
An Efficient Approach for Clustering Face Images

Charles Otto
Michigan State University

ottochar@msu.edu

Brendan Klare
Noblis

Brendan.Klare@noblis.org

Anil Jain
Michigan State Universtiy

jain@msu.edu

Abstract

Investigations that require the exploitation of large vol-
umes of face imagery are increasingly common in current
forensic scenarios (e.g., Boston Marathon bombing), but
effective solutions for triaging such imagery (i.e., low im-
portance, moderate importance, and of critical interest) are
not available in the literature. General issues for investiga-
tors in these scenarios are a lack of systems that can scale
to volumes of images of the order of a few million, and a
lack of established methods for clustering the face images
into the unknown number of persons of interest contained in
the collection. As such, we explore best practices for clus-
tering large sets of face images (up to 1 million here) into
large numbers of clusters (approximately 200 thousand) as
a method of reducing the volume of data to be investigated
by forensic analysts. Our analysis involves a performance
comparison of several clustering algorithms in terms of the
accuracy of grouping face images by identity, run-time, and
efficiency in representing large datasets of face images in
terms of compact and isolated clusters. For two different
face datasets, a mugshot database (PCSO) and the well
known unconstrained dataset, LFW, we find the rank-order
clustering method to be effective in clustering accuracy, and
relatively efficient in terms of run-time.

1. Introduction
As the deployment of surveillance cameras and mobile

devices continues to grow, so does the size and frequency of
image and video collections. In the context of forensic in-
vestigations, this represents a major issue as the exploitation
of such imagery must proceed in a timely manner. Few ex-
amples are more relevant than the Boston Marathon bomb-
ing, where tens of thousands of images and videos needed
to be analyzed during a time sensitive investigation [14].
Other common cases that require the investigation of media
collections include identifying perpetrators and victims in
child exploitation cases, an understanding of which persons
exist in a collection of social media (such as imagery from
gang and terrorist networks), and organizing media collec-

tions from hard drives (personal computer or servers).
The first step when investigators analyze such data is to

triage the imagery. That is, the data must be filtered and
organized in a manner that allows manual resources to be
deployed to the most potentially useful face imagery. Often
critical in this process is a clustering of the images into pos-
sibly distinct subjects in the imagery. In turn, human ana-
lysts can look through the clusters of identities to determine
who may be relevant to the case at hand. While the subse-
quent steps from the clustering process can vary, common
next steps include tagging subjects with their identity if it is
known, submitting imagery to an external face recognition
system for identification, or adding the subject to watch lists
if they cannot be identified.

Several classic clustering challenges exist when applied
to face images. These include:

• Large dataset size (millions of face images).

• Large number of classes: a crowd may contain a
large number of individuals (tends of thousands, if not
more).

• High intra-class variability and small inter-class sepa-
ration: images are captured under unconstrained con-
ditions, with uncooperative subjects, in difficult imag-
ing environments.

• Unknown number of clusters: the number of individu-
als present in the collected data is not known a priori,
but may contain tens of thousands of clusters.

• Variable number of samples per cluster: some indi-
viduals may be present in only a few images or video
frames, others in many.

Despite being critical to some of the most sensitive of
law enforcement cases involving face recognition, cluster-
ing of face images has received relatively little attention (see
Section 2). Aside from the classical challenges mentioned
above, other application-specific issues include: (i) the lack
of unified frameworks for exploiting face media, (ii) a lack
of understanding of what clustering algorithms are the most
accurate given a large number of samples (n), subjects (C),

lacey
Textbox
To appear in Proc. IEEE ICB 2015

Table 1. A summary of related works in face clustering.

Publication Features Clustering method # Images # Subjects

Ho et al. [8] Gradient and Pixel intensity features Spectral clustering 1,147 66
Zhao et al. [19] 2D-HMM + contextual Hierarchical clustering 1,500 8
Cui et al. [5] LBP, clothing color + texture Spectral 400 5
Tian et al. [15] Image + contextual Partial clustering 1,147 34
Zhu et al. [20] Learning-based descriptor [3] rank-order hierarchical 1,322 53
Vidal and Favaro [16] Joint subspace learning and clustering 2,432 38
Wang et al. [18] Learning-based descriptor [3] rank-order hierarchical 500K 5,749
Ours Component Based and COTS multiple 1 million 195,494

and well tuned facial features (d), and (iii) how to scale the
clustering process to accommodate both time sensitive in-
vestigations and limited computing resources.

