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Abstract—Given a large collection of unlabeled face images, we address the problem of clustering faces into an unknown number of
identities. This problem is of interest in social media, law enforcement, and other applications, where the number of faces can be of the
order of hundreds of million, while the number of identities (clusters) can range from a few thousand to millions. To address the
challenges of run-time complexity and cluster quality, we present an approximate Rank-Order clustering algorithm that performs better
than popular clustering algorithms (k-Means and Spectral). Our experiments include clustering up to 123 million face images into over
10 million clusters. Clustering results are analyzed in terms of external (known face labels) and internal (unknown face labels) quality
measures, and run-time. Our algorithm achieves an F-measure of 0.87 on the LFW benchmark (13K faces of 5, 749 individuals), which
drops to 0.27 on the largest dataset considered (13K faces in LFW + 123M distractor images). Additionally, we show that frames in the
YouTube benchmark can be clustered with an F-measure of 0.71. An internal per-cluster quality measure is developed to rank
individual clusters for manual exploration of high quality clusters that are compact and isolated.

Index Terms—face recognition, face clustering, deep learning, scalability, cluster validity

F

1 INTRODUCTION

In this work, we attempt to address the following problem:
Given a large number of unlabeled face images, cluster them
into the individual identities present in this data. This situation is
encountered in a number of different application scenarios ranging
from social media to law enforcement, where the number of faces
in the collection can be of the order of hundreds of million. Often,
the labels attached to the face images are either missing or contain
noise. The number of clusters or the unknown number of identities
can range from a few thousand to hundreds of millions, leading to
difficulties in terms of both run-time and clustering quality.

Considering social media, Facebook reported that 350 million
images are uploaded per day on average1, and of those images, a
large number may reasonably be assumed to be images of people.
In social media some identity information may be provided via
tagging, but in general this is incomplete and may be inaccurate.
We consider grouping face images into discrete identities as one
possible approach for organizing this large volume of data.

In forensic investigations, triaging large-scale face collections
is also an emerging problem. Few examples are more relevant
than the Boston Marathon bombing [1], where tens of thousands
of images and videos needed to be analyzed during a time sensitive
investigation [2]. Other common cases that require the investiga-
tion of large media collections include identifying perpetrators
and victims in child exploitation cases2, an understanding of
which individuals exist in a collection of social media (such as
imagery from gang and terrorist networks), and organizing media
collections from hard drives (personal computers or servers).

In both social media, and forensic investigations we expect the
unknown number of individual identities present in a dataset to
be large, which is challenging from a scalability perspective since
runtimes tend to be related to the number of clusters. Additionally,
we expect the number of images per individual to be unbalanced
(some people may appear very often, others much less frequently),
which is challenging for e.g. clustering algorithms like k-means
which tend to generate similar sized clusters. It can also be
assumed that the quality of images in terms of pose, illumination,

1. https://goo.gl/FmzROn
2. http://www.nist.gov/itl/iad/ig/chexia-face.cfm

occlusion, etc. being considered is relatively low, since social
media images, images taken at public events etc. are not generally
captured in the most favorable conditions for face recognition.
Following recent progress in unconstrained face recognition, we
attempt to mitigate the difficulty of the underlying face clustering
problem by using a state-of-the-art convolutional neural network
based face representation [11].

Even using a strong face representation, accuracy is not perfect
on verification tasks (particularly when considering difficult data).
Zhu et al. [7] reported success in clustering collections of per-
sonal photographs using a Rank-Order clustering method which
develops a distance measure based on shared nearest-neighbors
of face images being compared (since direct feature vector-to-
feature vector distances may be inaccurate given the difficulty of
the face recognition task). However, in addition to the problem of
poor face quality, large scale face clustering tasks (on the order
of 100 million face images) are inherently difficult in terms of
scalability (run-time). We develop a version of the rank-order
clustering algorithm of Zhu et al. [7] leveraging an approximate
nearest neighbor method for improved scalability, and simplifying
the actual clustering procedure to achieve improved scalability and
clustering accuracy.

We evaluate large-scale clustering performance by combining
the well-known Labeled Faces in the Wild (LFW) dataset [12]
with up to 123M unlabeled images (downloaded from the web),
and clustering the augmented dataset. Additionally, considering
that even a reasonably accurate clustering of a truly large
dataset may still result in too many clusters to be manually
investigated, we investigate per-cluster “internal” quality measures
(which do not require external labels on face images) to identify
a subset of “good” clusters (relatively compact and isolated),
for manual exploration. In addition to large-scale clustering
on unconstrained still face images, we perform preliminary
investigations of clustering video frames leveraging the YouTube
Faces (YTF) database [13], clustering hundreds of thousands of
video frames.

The perceived contributions of this paper include: (i) an
updated clustering algorithm, improving on the method presented
by Zhu et al. [7] using an approximate nearest neighbor method for
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TABLE 1: A summary of related studies on face clustering.

