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Abstract. There is growing interest in achieving age invariant face
recognition due to its wide applications in law enforcement. The chal-
lenge lies in that face aging is quite a complicated process, which involves
both intrinsic and extrinsic factors. Face aging also influences individual
facial components (such as the mouth, eyes, and nose) differently. We
propose a component based method for age invariant face recognition.
Facial components are automatically localized based on landmarks de-
tected using an Active Shape Model. Multi-scale local binary pattern
and scale-invariant feature transform features are then extracted from
each component, followed by random subspace linear discriminant anal-
ysis for classification. With a component based representation, we study
how aging influences individual facial components on two large aging
databases (MORPH Album2 and PCSO). Per component performance
analysis shows that the nose is the most stable component during face ag-
ing. Age invariant recognition exploiting demographics shows that face
aging has more influence on females than males. Overall, recognition
performance on the two databases shows that the proposed component
based approach is more robust to large time lapses than FaceVACS, a
leading commercial face matcher.
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1 Introduction

Automatic face recognition has attracted much attention due to its widespread
potential applications in homeland security and law enforcement [1]. Major chal-
lenges in designing a robust face recognition system include variations in lighting,
expression, head pose, and age. A number of approaches have been proposed to
achieve lighting and/or pose invariant face recognition. Among these methods,
novel appearance synthesis and discriminative feature extraction are two of the
popular approaches [2–5].

Unlike other sources of variation (lighting, pose, and expression) which can
be controlled during face image acquisition, face aging is an unavoidable nat-
ural process during the lifespan of a person. There has been growing interest
in achieving age invariant face recognition to meet the requirements of several
applications in law enforcement and forensic investigation (e.g. de-duplication
of driver’s licenses, identifying missing children). In these applications, the age
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Fig. 1. Face aging of a subject in the FG-NET [15] database. (a) Face aging across
several decades. (b) Face aging within a decade

difference between probe and gallery face images from the same subject becomes
one of the main challenges for face verification.

Age variation in face recognition can be handled in a manner similar to
illumination and pose variations by using novel appearance synthesis or discrim-
inative feature extraction [6]. For example, synthesis methods can eliminate age
gaps between face images by synthesizing facial appearances via learning the
face aging process [7–9]. One disadvantage of this approach is that the synthe-
sized face image is just a pseudo-photo due to its inferred content, and the low
quality of that inferred content can limit recognition performance. Discrimina-
tive feature extraction methods seek to extract facial features that are robust to
age variations [10–13]. In these methods [7, 8, 10], faces are usually represented
holistically. However, intrinsic and extrinsic factors have varying influence on
different facial components [14]. This suggests that a component based face rep-
resentation should provide better understanding of the face aging process, and
facilitate an analysis of the role of individual facial components in age invariant
face recognition.

While there are large variations in facial appearance across decades (see
Figure 1 (a)), facial appearance within a decade may not always be clearly visible
(see Figure 1 (b)). This observation suggests learning an age gap specific model
for robust face recognition [10, 16]. However, other demographic factors, e.g.
gender and race, which can also be inferred from faces, have not been adequately
exploited in age invariant face recognition. In this paper, we present a study on
the influence of aging on different facial components and demographic groups.

2 Data Sets

We use two face data sets in our study: the public domain MORPH album 2 data
set [17], and a dataset comprised of mug shots collected in the state of Florida by
the Pinellas County Sheriff’s office (referred to here as the PCSO data set). The
PCSO dataset was acquired in the public domain through Florida’s “Sunshine”
laws. Both data sets provide ground truth information on the race and gender
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Group
PCSO MORPH

0-1 1-5 5-10 0-1 1-5

White-Male 2,000 2,000 2,000 900 450
White-Female 2,000 2,000 2,000 900 450
Black-Male 2,000 2,000 2,000 900 450
Black-Female 2,000 2,000 2,000 900 450
Hispanic-Male 2,000 2,000 557 900 450

Total 10,000 10,000 8,557 4,500 2,250

(a) (b)

Fig. 2. Numbers of subjects sampled from different demographic categories and age
gaps (a), and (b) example images from MORPH (left) and PCSO (right) databases

of subjects, and contain significant age gaps between multiple face images of a
given subject.

In order to study the influence of face aging on different facial components
and demographic groups, we constructed subsets of the MORPH and PCSO
databases containing specific age lapses between the probe and gallery sets.
Subjects were further restricted by demographics to build data sets containing
relatively balanced numbers of samples from several race and gender categories:
white male, white female, black male, black female, and Hispanic male. The
number of samples available for other demographic groups fell off sharply, leaving
too few subjects to perform reasonable training and evaluation for our study.