This work provides a unified framework for clustering
face images at scale. Contributions of our work include:
(i) the largest scale evaluation of face clustering to date,
(ii) the use of face recognition algorithms representative of
state of the art approaches (as opposed to weaker features
such as pixels), and (iii) a unified framework for ingest-
ing, enrolling, comparing, and clustering face images amid
the aforementioned classical and application-specific chal-
lenges.

2. Background

The clustering problem is well studied in pattern recog-
nition, statistics, and machine learning literature (Jain [10]
provides a survey). Less studied is the challenging prob-
lem of clustering face images. An important consideration
in handling face images is that since there is no universally
agreed upon face representation or distance metric, the clus-
tering results depend not only on the choice of clustering al-
gorithm, but also on the quality of the underlying face rep-
resentation and metric. Table 1 lists some prior works on
face clustering, with the face representation and clustering
algorithm used, along with the largest dataset size employed
in terms of face images, as well as number of subjects.

Ho et al. [8] develop variations on spectral clustering
wherein the affinity matrix is computed based on (i) assum-
ing a Lambertian object (with fixed camera/object position-
ing), and then computing the probability that two face im-
ages are of the same object (same convex polyhedral cone
in the image space), or (ii) the local gradients of the im-
ages being compared. They report results on the Yale-B,
and PIE-66 datasets (dataset size is 1,147 images). Assum-
ing a fixed camera position is not realistic, so it is difficult
to credit the assumptions used in the conic affinity method;
additionally, the face datasets used are rather small.

Zhao et al. [19] develop an application for clustering per-
sonal photograph collections. Their approach is to combine
a variety of contextual information (including time based

clustering, and the probability for certain people to appear
together in images) with identity estimates obtained via a
2D-HMM, and hierarchical clustering results based on body
detection. Their method is evaluated on a dataset of 1,500
face images of 8 individuals.

Cui et al. [5] develop a semi-automatic tool for anno-
tating photographs, which employs clustering as an initial
method for organizing photographs. LBP features are ex-
tracted from detected faces, and color and texture features
are extracted from detected bodies. Spectral clustering is
performed, and the clustering results can then be manually
adjusted by the human operator. Evaluation is done on a
dataset consisting of 400 photographs of 5 subjects. Tian
et al. [15] further develop this approach, incorporating a
probabilistic clustering model, which incorporates a “junk”
class, allowing the algorithm to discard clusters which do
not have tightly distributed samples.

Zhu et al. [20] develop a dissimilarity measure based on
the rankings of two samples being compared in the oppo-
site samples nearest neighbor lists (formed using a basic
distance metric), and perform hierarchical clustering based
on that rank-order distance function. The primitive fea-
ture representation used is the result of unsupervised learn-
ing [3]. The clustering method is evaluated on several small
datasets (the largest of which contains only 1,322 face im-
ages). Wang et al. [18] primarily develop an approximate
k-nn graph construction method; in one of their experiments
they apply this method to construct the nearest neighbor
lists required by [20], on a dataset containing 500K images.

Vidal and Favaro [16] develop a joint subspace learning
and clustering approach which derives several subspaces
from the input dataset which best capture clusters in the
data. They evaluate the method on the extended Yale-B
database.

For clustering images in general, rather than faces in par-
ticular, Liu et al. [12] (i) extracted Haar wavelet features
from images, (ii) applied a distributed algorithm consisting
of an approximate nearest neighbor step, (iii) generated an
initial set of clusters by applying a distance threshold to the
nearest neighbor lists, and (iv) applied a union-find algo-
rithm to get a final set of clusters. Clustering was performed

Acquire

Imagery

Template

Generation

Self Similarity or

K-NN Graph

[OPTIONAL]

Cluster Images Examine Clusters

Adjust ͞C͟

Investigative

Lead

X
n

X
1

. . .