Publication Features Clustering method # Face images # Subjects

Ho et al. [3] Gradient and pixel intensity features Spectral clustering 1,386 66
Zhao et al. [4] 2DHMM + contextual Hierarchical clustering 1,500 8
Cui et al. [5] LBP, clothing color + texture Spectral 400 5
Tian et al. [6] Image + contextual Partial clustering 1,147 34
Zhu et al. [7] Learning-based descriptor [8] Rank-order 1,322 53
Vidal and Favaro [9] Joint subspace learning and clustering -† 2,432 38
Otto et al. [10] Component-based features, commercial face matcher k-Means, spectral, rank-order 1M 195,494
Ours Deep features [11] Approximate rank-order 123M Unknown‡

† In this work a unified algorithm is used for representation and clustering
‡ Due to the nature of the dataset used (face images blindly harvested from the Internet), we do not know the true number of identities, as is the case in
practical scenarios.

improved scalability, which also attains better clustering accuracy,
(ii) large-scale face clustering experiments using a state-of-the-
art face representation learned for large scale supervised face
recognition based on deep networks [11], (iii) a preliminary
investigation of the applicability of the presented face clustering
method to video, and (iv) definition of a per-cluster quality
measure suitable for prioritizing a subset of clusters out of millions
of detected clusters.

2 BACKGROUND

2.1 Face Clustering

The clustering problem, a tool for exploratory data analysis, has
been well studied in pattern recognition, statistics, and machine
learning literature (Jain [14] provides a survey). Less studied is the
challenging problem of clustering face images, especially when
both the number of images and the number of clusters are very
large. An important consideration in clustering (and classifying)
face images is that since there is no universally agreed upon face
representation or distance metric, the clustering results depend
not only on the choice of clustering algorithm, but also on the
quality of the underlying face representation and metric. Table 1
lists prior work on face clustering, with the face representation
and clustering algorithm used, along with the largest dataset size
employed in terms of face images, as well as number of subjects.

Ho et al. [3] developed variations on spectral clustering
wherein the affinity matrix is computed based on (i) assuming a
Lambertian object with fixed camera/object positioning, and then
computing the probability that two face images are of the same
object (same convex polyhedral cone in the image space), or (ii)
the local gradients of the images being compared; evaluation is
done on the Yale-B and PIE-66 datasets.

Zhao et al. [4] clustered personal photograph collections. Their
approach combines a variety of contextual information including
time based clustering, and the probability of faces of certain people
to appear together in images, with identity estimates obtained via
a 2D-HMM, and hierarchical clustering results based on body
detection; a dataset of 1, 500 face images of 8 individuals is used
for evaluation.

Cui et al. [5] developed a semi-automatic tool for annotating
photographs, which employs clustering as an initial method for
organizing photographs. LBP features are extracted from detected
faces, and color and texture features are extracted from detected
bodies. Spectral clustering is performed, and the clustering results
can then be manually adjusted by a human operator. Evaluation
is done on a dataset consisting of 400 photographs of 5 subjects.
Tian et al. [6] further developed this approach, incorporating a
probabilistic clustering model, which incorporates a “junk” class,

allowing the algorithm to discard clusters that do not have tightly
distributed samples.

Zhu et al. [7] developed a dissimilarity measure based
on the rankings of two faces being compared in each face’s
nearest neighbor lists (formed using a basic distance metric), and
perform hierarchical clustering based on the resulting rank-order
distance function. The feature representation used is the result of
unsupervised learning [8]. The clustering method is evaluated on
several small datasets (the largest of which contains only 1, 322
face images). Wang et al. [15] primarily develop an approximate
k-NN graph construction method; in one of their experiments they
apply this method to construct the nearest neighbor lists required
by [7], on a dataset containing LFW and an additional 500K
unlabeled face images, and use the rank-order distance measure
to produce an improved k-NN graph (but do not perform hard
assignment of faces into clusters).

Vidal and Favaro [9] developed a joint subspace learning and
clustering approach. It derives several subspaces from the input
dataset which best capture clusters in the data. They evaluate the
method on the extended Yale-B database.

In related applications, Bhattarai et al. [16] develop a semi-
supervised method for organizing datasets for improved retrieval
speed via hierarchical clustering. Tapaswi et al. [17] address
organization of video frames, performing both within video
and cross-video clustering, incorporating constraints from face
tracking and common video editing patterns. Schroff et al. [18]
give some qualitative results of clustering personal photos using a
deep learning based face representation.

There have recently been some additional work on larger-
scale face recognition problems [19], considering datasets on
the order of a million images. Some experimental work in
face clustering has considered hundreds of thousands of images,
while some general object clustering tasks have used datasets
on the order of billions of images [20]. In cases where the
true number of clusters is known a priori, that number is
typically orders of magnitude lower than the number of images.
In general, the evaluation methods used to determine how well
clustering algorithms perform (when true labels are available)
are split. In some cases the clustering accuracy is used [3], in
others precision/recall [4], and in still others normalized mutual
information is employed [7].

2.2 General Image Clustering
For clustering images in general, rather than faces in particular,
Liu et al. [20] (i) extracted Haar wavelet features from images,
(ii) applied a distributed algorithm consisting of an approximate
nearest neighbor step, (iii) generated an initial set of clusters by
applying a distance threshold to the nearest neighbor lists, and
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Fig. 1: Diagram of a possible clustering configuration, used to
illustrate evaluation metrics. Six samples are partitioned into 2
clusters; A1, A2, and A3 are labeled with the same identity,
sample B1 is labeled with a different identity, and samples U1
and U2 are unlabeled.

(iv) applied a union-find algorithm to get a final set of clusters.
Clustering was performed on approximately 1.5 billion unlabeled
images, along with an evaluation on 3, 385 labeled images. The
main goal of the procedure was to group images into sets of near
duplicates, but the total number of such sets in the 1.5 billion
image dataset was unknown.

Gong et al. [21] develop a version of k-means clustering which
is suitable for handling large datasets by encoding their feature
vectors to binary vectors, and then using an indexing scheme to
support constant time lookup of cluster centers for the assignment
step of k-means. They apply their binary k-means algorithm to
a subset of the ImageNet dataset, containing 1.2 million general
object images in 1, 000 classes.

