and Mobile databases, respectively. As we dis-
cussed above, the FERET database is collected under a
more controlled condition than our Mobile database. From
Fig. 4 (a), we can find that in a more controlled condition
(the FERET database), the state-of-the-art multi-view face
matcher MKD-SRC shows no significant advantages than
the COTS system FaceVACS, which is mainly designed for
near-frontal face recognition. By contrast, the proposed ap-
proach achieves more than 15% higher face verification rate
than MKD-SRC and FaceVACS at 0.1 False Alarm Rate
(FAR). However, while the proposed approach and MKD-
SRC are found to be robust to the challenges in the Mobile
database, 10% performance degradation can be observed
for FaceVACS at 0.1 FAR. The comparison between Fig.
4 (a) and (b) reveals that both the proposed approach and
MKD-SRC are more robust to background and illumination
variations, as well as motion blurs in the Mobile database

Figure 5. Face verification under the scenario of large yaw rota-
tions on the (a) FERET and (b) Mobile databases.

than FaceVACS, but the proposed approach is more effec-
tive than MKD-SRC in handling small pose variations.

4.3. Large Yaw Rotations

As shown in Fig. 1 (a), a 90◦ profile face image captured
by surveillance cameras can be the improtant clue to find
the potential suspect. This suggests that in real applications
we must also consider the scenario of large pose variations.
In this section, we provide a complementary evaluation for
that in Section 4.2 by using face images with large yaw ro-
tations. We should point out that under the scenario of large
yaw rotations, FaceVACS is no longer available as a base-
line because no faces can be enrolled.

Figures 5 (a) and (b) show the performance of the pro-
posed approach and MKD-SRC on the FERET and Mobile
databases, respectively. While the state-of-the-art system
MKD-SRC gets around 20% verification rates at 0.1 FAR
under large yaw rotations, the propose approach achieves
much better performance (50%). We do notice that there is
performance degradation compared with that under the sce-
nario of small pose variations in Section 4.2. We attribute
the performance degradation as follows. A manual inspec-
tion of the images shows that 90% of the query images are
±90◦ profile images. Under small poses, the eyes and eye-
brows have been identified to have the most discriminative
ability [34]; however, in 90◦ profile face images, these dis-
criminative features are no longer available. The lack of dis-
criminative facial features under large pose variations has
already motivated the exploration of new features, such as
profile curves [15] and ears [30], to represent profile faces.

4.4. Arbitrary Pose Variations

Unlike the FERET and Mobile databases, face images
in the PubFig dataset are taken in completely uncontrolled
situations with non-cooperative subjects. Thus, there are ar-
bitrary variations in pose, illumination, expression, etc. in
the PubFig database. In this experiment, in order to use
FaceVACS as a baseline, only face images that can be en-
rolled by FaceVACS are used as the query set. Such a query
set may not contain faces with large pose variations, but it



Figure 6. Face verification under the scenario of arbitrary poses on
the PubFig database.

covers yaw, pitch, and roll rotations. Therefore, the Pub-
Fig dataset provides a challenging scenario for multi-view
face recognition systems. Fig. 6 shows the performance
of the proposed approach, MKD-SRC and FaceVACS. The
proposed approach achieved much better performance than
MKD-SRC (45% vs 30% at 0.1 FAR), but nearly the same
performance as the COTS matcher FaceVACS. We attribute
this to the other types of variations such as illumination,
expression and aging. We are able to achieve a leading per-
formance on PubFig by a score level fusion of the proposed
approach and FaceVACS.

Fig. 7 shows examples where the proposed approach
leads to correct matching of query and target images. We
can find that pose regularization in the proposed method
greatly reduces the pose gap between target and query im-
ages, and therefore improves the face matching accuracy.

4.5. Extensibility of the Proposed Approach

The framework of the proposed approach makes it easy
to leverage the other state-of-the-art face matchers, e.g.
MKD-SRC and FaceVACS. In this experiment, we replace
our MLBP based matcher with MKD-SRC and FaceVACS
to evaluate the extensibility of the proposed approach. Since
FaceVACS cannot enroll face image under large poses, we
preform the experiments under the scenarios of small and
arbitrary pose variations. The performance of MKD-SRC
and FaceVACS without and with the proposed pose regu-
larization is shown in Table 2. We can find that our pose
regularization method greatly improves the performance of
two state-of-the-art face matchers, which reveals the good
extensibility of the proposed approach.

5. Conclusions
We have addressed the problem of fully automatic face

recognition across multiple views. The proposed approach
consists of 3D model based pose regularization and MLBP
based face matching. 3D face models are built from frontal
target face images, and used to generate synthetic target
images to resemble the poses in query face images. Syn-
thetic target face images and query face images are further
aligned using Procrustes analysis, and blocked based MLBP

Table 2. Face verification performance of MKD-SRC and Face-
VACS at 0.1 FAR without and with the proposed pose regulariza-
tion (without/with).

Matchers
Small Pose Arbitrary Pose

FERET Mobile PugFig
MKD-SRC 65.8%/77.0% 58.7%/70.5% 26.7%/30.6%
FaceVACS 60.4%/81.8% 48.3%/75.6% 41.5%/48.0%

features are extracted for face matching. The proposed ap-
proach requires neither a priori pose of the face image, nor
manual landmark annotations, and thus is able to perform
fully automatic multi-view face recognition. Our experi-
mental results on the FERET, Mobile, and PubFig databases
show that the proposed approach outperforms two state-of-
the-art face matchers, and facilitates the application of ex-
isting AFR systems into multi-view scenarios.

We are in the process of expanding the capabilities of
the proposed approach to handle other challenges such as
occlusion, illumination, and expression, and exploring sup-
plementary features, e.g. profile curves and ears, to aid in
face recognition under large poses. We also plan to improve
the 3D modeling accuracy by building 3D models for indi-
vidual demographic groups, such as age, gender and race.
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