X
1

X
3

X2

X
4

X
5

X6

X
7

X
8

X9

1:N Search

Tag

Subjects

Add to

Watch List

Figure 1. Face clustering is a vital, yet time consuming, process for triaging large sets of images. Shown is an overview of the process for
clustering face images in forensic scenarios. Given a corpus of images acquired in an investigation, the first step is to perform enrollment
to generate a representation (template) of all faces. An optional step is to compute the self similarity, or an approximate k-nearest neighbor
(k-NN) graph between all faces templates. As shown in this work, performing this step greatly improves the efficiency of the clustering
process. Using either the k-NN graph or the templates/feature vectors, clustering is next performed to group all subjects in the corpus into
distinct clusters. Because the number of subjects is not known a priori, this process is often repeated with different values of C until it best
approximates the number of subjects. Finally, the resultant information could be used to build investigative leads. This paper provides a
unified framework for clustering face images that addresses both the clustering accuracy and efficiency considerations.

on approximately 1.5 billion unlabeled images, along with
an evaluation on 3,385 labeled images.

Foo et al. [6] consider a related problem, the detection of
near-duplicate images in large datasets. In this case, rather
than grouping images of people by identity, the goal is to
identify near-duplicate images, which may be the result of
various image processing operations, such as cropping, ro-
tation, colorspace conversion, etc. Their image representa-
tion consists of applying a visual words approach to local
PCA-SIFT descriptors, indexed with a Locality Sensitive
Hashing (LSH) scheme. The clustering method used is a
union-find algorithm. Evaluation was performed by gener-
ating a synthetic set of near duplicate images, and perform-
ing clustering in the presence of a separate noise set; the
largest dataset used was 300,000 images.

3. Approach

The basic process of clustering an unlabeled set of face
images consists of two major parts: feature extraction
from face images, followed by the application of a clus-
tering algorithm. For clustering algorithms leveraging local
neighborhood information (such as the rank-order cluster-
ing method of Zhu et al. [20], or spectral clustering lever-
aging k-nearest neighbor graphs), the clustering step may
further be broken down into a (re-usable) nearest neighbor
computation step, and a final clustering step based on the
nearest neighbor information.

3.1. Face Recognition Algorithms

Two face recognition algorithms are used in this study:
(i) a component-based algorithm (listed as Component)
based on the method presented by Bonnen et al. [2], which

was implemented within the open-source OpenBR frame-
work [11], and (ii) a commercial off the shelf (COTS)
matcher, which is anonymized due to licensing agreements,
but is one of the top performing algorithms in the NIST
FRVT 2014 evaluations (listed as COTS). As is typically the
case, commercial algorithms do not allow access to under-
lying feature vectors; as such, certain clustering approaches
described in this paper are only presented with the “Com-
ponent” face recognition algorithm.

The component algorithm can be outlined as follows: de-
tect keypoints using the STASM library [13]; based on the
detected keypoints extract, local regions containing the sub-
ject’s nose, eyes, mouth, and eyebrows; extract LBP and
HOG features from each extracted region; apply PCA for
dimensionality reduction; and finally, concatenate the fea-
tures from each local region, and apply LDA on the result-
ing feature vector.

3.2. k-NN Graph Construction

A k nearest neighbor (k-NN) graph is a weighted graph
where each instance (a face image in our case) has edges
connecting the other k closest instances. Here, the weights
are similarity values from the respective face recognition al-
gorithms. To exactly compute a k-NN graph, the entire self
similarity matrix needs to first be computed. In turn, a sort-
ing process (or similar approach) is performed to find the
nearest instances. From a memory perspective, it is more
efficient to store a k-NN graph instead of a full similarity
matrix; the k-NN graph can also be referred to as a sparse
matrix representation of the full similarity matrix.

For clustering algorithms which leverage nearest neigh-
bor information, such as rank-order clustering or some vari-
ations of spectral clustering, computing the nearest neigh-

a) b)

Figure 2. Clustering results: (a) heterogeneous (unsuccessful), and (b) homogeneous (successful) clusters, from the PCSO dataset, gener-
ated via rank-order clustering with Component features.

bors of every sample constitutes a major computational
cost. In the brute force manner described above, given n
samples, the computational cost is O(n2). Thus, even if the
basic comparison method is relatively fast, on large datasets
the cost of computing the nearest neighbors will dwarf the
cost of enrolling the face images (see Table 4).