Foo et al. [22] consider a related problem, the detection of
near-duplicate images in large datasets. In this case, rather than
grouping images of people by identity, the goal is to identify
near-duplicate images, which may be the result of various image
processing operations, such as cropping, rotation, colorspace
conversion, etc. Their image representation consists of applying
a visual words approach to local PCA-SIFT descriptors, indexed
with a Locality Sensitive Hashing (LSH) scheme. The clustering
method used is a union-find algorithm. Evaluation was performed
by generating a synthetic set of near duplicate images, and
performing clustering in the presence of a separate noise set; the
largest dataset used contained 300, 000 images.

2.3 Approximate Nearest Neighbor Methods

A common problem in some of the well-known clustering methods
is finding nearest neighbor sets for all n samples in a dataset.
Naively, the runtime is O(n2), which is a problem for large
n. This can be considered an instance of the k-NN graph
construction problem, or alternatively it can be considered a set
of n approximate nearest neighbor searches. For both of these
cases, approximation methods are available in the literature.

2.3.1 k-nn Graph Construction

One approximation method for computing the full k-NN graph is
given by Chen et al. [23]. The algorithm is a procedure based on
recursive subdivision of the feature space via Lanczos bisection.
We use a parallelized version of this algorithm, presented in [10],
which branches at each recursive subdivision, handling both halves
in separate threads.

This algorithm achieves improved runtime over the brute-force
method by skipping some sets of comparisons (the portion of
comparisons at each split between samples in opposite partitions,
not included in the overlap set), and as such the runtime is a
function in the degree of overlap chosen.

2.3.2 Randomized k-d Tree

In addition to k-NN graph construction, we may consider building
nearest neighbor lists for the entire dataset as n discrete nearest
neighbor search problems, and improve the total runtime by
employing an approximate nearest neighbor search method.
Among various approximate nearest neighbor algorithms, one
classic family is partitioning tree-based approaches. They build
on the classic k-d tree algorithm which develops an index that
subdivides the feature space by selecting a subset of features to
split the data on, typically by conducting non-exhaustive searches
of such a tree. The randomized k-d tree algorithm [24] improves
efficiency by building multiple randomized k-d tree indices, then
searches those indices in parallel, stopping the search after a
specified number of tree nodes have been visited.

2.4 Clustering Evaluation

In evaluating clustering performance, since we use a pre-defined
definition of “correct” clustering (clustering by identity), we can
evaluate accuracy in terms of clusters corresponding to known
identity labels. External measures for evaluating clustering quality
rely on identity labels; we will use pairwise precision/recall since
it can be computed efficiently. Run time is also an important
evaluation metric.

Pairwise precision is defined as the fraction of pairs of samples
within a cluster (considering all possible pairs) which are of the
same class (have the same identity), over the total number of same-
cluster pairs within the dataset. In Figure 1, (A1, A2) is a matching
pair, and (A1, B1) and (A2, B1) are mismatched pairs.

Pairwise recall is defined as the fraction of pairs of samples
within a class (considering all possible pairs) which are placed
in the same cluster, over the total number of same-class pairs
in the dataset. In Figure 1 (A1, A2) is a same class pair in the
same cluster, while (A1, A3) and (A2, A3) are same-class pairs in
different clusters.

These measures capture two types of error, a clustering which
places all samples as individual clusters will have high precision,
but low recall, while a clustering which places all samples in the
same cluster will have high recall, but low precision. The two
numbers can be summarized using F-measure, defined as F =
2× (Precision×Recall)/(Precision+Recall).

We extend these measure to handle partially labeled data, as
encountered in large-scale clustering problems, by simply omitting
the unlabeled data from evaluation, to the extent possible. In our
experiments, partially labeled data occurs when we mix LFW face
images (with known labels) against a large collection of faces
downloaded from the web with unknown labels.

We define modified pairwise recall by simply not counting
whether or not unlabeled identities are grouped together. For
precision, we consider labeled-unlabeled pairs (e.g. (A3, U1)
and (A3, U2) in Figure 1) mismatches, and omit unlabeled-
unlabeled pairs (i.e. (U1, U2) ) from the calculation. So, rather
than considering all possible pairs in a given cluster, we omit
any unlabeled-unlabeled pairs from the total. In the right cluster
in Figure 1, we would only use pairs (A3, U1) and (A3, U2)
to calculate the modified precision. The modified precision in
Figure 1 is then 1/5 (only the A1-A2 pair is correct, the U1-
U2 pair is not counted), the modified recall is 1/3, only class A
has more than one sample (and is labeled), and of the class A
pairs, only A1 and A2 are in the same cluster.
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Fig. 2: Face representation. An RGB image is input (a), keypoints are detected (b), the image is normalized following the procedure
described in [11] (c), the normalized image is input to a convolutional neural network (d), and the 320-dimensional output of the final
average-pooling layer is used as the face representation (e). An N-way softmax classification layer (f) is used during training only.

3 PROPOSED FACE CLUSTERING APPROACH

3.1 Face Representation

Since we are clustering faces captured under unconstrained
conditions, we leverage a deep convolutional neural network for
our face representation following the success of such methods
by various researchers on the LFW benchmark3. Many deep
learning approaches have been successfully applied to the LFW
benchmark; however, most leverage private training sets. In
our case, we use the architecture described in [11] and train
the network directly on aligned face images from the publicly
available CASIA-webface dataset [25]. Results on both the LFW
and IJB-A [26] benchmarks, and under larger-scale face retrieval
scenarios, using this trained network, were shown to be reasonably
competitive in [11] (reaching 96.96% overall accuracy on the
standard LFW protocol), compared to the best approaches on
LFW, particularly considering the different scales of training data
involved.