We used data sets exhibiting 0-1, 1-5, and 5-10 year age gaps, and randomly
sampled subjects from each demographic category. The numbers of subjects sam-
pled from each demographic category are shown in Figure 2. MORPH Album2
contained no subjects exhibiting an age gap larger than 5 years, so we could
only build 0-1 and 1-5 year age gap subsets for MORPH. For each subject, we
sampled two images with the desired age gap. Half of the subjects in each subset
are used for training and the rest are used for evaluation.

3 Face Representation

Our representation is a combination of random subspace linear discriminant
analysis (RS-LDA) based classifiers [18] trained on two types of local descriptors,
and is generally analogous to the multi-feature discriminative analysis (MFDA)
scheme proposed in [13]. In contrast to MFDA, we apply RS-LDA to local fea-
tures extracted from explicitly detected facial components (following the com-
ponent localization scheme described in [19]), rather than horizontal slices of
the face. Following RS-LDA for each component and feature type, we perform
PCA and then train multiple LDA classifiers on subspaces sampled from the
PCA dimensions. For computational efficiency we train a single LDA classifier
for each sampled PCA subspace rather than using bagging to train multiple LDA
classifiers per PCA subspace, as done in MFDA.
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Fig. 3. Component extraction stages

3.1 Component Localization

Figure 3 shows the stages of our component localization process, which is essen-
tially the same as the one described in [19]. We start by aligning all face images
based on their eye locations, which we detect using the FaceVACS SDK [24].
After the initial alignment, we detect 76 facial landmarks automatically using
Stasm [20], an open source Active Shape Model (ASM) [21] implementation.
Stasm is designed to work on upright frontal faces, and while we are working
with frontal face images, they do exhibit minor pose variations. The goal of our
initial alignment step is to eliminate those pose variations, thereby improving
Stasm’s landmark detection accuracy.

We localize components based on subsets of landmarks corresponding to the
eyes, nose, mouth, and eyebrows. Due to the initial normalization step, the eyes
are typically well aligned, but the remaining three components (nose, mouth,
and eyebrow) are not. We, therefore, perform a Procustes alignment for each
component on the corresponding subset of landmarks across all images. This per-
component normalization results in fixed-size sub-images for each component.

Figure 4 shows component sub-images averaged across all subjects in the
PCSO 0-1 year age gap subset. The blue and green ellipses in Figure 4 illustrate
differences between the average components across different races and genders,
respectively. The sharpness of the average component images for different demo-
graphic categories demonstrates the effectiveness of per-component alignment.

3.2 Feature Extraction

For each facial component, we densely sample both MLBP [22] and SIFT [23]
descriptors, using a patch size of 16x16 with 8 pixels overlap between neighboring
patches. For a given feature type (MLBP or SIFT), features extracted from all
patches are concatenated. Thus, a face image is represented by 8 different feature
vectors (4 components × 2 feature descriptors).

3.3 Training

We use random subspace linear discriminant analysis (RS-LDA) [18] to compen-
sate for the small number of samples per subject, similarly to MFDA [13]. We
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(a) White-Male (b) Black-Male (c) Hispanic-Male (d) White-Female (e) Black-Female

Fig. 4. Average component images for the subjects in the PCSO database for different
demographic groups: (a) White-Male; (b) Black-Male; (c) Hispanic-Male; (d) White-
Female, and (e) Black-Female. The blue and green ellipses highlight differences between
the average components across different races and genders, respectively

carry out training separately for each component, and for both feature types
we first apply PCA on the concatenated feature vectors in the training set for
dimensionality reduction. Then we build 10 different subspaces, each with 300
dimensions by sampling from the PCA dimensions. For each subspace, the first
200 dimensions are fixed as the eigenvectors that correspond to the 200 highest
eigenvalues, and the remaining 100 dimensions are randomly selected from the
top 1,000 PCA eigenvectors. Finally, we perform LDA on each random subspace,
leaving us with a total of 80 LDA subspaces (4 components × 2 feature descrip-
tors × 10 random subspaces). In our experiments, training subjects are disjoint
from testing subjects.