3.2.1 Parallel k-NN Graph Construction

One obvious approach to speed up nearest neighbor com-
putation is parallelization; the nearest neighbors of every
sample may be computed simply by comparing each sample
against the gallery in parallel. While such a parallelization
method is efficient, it can only produce a speedup linear
with the amount of additional hardware employed; mean-
while, the computational cost of processing larger datasets
increases with the square of dataset size.

3.2.2 Approximate k-NN Graph Construction

The disparity between the speedup achievable via paral-
lelization, and quadratic cost of computing nearest neigh-
bors suggests that it may be valuable to purse a subquadratic
approximation method for computing the nearest neighbors.
As such, we explore the implications of using the “glue”
method of Chen et al. [4], which employs a divide and con-
quer algorithm to achieving O(nt) runtime, where t is con-
figurable such that 1 ≤ t ≤ 2.

The original algorithm is a recursive procedure outlined
as follows:

1. If the number of instances in the current set is less than
a threshold, compute them exhaustively.

2. Otherwise, compute a separating hyperplane using
Lanczos bisection.

3. Divide the feature vectors into 3 sets, the two sets sepa-
rated by a hyperplane, and a third set overlapping both.

4. Recurse to step 1 above on all 3 sets.

5. Refine results from step 4 by, for each point, check-
ing if the children of the currently found neighbors are
closer than the current k-NN candidates.

We parallelize this procedure by recursing on the two dis-
joint sets found in step 3 in parallel. Then, after those re-
cursive calls finish, we recurse on the overlap partition and
perform refinement. Since the two sets separated by the hy-
perplane are disjoint, those distances computed in one half
will not be needed in the other, allowing us to process them
independently. Threads are managed via a thread pool, so
although we set up two separate jobs in each recursive call,
the total number of threads used is fixed to the number of
available cores on the computer.

The runtime of the algorithm is determined by the degree
of overlap chosen for the middle partition. In our experi-
ments the runtime used is O(n1.3). Subsequent experiments
will demonstrate the tradeoff present at runtime to compute
nearest neighbors vs. approximation (and ultimately clus-
tering) accuracy.

3.3. Clustering Algorithms

We study three well known clustering algorithms: k-
means, spectral clustering, and the rank-order method of
Zhu et al. [20]. The k-means algorithm is widely used in
general, spectral clustering has been used in several prior
works on face clustering, and the rank-order method has
been tested on relatively large datasets.

3.3.1 k-means

In k-means, the clustering problem is defined as minimiz-
ing the total square distance of a set of feature vectors to
the nearest of C cluster centers. Finding the exact solution
to the k-means objective is not feasible, so in practice an

a) b)

Figure 3. Clustering Results: (a) heterogeneous cluster (unsuccessful), and (b) homogeneous cluster (successful) , from the LFW dataset,
generated via rank-order clustering with Component features.

approximate solution is typically reached via Lloyd’s algo-
rithm, which can be outlined as follows: (i) initialize clus-
ter centers (we follow the k-means++ seeding procedure of
Arthur and Vassilvitskii [1]), (ii) assign each point in the
dataset to the nearest cluster center, (iii) recompute cluster
centers as the mean of all feature vectors assigned to each
center, and (iv) repeat steps (ii)-(iii) until convergence.

3.3.2 Spectral Clustering

Spectral clustering [17] approaches the problem from a
graph theory perspective. The first step is to construct an
adjacency matrix for the target feature vectors, describing
the dataset as a graph. If no inherent graph structure is
known, as is the case for general face clustering, the ad-
jacency matrix can be constructed in several ways. One op-
tion is to construct a fully connected graph, wherein each
value in the adjacency matrix is the similarity between the
corresponding samples; otherwise, a sparse adjacency ma-
trix may be constructed, by either retaining all edges with a
similarity above a threshold, or retaining a fixed number of
edges with the greatest weights.