The feature extraction process is outlined in Figure 2. Given
an input image, 68 facial landmarks are detected using the
DLIB implementation of Kazemi and Sullivan’s [27] ensemble
of regression trees method. Image normalization is performed
based on the detected keypoints, in particular in-plane rotation
is corrected based on the angle between the eyes, the eye line is
placed at 45% of image height from the top of the image, the
mouth line is placed at 25% of image height from the bottom of
the image, the midpoint of all detected points is centered in the
x dimension, the aligned image is scaled to 110 × 110, and the
center 100× 100 region is the final normalized image.

The normalized image is passed as input to a convolutional
neural network following a very deep architecture [28], with a
total of 10 convolution layers, and small (3 × 3) filters. The
architecture consists of pairs of convolutional layers followed by
max-pooling layers, repeated 4 times, then a final 2 convolutional
layers followed by an average pooling layer, with ReLU neurons
following all convolutional layers, except for the last one. The
320-dimensional output of the final average pooling layer is used
as our feature vector, and during training is fed into a fully
connected layer (regularized via dropout), followed by a softmax
loss. Only the 320-dimensional output of the average-pooling
layer is used in our clustering experiments.

The network is trained using 404, 992 face images of 10, 533
subjects from the CASIA-webface dataset (the images for which
face alignment was performed successfully), in minibatch stochas-
tic gradient descent. The loss layer used for training is a single

3. http://vis-www.cs.umass.edu/lfw/results.html

softmax loss function. The weight decay of all layers is set to
5 × 10−4, and the learning rate for stochastic gradient descent
(SGD) is initialized to 10−2, and gradually reduced to 10−5. The
network is implemented using the cuda-convnet2 library4.

3.2 Clustering Method

A large number of clustering methods have been proposed in the
literature based on squared-error, mixture models, nearest neigh-
bor and graph-theoretic approaches [14]. Based on evaluation
of different approaches for face clustering in [10], we leverage
an approximate version of the rank-order clustering algorithm
proposed by Zhu et al. [7]. We present the original algorithm in
detail, then our modified version.

3.2.1 Rank-Order Clustering
The rank-order clustering algorithm proposed by Zhu et al. [7],
similar to the method of Gowda and Krishna [29], is roughly
a form of agglomerative hierarchical clustering, using a nearest
neighbor based distance measure. The overall flow of the algo-
rithm is to initialize all samples to be separate clusters, compute
distances between pairs of clusters, merge those for which
the computed distances are below a threshold, then iteratively
recompute a new set of cluster-to-cluster distances, and perform
merges based on the new distances. This requires defining a
cluster-to-cluster distance metric. In the algorithm, the distance
between two clusters is considered to be the minimum distance
between any two samples in the clusters.

The first distance measure used in Rank-Order clustering is
given by:

d(a, b) =

Oa(b)∑
i=1

Ob(fa(i)), (1)

where fa(i) is the i-th face in the neighbor list of a, andOb(fa(i))
gives the rank of face fa(i) in face b’s neighbor list, where the
nearest neighbor lists are generated according to some underlying
distance measure (we use Euclidean distance). This asymmetric
distance function is then used to define a symmetric distance
between two faces, a and b, as:

D(a, b) =
d(a, b) + d(b, a)

min(Oa(b), Ob(a))
. (2)

An additional cluster-level normalized distance measure is
used to effectively constrain merges to local neighborhoods. In

4. https://code.google.com/p/cuda-convnet2/

http://vis-www.cs.umass.edu/lfw/results.html
https://code.google.com/p/cuda-convnet2/
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Fig. 3: Approximate Rank-Order clustering. Given a set of unlabeled face images (a), nearest neighbor lists are computed for each
image (b); nearest neighbor lists are then used to compute distances between faces (c). (b) shows the nearest neighbor lists of only five
faces in (a). dm(a, b) (Eq. 5) is the asymmetric distance between faces a and b whereas Dm(a, b) (Eq. 6) is the symmetric distance
between faces a and b.

particular, the minimum distance between any two points in a pair
of clusters is computed, and divided by the average distance, as:

DN (Ci, Cj) =
1

φ(Ci, Cj)
× d(Ci, Cj) (3)

where

φ(Ci, Cj) =
1

|Ci|+ |Cj |
×

∑
a∈Ci∪Cj

1

K

K∑
k=1

d(a, fa(k)) (4)

that is, DN (Ci, Cj), is the minimum distance between any two
points in clusters i and j divided by the average of each point
in Ci or Cj to their K nearest neighbors. A threshold of 1 is
always used for this function, with the local neighborhood size K
left as a free parameter, so effectively the test is whether or not
the minimum distance between any two points in the clusters is
below the average distance of all points in both clusters to their K
nearest neighbors.