3.4 Matching

For the face images in probe and gallery sets, the extracted features are projected
onto the learnt LDA subspaces. The similarity between two corresponding com-
ponents is measured using the cosine similarity. To arrive at a final similarity
between two faces, we first combine the scores from all LDA subspaces from a
given component and descriptor type, giving us different 8 scores (one for each
descriptor and component combination). We take the combined LDA subspace
scores and combine both scores for each component, leaving us with 4 scores (one
for each facial component). These per component scores are then combined to
give a final similarity measure between two faces. We use min-max normalization
followed by the sum rule for each stage of score fusion. The minimum and max-
imum values used in the normalization steps are the minimum and maximum
scores seen when comparing all face images in the training set.

4 Results and Analysis

We evaluate our component based algorithm and FaceVACS by performing all
vs. all matching, then calculating receiver operating characteristic (ROC) curves.
We report either true accepts rates (TAR) attained at a fixed false accept rate
(FAR), or full ROC curves. Results for specific demographic groups are based
on all vs. all matching between all testing subjects within those groups.
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Table 1. Per component TAR (%) at
1% FAR across time lapses on PCSO

Age gaps Eyes Nose Mouth Eyebrows

0-1 year 79.78 92.48 79.10 83.86
1-5 year 76.06 89.68 68.54 73.66
5-10 year 65.83 81.70 55.41 59.76 0−1 1−5 5−10
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Fig. 5. Per demographic performance
across three age gaps on PCSO

4.1 Per Component Performance Analysis

Table 1 shows true accept rates at 1% FAR to summarize the verification perfor-
mance of individual facial components across different time lapses on the PCSO
data. These results show that as the time lapse increases, the accuracy of each
component decreases. The nose is the most stable component across all time
lapses, which is consistent with our intuition about face aging. The influence of
aging on the other components is not uniform across different time lapses. On
the 0-1 year age gap set, the eyes are the second worst performing component,
with a TAR less than 1% higher than the mouth’s, but on the 1-5 and 5-10 year
lapse data sets the eyes gain in performance relative to the other components.

4.2 Per Demographic Performance Analysis

Tables 2, 3, and 4 contain face verification results on subsets of the PCSO
data sets containing only specific demographic groups. Both our method and
FaceVACS generally have higher accuracy on males than females, and higher
accuracy on whites and Hispanics than blacks. These results are consistent with
the results reported in [24], and with most algorithms evaluated in [25]. There
are a couple of exceptions to these trends, on the 0-1 year age gap FaceVACS is
slightly more accurate on black females than black males, while on the 5-10 year
age gap our method has higher accuracy for black females than white females.
For most groups our accuracy is fairly close to FaceVACS, but the component
based method performs significantly worse on white females across all time gaps.
Figure 5 demonstrates the loss in verification accuracy of the component based
method for each demographic group as the time lapse increases. All demographic
groups lose accuracy as the age gap increases; however, males lose less accuracy
than females.

Observing the performance of individual components across demographics,
we see some variations along gender lines. On the 0-1 year gap set, the eyes out-
perform the mouth component for females, while for males the eyes are either on
par or better than the mouth. On the 1-5 year gap set there are again differences
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Fig. 6. MORPH results on 0-1 and 1-5
year age gap data sets

Fig. 7. PCSO results on 0-1, 1-5, and
5-10 year age gap data sets

in the relative accuracy of components across gender lines; for females, the eyes
are more accurate than the eyebrows, for males the opposite. On the 5-10 year
gap set, for black and Hispanic males the eyebrows still perform better than the
eyes, while for white males the eyes perform just 1% better than the eyebrows.
In contrast, for females the eyes are 8-10% more accurate than the eyebrows.
Across all time lapses studied, the eyes perform better for females relative to the
mouth and eyebrows than they do for males.

4.3 Overall Performance

We evaluated FaceVACS and our component based system on the MORPH and
PCSO data sets, and also performed a simple sum of scores fusion (with min-
max normalization) on our method and FaceVACS. The ROC curves of both
face recognition systems, and their fusion are shown in Figures 6 and 7.

Our component based system performs significantly better than FaceVACS
on both MORPH subsets (0-1 and 1-5 year age gaps); in fact the component
based system shows better performance on the 1-5 year age gap set than Face-
VACS does on the 0-1 year set. On the 0-1 year age gap set the fusion of our
method and FaceVACS showed minor improvement over the component based
method alone on lower FAR operating points, while on the 1-5 year age gap set
the fused system was consistently better than the component based method.