After the adjacency matrix is defined, the normalized
Laplacian is computed, followed by the top C eigenvec-
tors of the normalized Laplacian, and then a new matrix
is formed whose columns consist of the computed eigen-
values. Considering each row of this matrix a new sample
(corresponding to the n original samples), k-means cluster-
ing is carried out on the new data representation.

3.3.3 Rank-Order Clustering

The rank-order clustering algorithm proposed by Zhu et
al. [20], similar to the method of Gowda and Krishna [7],
is a form of agglomerative hierarchical clustering, leverag-
ing a sophisticated distance metric. The overall procedure

for agglomerative hierarchical clustering, given some dis-
tance metric, is to initialize all samples to be separate clus-
ters, then iteratively merge the two closest clusters together.
This requires defining a cluster-to-cluster distance metric.
In this case, the distance between two clusters is considered
to be the minimum distance between any two samples in the
clusters.

The first distance metric used in Rank-Order clustering
is given by:

d(a, b) =

Oa(b)∑
i=1

Ob(fa(i))

where fa(i) is the ith face in the neighbor list of a, and
Ob(fa(i)) gives the rank of face fa(i) in face b’s neighbor
list. This asymmetric distance function is then used to de-
fine a symmetric distance between two faces as:

D(a, b) =
d(a, b) + d(b, a)

min(Oa(b), Ob(a))

The symmetric rank order distance function gives low val-
ues if the two points are close to each-other (are high in the
opposite data point’s rank list), and have several neighbors
in common.

4. Datasets
4.1. PCSO Subsets

The Pinellas County Sheriff’s Office (PCSO) dataset is
a set of mugshot images available in the public domain
through Florida’s “Sunshine” laws. The full dataset consists
of approximately 1.4 million images of 400,000 subjects
(Figure 2 displays some examples). Images in the PCSO
dataset have an average interpupillary distance (IPD) of ap-
proximately 109 pixels. We have sampled several subsets
of this dataset, with sizes listed in Table 2. Subjects were

Rank-Order Clustering k-Means Spectral

Images (# Subjects) Component Component* COTS Component Component

1,001 (201) 0.88 (242) 0.88 (243) 0.90 (172) 0.49 (201) 0.74 (201)
10,002 (2,150) 0.87 (2,937) 0.85 (3,235) 0.94 (2,090) 0.40 (2,150) 0.53 (2,150)
50,002 (10,908) 0.83 (15,047) 0.75 (18,631) 0.93 (10,304) 0.34 (10,908) -
100,004 (21,996) 0.79 (31,262) 0.70 (40,471) 0.91 (20,655) 0.33 (21,996) -
1,000,008 (195,494) 0.64 (246,785) 0.49 (442,956) 0.76 (159,118) - -

Table 2. Clustering accuracy, and number of clusters (reported as “F-Measure (# Clusters)”) as a function of dataset size on the PCSO
dataset using different clustering algorithms (Rank-Order, k-Means, and Spectral), and different face recognition algorithms (Component
and COTS). Entries labeled Component* use the approximate nearest neighbor method discussed in 3.2.2. The k-Means and Spectral
cluster results use the Component face recognition algorithm features. An entry of “-” means that the corresponding algorithm could not
finish the clustering in a reasonable amount of time.

Rank-Order Clustering

Dataset Component Component* COTS

LFW 0.33 (4,235) 0.33 (4,231) 0.39 (5,049)
LFW+ 0.15 (647k) 0.14 (770k) -

Table 3. Clustering accuracy, and number of clusters (reported as
“F-Measure (# Clusters)”) on the original, and augmented LFW
datasets. LFW contains 5,749 subjects, the LFW+ dataset contains
all LFW subjects plus an unknown number of additional subjects.
Component* indicates that the approximation method discussed
in Section 3.2.2 was used to compute the nearest neighbors for the
rank-order clustering algorithm.

randomly drawn from the PCSO dataset, under the condi-
tion that each subject selected had at least two images in the
dataset. Since the subjects in each subset were sampled uni-
formly from all available subjects in the complete dataset,
the distribution of number of images per subject remains
roughly the same for all sizes of PCSO subsets.