The symmetric rank order distance function gives low values
if the two faces are close to each-other (face a ranks high in
face b’s neighbor list, and face b ranks high in face a’s neighbor
list), and have neighbors in common (high ranking neighbors of
face b also rank highly in face a’s neighbor list). After distances
are computed, clustering is performed by initializing every face
image to its own cluster, then computing the symmetric distances
between each cluster, along with the cluster-level normalized
distances, and merging any clusters with distances below both
specified thresholds. Then, nearest neighbor lists for any newly
formed clusters are merged, and distances between the remaining
clusters are computed again iteratively, until no further clusters can
be merged. In this case, rather than specifying the desired number
of clusters C, a distance threshold is specified for the rank-order
distance measure, along with a neighborhood size for the cluster-
level normalized distance; it is these parameters which determines
the specific number of clusters for a particular dataset being
clustered, and their effective values are empirically determined.
We use our own implementation of this algorithm.

In terms of run-time, computing the full nearest neighbor
lists for each sample incurs an O(n2) cost. Additionally, the
actual clustering step used here is iterative, with cost per iteration
proportional to the current number of clusters squared (with
number of clusters starting at n and decreasing across iterations),
so both the nearest neighbor computation, and the clustering step
itself are costly with increasing dataset size.

3.2.2 Proposed Approximate Rank-Order Clustering

The Rank-Order clustering method has an obvious scalability
problem in that it requires computing nearest neighbor lists
for every sample in the dataset, which has an O(n2) cost if
computed directly. Although various approximation methods exist
for computing nearest neighbors, they are typically only able to
compute a short list of the top k nearest neighbors efficiently,
rather than exhaustively ranking the dataset. We use the FLANN
library implementation of the randomized k-d tree algorithm [30]
to compute a short list of nearest neighbors.

Applying approximation methods for faster nearest neighbor
computation then requires some modification of the original Rank-
Order clustering algorithm. In particular, rather than considering
all neighbors in the summation equation (1), we sum up to at most
the top k neighbors (under the assumption that cluster formation
relies on local neighborhoods). Additionally, rather than using the
cluster-level normalized distance from the original algorithm of
Zhu et al. [7], we enforce locality by only computing approximate
rank-order distances between pairs of samples for which both are
within the other sample’s top-200 nearest neighbors.

Further, we note that if only a short list of the top-k neighbors
is considered, the presence or absence of a particular example on
the short list may be more significant than the sample’s numerical
rank. As such, we consider a distance measure based on directly
summing the presence/absence of shared nearest neighbors, rather
than the ranks, resulting in the following distance function:

dm(a, b) =

min(Oa(b),k)∑
i=1

Ib(Ob(fa(i)), k), (5)

where Ib(x, k) is an indicator function with a value of 0 if face
x is in face b’s top k nearest neighbors, and 1 otherwise. In
practice, we find that this modification leads to better clustering
accuracy compared to summing the ranks directly, as in the
original formulation. Effectively, this distance function implies
that the presence or absence of shared neighbors towards the
top of the nearest neighbor list (say within the top-200 ranks)
is important, while the numerical values of the ranks themselves
are not.

The normalization procedure employed in the original algo-
rithm (only summing up to the rank of the other sample being
compared, and dividing by min(Oa(b), Ob(a))) is still effective,
and contributes to more accurate clustering results even with this



6

modification to the original algorithm. The combined modified
distance measure is defined as:

Dm(a, b) =
dm(a, b) + dm(b, a)

min(Oa(b), Ob(a))
. (6)

Additionally, to improve the runtime of the clustering step itself, as
mentioned earlier we 1) only compute distances between samples
which appear in each other’s nearest neighbor lists, and 2) only
perform one round of merges of individual faces into clusters,
rather than performing multiple merge iterations as in the original
algorithm. This means that compared to the original algorithm
which has a runtime of C2 per clustering iteration, we only
perform one iteration of clustering, and additionally only check for
merges on a subset of all possible pairs (since we consider the 200
nearest neighbors for each sample). This results in a final runtime
of the clustering step (assuming pre-computed nearest neighbors)
of O(n).

The final clustering procedure we employ is then:

1) Extract deep features for every face in the dataset
2) Compute a set of the top-k nearest neighbors for each

face in the dataset
3) Compute pairwise distances between each face, and those

faces in its top-k nearest neighbor list for which the face
is also on the neighbor’s nearest neighbor list, following
equation 6

4) Transitively merge all pairs of faces with distances below
a threshold

Selecting a threshold to determine the number of clusters, C
in a given dataset is one of the perennial difficult issues in data
clustering. In practical applications we cannot assume that the true
number of clusters will be known a priori, therefore in the absence
of a robust procedure for determining the true number of clusters,
we simply evaluate our algorithm at several effective values of C
and report the best results attained in our experiments.

3.3 Per-Cluster Quality Evaluation
Our overall goal is to facilitate the investigation of very large
collections of unlabeled face images. We have proposed clustering
face images by identity as a first approach, but for very large
datasets even clustering by identity may leave too many clusters
for manual exploration. We attempt to address this issue by using
internal cluster validity measures to identify a subset of “good”
individual clusters, suitable for manual investigation.

In practical applications where the dataset is completely
unlabeled, evaluating clustering according to external labels is
not possible. But, there is a body of work in the literature on
different internal cluster quality measures [31] which attempt
to characterize cluster quality without the use of labels. These
measures can typically be understood as measures of either
compactness (how well the cluster members are grouped together
in terms of pairwise similarity), or isolation (how well different
clusters are separated from each other in terms of inter-cluster
similarity). Additionally, we can make a distinction between
evaluating the overall quality of a given clustering of a dataset,
and evaluating the quality of individual clusters in a particular
clustering; we will use per-cluster quality measures as a means of
ranking individual clusters.