Table 2. Per demographic TAR (%) at 1% FAR, PCSO 0-1 year age gap set

PCSO 0-1 year Eyes Nose Mouth Eyebrows Fused Components FaceVACS

White-Male 74.30 89.20 74.80 82.10 96.60 98.60
White-Female 71.10 85.40 61.10 73.70 93.80 97.60
Black-Male 67.80 85.30 66.30 78.80 93.70 95.20
Black-Female 67.40 85.70 59.70 74.30 93.10 95.90
Hispanic-Male 79.60 94.80 85.90 87.30 97.60 98.70
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Table 3. Per demographic TAR (%) at 1% FAR, PCSO 1-5 year age gap set

PCSO 1-5 year Eyes Nose Mouth Eyebrows Fused Components FaceVACS

White-Male 73.10 87.80 61.70 75.90 94.90 96.40
White-Female 64.50 79.40 53.10 57.40 89.00 93.20
Black-Male 66.00 81.20 52.90 69.50 89.70 90.30
Black-Female 62.60 80.30 55.40 56.80 86.70 87.30
Hispanic-Male 73.10 90.70 69.10 77.80 95.90 97.00

Table 4. Per demographic TAR (%) at 1% FAR, PCSO 5-10 year age gap set

PCSO 5-10 year Eyes Nose Mouth Eyebrows Fused Components FaceVACS

White-Male 61.20 77.20 46.80 60.00 90.50 91.90
White-Female 52.50 64.50 36.30 41.70 79.30 85.10
Black-Male 57.00 75.30 44.00 60.90 86.90 85.10
Black-Female 51.80 72.60 44.00 43.70 82.00 80.60
Hispanic-Male 62.01 86.02 56.63 63.44 93.55 92.83

Figure 8 shows some example false-reject pairs from the MORPH 0-1 year
set. The left 3 pairs were falsely rejected by FaceVACS, but correctly classified
by the component method. The right 2 pairs were incorrectly rejected by the
component method, but accepted by FaceVACS at the 1% FAR operating point.
The FaceVACS errors show its sensitivity to pose and hair variations, while the
errors of component based method show its sensitivity to changes in expression
(this may be the case since most facial regions we focus on are easily affected by
expression changes).

The results on the PCSO subsets are mixed. FaceVACS outperforms the
component based system on the 0-1 year age gap set; however, as the age gap
increases the component based system performs relatively better. The compo-
nent based system outperforms FaceVACS at the 1% FAR operating point on
both the 1-5 and 5-10 year age gap sets, although FaceVACS has greater accu-
racy at lower FAR operating points. The fusion of FaceVACS and our method
improved the performance on all age gap sets, with notable improvement on the
larger age gaps. These results indicate that the component based method can
provide complementary information to FaceVACS.

The performance of our system on complete data sets is better than its
performance on most per demographic subsets because the complete data sets
include cross-group matches, which are easier to reject than impostor within
group matches on average. For example, on the 0-1 year age gap PCSO data set
our system had 97.38% TAR at 1% FAR (better than all individual demographic
groups except Hispanic males). On this data set, the mean within group impostor
match score was 0.2416, while the mean cross group impostor score was 0.1273
on a score range of [0, 1].

Both our method and FaceVACS perform better on PCSO than MORPH. We
attribute this to the generally lower image quality in the MORPH Album2 data
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(a) (b)

Fig. 8. Example false reject matches from MORPH 0-1 year age gap. (a) Pairs falsely
rejected by FaceVACS but accepted by the component method at 1% FAR. (b) Pairs
falsely rejected by the component method but accepted by FaceVACS at 1% FAR

set. The PCSO images have higher resolution (486 × 624) than MORPH (400
× 480 or 200 × 240). Additionally, as shown in Figure 2 some MORPH images
are slightly blurred, while in others the face is washed out by strong lighting.
Our method’s significantly better performance on MORPH than FaceVACS can
be attributed to a model trained specifically on that data set compensating for
the lower quality images.

5 Conclusions and Future Work

We have investigated the influence of aging on different facial components and
demographic categories using a component based face representation and match-
ing algorithm. Our experiments on the MORPH and PCSO databases show that
the nose is the most stable component across face aging, and that aging has more
influence on females than males. Comparisons with a leading commercial matcher
(FaceVACS) show that the proposed approach is more robust to face recognition
across large time lapses, while still achieving at least comparable performance to
FaceVACS even across less than 1 year time lapses. Experiments also show that
a score level fusion between our method and FaceVACS can improve the overall
accuracy. Our future work will address how to improve face recognition accuracy
by automatically estimating demographic information from face images.
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