4.2. LFW and LFW+ Unconstrained Face Datasets

We also evaluate clustering performance on the well
known Labeled Faces in the Wild (LFW) dataset [9] (some
examples are shown in Figure 3). In order to consider a
more challenging scenario, we augment LFW with 1 mil-
lion images collected via crawling the internet to define the
LFW+ dataset. These images were filtered to only include
images with faces detectable by the OpenCV implementa-
tion of the Viola-Jones face detector, similar to the proce-
dure used to select LFW images. Since ground truth identity
information is unavailable for the additional 1 million im-
ages, performance on the augmented dataset is calculated
by computing precision and recall while only considering
data for which identity labels are available.

5. Experiments
5.1. Clustering Accuracy

We evaluate clustering performance using pairwise pre-
cision/recall. Precision is defined as the average fraction of

face image pairs assigned to a cluster with matching class
labels, and recall is defined as the average fraction of face
image pairs belonging to the same class assigned to the
same cluster. F-measure is a summary statistic for preci-
sion/recall, defined as F = 2 × Precision×Recall

Precision+Recall . Table 2
contains F-measure values for the evaluated clustering al-
gorithms and matchers on the PCSO datasets. For the rank-
order algorithm, the score threshold is varied, and the score
threshold and consequent number of clusters resulting in the
highest F-measure is reported. The best results in terms of
F-measure are typically attained using a somewhat higher
number of clusters than is present in the ground truth, al-
though using an arbitrarily high number of clusters is pun-
ished since eventually losses in recall offset gains in preci-
sion. For k-means and spectral clustering, the exact (true)
number of clusters is specified.

Clustering accuracy, as expected, generally decreases as
dataset size increases, with a significant accuracy dropoff
on the 1 million image PCSO dataset. The approximate k-
NN method results in worse overall accuracy than the brute
force method, and the gap in performance increases with
dataset size, up to a 0.15 gap in F-measure on the one mil-
lion dataset.

Results on the original and augmented LFW datasets
are reported in Table 3. For both the Component and
COTS matchers, face recognition performance is signifi-
cantly worse on the unconstrained LFW images, leading to
relatively low clustering accuracy.

In terms of clustering algorithms, rank-order cluster-
ing consistently has the most accurate results, followed
by spectral clustering, followed by k-means. Comparing
face matchers, the best results are attained using the COTS
matcher for all datasets, although since no feature vectors
are available, neither k-means nor the approximate k-NN
graph construction method can be used with this matcher.
The relative performance of the face matchers is consis-
tent across datasets, and in all cases clustering accuracy de-
creases with increasing dataset size. Overall, the clustering
accuracy decreases dramatically on the one million image

Dataset Size (# Subjects) Enroll NN Approximate NN k-Means Spectral Rank-Order

1,001 (201) 0:00.14 0:00.01 0:00.01 0:00.02 0:00.12 0:00.01
10,002 (2,150) 0:02.02 0:00.09 0:00.10 0:02.47 1:59.28 0:00.01
50,002 (10,908) 0:09.42 0:03.51 0:01.26 1:12.12 - 0:00.02
100,004 (21,996) 0:18.23 0:15.37 0:03.44 4:50.15 - 0:00.04
1,000,008 (195,494) 3:05.38 26:40.37 1:15.26 - - 0:02.43

Table 4. Runtimes for different stages of the face clustering framework (enrollment, nearest neighbor (NN) computation, and clustering).
Enrollment is performed with the Component algorithm. Approximate NN denotes the use of the algorithm described in Section 3.2.2.
Times are listed as Hours:Minutes.Seconds. All times were measured on a 20-core server.

Images (# Subjects) Enroll NN R-O

1,001 (201) 0:00.32 0:00.13 0:00.01
10,002 (2,150) 0:04.13 0:00.50 0:00.01
50,002 (10,908) 0:36.48 0:04.12 0:00.02
100,004 (21,996) 1:09.52 0:19.57 0:00.03
1,000,008 (195,494) 12:50.31 32:34.26 0:02.51

Table 5. Runtimes for the COTS algorithm on PCSO subsets in
Hours:Minutes.Seconds; column R-O is for the Rank-Order algo-
rithm.

dataset, to at best 0.76 F-measure, from 0.91 on the 100,000
mugshot dataset.