When dealing with very large datasets, one fundamental
concern is run-time. It is generally infeasible to compute distances
between all samples in the dataset, and additionally infeasible to

compute distances between all clusters in cases where both the
dataset and number of clusters present in the dataset are large. In
this case, we are pre-computing a k-nearest neighbor graph, so it
is natural to consider graph-based quality measures, and alleviate
computational concerns by using the pre-computed graph.

Coverage [32] is defined as the fraction of intra-cluster edges
present out of the complete set of edges in the graph. We modify
this for use as a per-cluster quality measure by just considering
nodes in the current cluster, i.e. define per-cluster coverage as
the fraction of edges out-bound from nodes in the current cluster
which link to other nodes in the cluster. Modularization quality
(MQ) [33] is defined as the difference between an inter-cluster
connectivity measure (the fraction of edges present between nodes
in a cluster out of possible edges in a complete graph of those
nodes), and an intra-cluster connectivity measure (average fraction
of cross-cluster edges present out of possible edges between each
pair of clusters in a complete graph).

These graph-based measures are formulated solely in terms
of the presence or absence of edges between certain vertices.
But we also find motivation to look at some simple distance
based measures by observing that in some cases, clusters pairs
of images which have a low rank-order distance, have a relatively
high Euclidean distance. We will therefore also consider simple
compactness and isolation measures based on the distances
between edges present in the k-NN graph, primarily the average
distance of samples to other samples in the same cluster in
their nearest neighbor lists (average intra-cluster distance), and
the average distance of samples in a cluster to samples outside
that cluster in their nearest neighbor lists (average inter-cluster
distance).

4 DATASETS

Our clustering experiments use several unconstrained face
datasets, the CASIA-webface face dataset [25] for training the
deep network feature representation, the Labeled Faces in the
Wild (LFW) [12] and YouTubeFaces (YTF) [13] datasets for
clustering evaluation, and a collection of 123M unlabeled web
face images used to augment the labeled datasets for larger-scale
clustering evaluation. Example face images from each dataset are
shown in Figure 4.

• LFW [12]: LFW contains 13, 233 face images of 5, 749
individuals; of those 5, 749 individuals, 4, 069 have only
one face image each. The dataset was constructed by
searching for images of celebrities and public figures,
and retaining only images for which an automatically
detectable face was present.

• YTF [13]: Similar in spirit to LFW, the YouTube Faces
(YTF) dataset consists of videos of celebrities and public
figures harvested from the Internet. The dataset contains
1, 595 subjects (which are a subset of the subjects in
LFW), in 3, 425 videos, consisting of a total of 621, 126
individual frames. Labels are provided for the subject
of interest for every frame of video where a face could
be detected. In our experiments we use the pre-cropped
frames, to avoid confusion between the primary subject in
each video, and any unlabeled individuals that may be in
a given frame.

• Webfaces: To evaluate our clustering method on larger
scale datasets, a cooperating research group used a crawler
to automatically download a total of 123, 654, 141 web
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a)	   b)	   c)	   d)	  

Fig. 4: Example face images from the a) LFW, b) Youtube Faces, c) Webfaces, and d) CASIA-webface datasets.

images. Similar to LFW, these images were filtered to
contain faces detectable by an automatic face detector, in
particular the DLIB face detector.5

• CASIA-webface [25]: The CASIA-webface dataset con-
tains 494, 414 images of 10, 575 subjects (mostly celebri-
ties); however, we are unable to localize faces in some of
the images, and so use a subset of 404, 992 face images
of 10, 533 subjects to train our network [11].

5 EXPERIMENTS

In this section, we will present our overall evaluation of large-scale
face clustering, in several steps. First, we will evaluate various
clustering algorithms on a small dataset (the entire LFW dataset),
evaluate the nearest neighbor approximation used, then carry out
large-scale face clustering experiments (involving up to a 123
million face dataset), and finally present some preliminary work
on video clustering.

5.1 Clustering Algorithm Evaluation

Before investigating performance on large-scale datasets, we will
attempt to cluster the entire LFW dataset by identity. One issue is
that the distribution of images per subject is quite imbalanced in
LFW (indeed, the majority of subjects have only a single image,
accounting for approximately a third of all images in the dataset).
Although we could conceivably construct a subset of LFW with
more “balanced” clusters, in practice for the application domains
of large-scale clustering (analyzing social media imagery, and
forensic applications), there is no basis to assume that the number
of images per subject is well balanced. In the absence of prior
knowledge about the expected distribution of images per subject
in practical applications, we cluster the entire LFW dataset.

As a baseline, we will consider k-means clustering, since
(i) it is perhaps the most well-known clustering algorithm,
(ii) has only a few parameters for tuning, (iii) is one of the
most efficient, and (iv) large-scale clustering methods are often
approximations of k-means clustering with improved scalability.
We use the MATLAB r2015a implementation of the k-means
algorithm, with the euclidean distance metric. We additionally
use spectral clustering [34], which approaches the problem from
a graph theory perspective, as a baseline. We employ spectral

5. In some cases, the detected faces are in fact false positive detections
(e.g. non-human faces (such as cartoons), or non-face objects). We estimate
approximately 2% of the total detections may be false positives, based on a
manual examination of a random sample of 10, 000 detections from the full
dataset. We did not delete the identified non-human faces from the dataset.

TABLE 2: Clustering results on the complete LFW dataset. Times
are given as HH:MM:SS, measured using 20 cores of an Intel
Xeon CPU clocked at 2.5 GHz. The proposed algorithm (last row)
has the highest clustering accuracy (F-measure) and the shortest
run-time.