Some examples of successful, and unsuccessful clusters
are shown in Figures 2 and 3, generated using the rank-
order clustering algorithm with Component features. It
seems better clusters are formed when the number of faces
images for a subject is large, as in Figures 2(b) and 3(b)

5.2. Runtime

Tables 4 and 5 break down the runtime of the evaluated
clustering algorithms on several datasets. Runtimes were
measured using a server with 20 cores clocked at 2.5GHz,
leveraging available multi-threading.

Enrollment by a particular face matcher is a necessary
first step in the clustering process. Enrollment time can be
a significant portion of total runtime, particularly for small
datasets; however, enrollment time is linear with the number
of images, and will be dwarfed by other costs as the dataset
size increases. Both the rank-order and spectral cluster-
ing algorithms compute a set of nearest neighbors for each
sample. This cost is initially low for the Component algo-
rithm since the actual comparison function is quite efficient;
however, the computation cost increases with the square of
dataset size, and becomes the dominant cost for datasets on
the order of one million faces.

For rank-order clustering, nearest neighbor computation
is the dominant cost for large datasets, followed by the cost
of enrollment. The actual clustering step itself is rather
quick, since all distance computations are already done.
On the other hand, spectral clustering, which also com-
putes nearest neighbors, has significant additional costs in
eigenvector computation, as well as a k-means clustering

step. The cost of computing the eigenvectors is cubic with
datasets size, and quickly dominates both enrollment and
nearest neighbor calculation.

k-means does not compute a k-nn graph; however, its ba-
sic loop (which compares each sample to the current clus-
ter centers) has a runtime comparable to the cost of com-
puting the k-NN graph. Since the number of clusters C is
within a constant factor of the total number of samples (ap-
proximately 5 samples per cluster), O(nC) operations (such
as comparing all samples to all cluster centers) are in fact
O(n2), and the cost per iteration of the k-means algorithm
becomes quite high for large datasets. In fact, even after
running the algorithm for 4 days on the 1 million image
PCSO dataset it failed to converge.

5.3. Dataset Summarization

We can evaluate clustering results by measuring the con-
sistency of the results with the ground truth identity labels;
however, this does not directly address the application of
summarizing a dataset to allow an analyst to investigate it
more efficiently. We therefore adapt the penetration/hit rate
plot typically used to evaluate indexing applications, and
plot the fraction of dataset retained after replacing all mem-
bers of a cluster with a single exemplar (Penetration Rate)
vs. the fraction of distinct identities still represented in the
reduced dataset (Subject Hit Rate). A tradeoff between the
degree of consolidation vs. number of subjects retained is
observed, and several operating points can be evaluated by
varying the number of clusters the dataset is reduced to.
Figure 4 plots the penetration vs. hit rate for the rank-order
clustering algorithm on the 1 million image PCSO subset.

In practice, 90% of subjects are retained while still re-
ducing the effective dataset size to approximately one third
of its original size. This shows that for subjects with a large
number of face images in the dataset, the clustering is very
effective. The 90% of subjects remaining in the dataset
have relatively few images per subject. In this sense, the
face clustering is effective in identifying dense clusters from
noisy background clusters.

0.1 0.2 0.3 0.4 0.5 0.6
0.5

0.6

0.7

0.8

0.9

1

Penetration Rate

S
u
b
je

c
t
H

it
 R

a
te

Exact−NN

Approximate−NN

Figure 4. Hit rate vs. Penetration rate for the PCSO 1 million
image dataset. Results are shown for Rank-Order Clustering, with
features provided by the Component algorithm.

6. Conclusions
We have examined the challenging problem of face clus-

tering from the perspective of applications in forensics and
law enforcement. This application entails clustering a very
large number of unconstrained face images (say, a million)
into a very large, but unknown number of clusters (say,
100,00). Of the several clustering methods evaluated, rank-
order clustering consistently displayed a good tradeoff be-
tween clustering accuracy and computational requirements.
Further, the runtime characteristics of the algorithm (perfor-
mance bound by k-NN computation) easily allows for use
with varying thresholds (useful for evaluating different pos-
sible numbers of cluster centers). Although the method is
relatively efficient, the O(n2) computational cost of com-
puting the k-NN graph eventually limits its utility, which
can be remedied to an extent by applying an approxima-
tion method (at the cost of clustering accuracy). Lastly, we
observe that for large datasets (on the order of 1 million
images), while the clustering accuracy decreases, it is still
able to identify some subject-specific (homogeneous) clus-
ters, provided the number of face images of the subject is
large.