Clustering Algorithm # Clusters F-measure Run-Time

k-Means 100 0.36 00:00:16
k-Means 6,508 0.07 04:58:49
Spectral (Euclidean) 200 0.20 00:11:18
Spectral (Approx. ROD) 200 0.43 00:14:04
Hierarchical 1,000 0.005 00:00:25
Rank-Order 7,059 0.65 00:00:33
Approx. Neighborhood Rank-order 6,440 0.83 00:00:09
Approx. Rank-Order (proposed) 6,508 0.87 00:00:08

clustering on two different graph structures: we induce a graph
structure in the adjacency matrix by keeping the top 200
neighbors non-zero using Euclidean distance, and also use the
effective graph structure used by our proposed algorithm (using
binarized rank-order distance, only considering images which
are both in each other’s top-200 nearest neighbors as computed
by the randomized k-d tree algorithm). We use a MATLAB
implementation of spectral clustering6. We also applied simple
single-link hierarchical clustering based on Euclidean distance
(using the MATLAB implementation of hierarchical clustering).
Additionally, we use our implementation of the original rank-order
clustering algorithm as a baseline.

For k-means, spectral clustering, and hierarchical clustering,
the algorithm is parameterized on a fixed number of clusters, while
for rank-order clustering the number of clusters found depends
on the distance threshold parameter. In practical applications we
cannot assume that the true number of clusters will be known
a priori, therefore in the absence of a robust procedure for
determining the true number of clusters we simply evaluate all
algorithms at several effective values of C , and report the best
results attained in Table 2.

For k-means and spectral clustering, clustering performance
(in terms of F-measure) with C close to the true number of
identities is quite poor. This is expected, since these algorithms
are not able to handle highly unbalanced data well. For example,
if there is one large ground truth cluster, centered in a dense
region of the feature space, and outlying small, less dense, clusters
the large cluster will be partially split with the outlying clusters

6. http://www.mathworks.com/matlabcentral/fileexchange/
34412-fast-and-efficient-spectral-clustering/content/files/SpectralClustering.
m

http://www.mathworks.com/matlabcentral/fileexchange/34412-fast-and-efficient-spectral-clustering/content/files/SpectralClustering.m
http://www.mathworks.com/matlabcentral/fileexchange/34412-fast-and-efficient-spectral-clustering/content/files/SpectralClustering.m
http://www.mathworks.com/matlabcentral/fileexchange/34412-fast-and-efficient-spectral-clustering/content/files/SpectralClustering.m
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(a)	   (b)	  

(c)	   (d)	  

Fig. 5: Examples of “pure” (single individual) clusters (a, b), and
“impure” (multiple individuals) clusters (c,d) generated by the
proposed Approximate Rank-Order clustering on the entire LFW
dataset. Faces not belonging to the majority identity in each cluster
are outlined in red.
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Fig. 6: F-measures attained by approximate rank-order clustering
at different effective numbers of clusters (generated by varying the
distance threshold).

(even if initial cluster centers are placed well). For this reason,
the optimal value of C in terms of F-measure is relatively low
for k-means and spectral. For rank-order clustering, the distance
threshold which leads to the best overall F-measure results in a
number of clusters close to the true number of identities, and
the overall F-measure is significantly higher than the spectral
and k-means results. The local neighborhood used in approximate
rank-order clustering (only considering shared neighbors within
the top-200 to be connected) can handle the case where there is
significant density variation. For example, points within a large
dense ground-truth cluster may be well connected to each-other,
and not connected to outlying clusters at all. Figure 6 shows the
F-measures attained at different effective numbers of clusters by
the proposed approximate rank-order algorithm.

We attained the best overall F-measure on this experiment with
the two rank-order clustering variants, with the proposed method
outperforming the original algorithm. Use of the randomized
k-d tree nearest neighbor method (and a neighborhood based
on shared nearest neighbors) is responsible for the majority
of our improvement over the baseline rank-order method, with
the binarized distance function contributing an additional 4%
improvement to F-measure. Spectral clustering leveraging our
graph structure performed well relative to the Euclidean distance
based graph, attaining somewhat higher performance than k-
means. In our experiments, directly applied hierarchical clustering
formed large impure clusters early on in the process, leading to
poor results overall.

TABLE 3: Clustering Results on the LFW dataset, with
approximate rank-order clustering, and LFW with additional 1
million web-downloaded face images. Times measured using 20
cores of an Intel Xeon CPU clocked at 2.5 GHz.

Nearest Neighbor Algorithm Dataset F-measure Run-Time

Brute-Force LFW 0.72 00:00:12
Chen et al. [23] LFW 0.69 00:26:36
Randomized k-d Tree [24] LFW 0.87 00:00:08

Brute-Force LFW + 1M 0.49 14:18:24
Chen et al. LFW + 1M 0.41 01:06:58
Randomized k-d Tree LFW + 1M 0.79 00:07:20
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Fig. 7: Numbers of times each face in the LFW database appeared
in any other face’s top-200 nearest neighbor list for a) the exact
nearest neighbors, and b) the nearest neighbors computed via
randomized k-d tree approximation.

In terms of runtime, per Table 2, even for just 13, 233 face
images in LFW spectral clustering takes noticeably large compute
time, while the proposed rank-order clustering is substantially
faster. Some example clusters are shown in Figure 5; 5(a) and
(b) show pure clusters, while 5(c) and (d) show example impure
clusters in terms of subject identity. In cluster 5(c), 3 images
of different individuals, all with similar demographics, were
grouped in with the majority identity (Walter Mondale); while
in cluster 5(d), 2 images of 1 additional individual with similar
demographics, and face pose were grouped with the majority
identity (Michael Douglas).