Our ongoing work includes exploring the use of (i) incor-
porating pairwise constraints (must-link and cannot-link)
and (ii) leveraging clustering ensembles to improve the
clustering performance.

7. Acknowledgement
This research was supported by the National Institute of

Justice (NIJ) grant 2011-IJ-CX-K057.

References
[1] D. Arthur and S. Vassilvitskii. k-means++: The advantages

of careful seeding. In SODA, pages 1027–1035, 2007.

[2] K. Bonnen, B. F. Klare, and A. K. Jain. Component-based
representation in automated face recognition. IEEE TIFS,
8(1):239–253, 2013.

[3] Z. Cao, Q. Yin, X. Tang, and J. Sun. Face recognition
with learning-based descriptor. In CVPR, pages 2707–2714.
IEEE, 2010.

[4] J. Chen, H.-r. Fang, and Y. Saad. Fast approximate k nn
graph construction for high dimensional data via recursive
lanczos bisection. JMLR, 10:1989–2012, 2009.

[5] J. Cui, F. Wen, R. Xiao, Y. Tian, and X. Tang. Easyalbum: an
interactive photo annotation system based on face clustering
and re-ranking. In SIGCHI conf. on Human factors, pages
367–376. ACM, 2007.

[6] J. J. Foo, J. Zobel, and R. Sinha. Clustering near-duplicate
images in large collections. In ACM Workshop on multimedia
information retrieval, pages 21–30, 2007.

[7] K. C. Gowda and G. Krishna. Agglomerative clustering us-
ing the concept of mutual nearest neighbourhood. Pattern
Recognition, 10(2):105–112, 1978.

[8] J. Ho, M.-H. Yang, J. Lim, K.-C. Lee, and D. Kriegman.
Clustering appearances of objects under varying illumination
conditions. In CVPR, volume 1, pages I–11, 2003.

[9] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller.
Labeled faces in the wild: A database for studying face
recognition in unconstrained environments. Technical Re-
port 07-49, Univ. of Massachusetts, Amherst, October 2007.

[10] A. K. Jain. Data clustering: 50 years beyond k-means. Pat-
tern Recognition Letters, 31(8):651–666, 2010.

[11] J. C. Klontz, B. F. Klare, S. Klum, A. K. Jain, and M. J.
Burge. Open source biometric recognition. In IEEE BTAS,
pages 1–8, 2013.

[12] T. Liu, C. Rosenberg, and H. A. Rowley. Clustering billions
of images with large scale nearest neighbor search. In WACV,
pages 28–28, 2007.

[13] S. Milborrow and F. Nicolls. Active Shape Models with SIFT
Descriptors and MARS. VISAPP, 2014.

[14] B. S. Swann. FBI video analytics priority initiative. In 17th
Annual Conference & Exhibition on the Practical Applica-
tion of Biometrics, 2014.

[15] Y. Tian, W. Liu, R. Xiao, F. Wen, and X. Tang. A face an-
notation framework with partial clustering and interactive la-
beling. In CVPR, pages 1–8, 2007.

[16] R. Vidal and P. Favaro. Low rank subspace clustering
(LRSC). Pattern Recognition Letters, 43:47–61, 2014.

[17] U. Von Luxburg. A tutorial on spectral clustering. Statistics
and computing, 17(4):395–416, 2007.

[18] J. Wang, J. Wang, G. Zeng, Z. Tu, R. Gan, and S. Li. Scal-
able k-nn graph construction for visual descriptors. In CVPR,
pages 1106–1113, 2012.

[19] M. Zha, Y. Teo, S. Liu, T. Chua, and R. Jain. Automatic per-
son annotation of family photo album. In Image and Video
Retrieval, pages 163–172. Springer, 2006.

[20] C. Zhui, F. Wen, and J. Sun. A rank-order distance based
clustering algorithm for face tagging. In CVPR, pages 481–
488, 2011.