5.2 Approximation Performance

We evaluate the performance of our k-NN approximation method
in terms of clustering accuracy, and run-time. We consider two
approximation methods for computing the full k-NN graph,
and compare their performance to the brute force approach of
performing all pairwise comparisons. Results are shown in Table 3
for these three nearest neighbor calculation methods on the full
LFW dataset, and the LFW dataset augmented with an additional
1 million unlabeled images from the Webfaces dataset. In practice,
the Randomized k-d Tree method [24] achieves the best run-time
of the three methods and the best clustering accuracy as well.

This is a surprising result, since an approximation method
would generally be expected to give less accurate results than
the process it is approximating; however, since our objective is
to perform clustering based on the nearest neighbor lists, rather
than simply find the exact k nearest neighbors for each item, this
counter-intuitive result can be explained as follows. Figure 7 plots
the number of times each face in the LFW dataset occurs in the
top 200 nearest neighbor list of every face in the dataset. For
the exact nearest neighbors, there are a number of face images
which occur very frequently in the nearest neighbor lists (up to



9
TABLE 4: Clustering results using Approximate Rank-Order
clustering on the LFW dataset with increasing amounts of
augmented data, and different search size strategies for the
approximate nearest neighbor calculations. Times measured using
5 cores for LFW+5M dataset experiments, and a single core used
for the smaller experiments, on an Intel Xeon CPU clocked at 2.5
GHz.

Dataset Search Size F-measure Run-Time

Just LFW 2,000 0.87 00:00:19
LFW + 1M 2,000 0.79 01:03:25
LFW + 5M 10,000 (linear increase) 0.67 06:28:42
LFW + 5M 4,000 (logarithmic increase) 0.33 02:51:13
LFW + 5M 2,000 (fixed) 0.13 01:52:32

over half of all nearest neighbor lists), while for the approximate
nearest neighbors these faces occur less frequently. The action of
the k-d Tree algorithm is to pick a highest variance dimension
at each node, and splits the feature vectors at that dimension.
After the tree is built, splitting on the selected dimensions at each
node partitions the space into hyperrectangles, and an approximate
search is accomplished by restricting the total number of these
nodes that we visit in a given search. As a result of this, there are
cases where closer neighbors exist in the feature space, but due to
the truncated search we never visit the node containing them, and
this sampling effect has reduced the total number of times the most
frequently occurring nearest neighbors (under Euclidean distance)
are found. From the perspective of clustering based on the nearest
neighbor lists, the lists computed from the randomized k-d tree
approximation actually form more discriminative features, since
certain faces are not present in very large fractions of the nearest
neighbor lists, as is the case with the exact nearest neighbors.

Generally, the randomized k-d tree algorithm has O(n log n)
expected run-time for tree construction, and performing n
searches. In practice, the FLANN implementation of the
algorithm is parametrized with the number of randomized trees
constructed, as well as the total number of nodes available to
visit per search. If fixed parameters are used, the total runtime is
indeed O(n log n); however, if either the number of indices built
or search size is increased with larger dataset size, the effective
runtime of the algorithm will increase. In practice, we construct 4
trees per index (and have found little impact from using slightly
higher or lower values), but the number of nodes visited per
search must be selected with care. One primary question is to
determine if a fixed number of node visits per search is feasible
for larger datasets, or if the number of nodes visited per search
should increase with dataset size. Table 4 presents results for
clustering based on the LFW dataset, the LFW + 1M dataset, and
the LFW + 5M dataset, using different strategies for selecting the
number of nodes visited per search on the LFW + 5M dataset. In
practice, using the same number of nodes visited per search on the
LFW + 5M dataset as was used on the LFW + 1M dataset leads to
a drastic reduction in clustering accuracy on the larger dataset. In
fact, even a logarithmic increase in search size leads to significant
accuracy loss, relative to a linear increase in search size. In
the following large-scale experiments, we therefore increase the
search size linearly with dataset size. In practice, this means the
run-time of the approximation algorithm cannot be considered to
be O(n log n), since we increase the cost of each search linearly
with the dataset size n, giving a full O(n2) cost for performing n
nearest neighbor searches.

TABLE 5: Large-scale clustering results using the proposed
Approximate Rank-Order clustering, with randomized k-d tree
nearest neighbor approximation. Times measured using the
specified number of cores of Intel Xeon CPUs clocked at 2.5
GHz. # Clusters is the resulting number of clusters, excluding
single-image clusters.

Dataset F-measure # Clusters # Cores Run-Time

LFW 0.87 1,463 1 00:00:19
LFW + 1M 0.79 94,740 1 01:03:25
LFW + 5M 0.67 445,880 5 06:28:42
LFW + 10M 0.56 933,278 10 12:11:33
LFW + 30M 0.42 2,800,202 30 30:44:58
LFW + 123M 0.27 10,619,853 123 289:04:53

LFW + 121M 0.32 10,281,612 123 245:12:54

By using the randomized k-d tree algorithm for approximate
nearest neighbor computation, with our updated clustering algo-
rithm we get improved runtime in the clustering step, and also
better clustering accuracy (compared to the baseline algorithm).
Although we still have anO(n2) run-time for the nearest neighbor
computation step, there is still a significant reduction in run-time,
an improvement by a factor of 120 for the LFW+1M image dataset
over brute-force computation.

5.3 Large-Scale Face Clustering
In this section, we will consider clustering truly large-scale face
datasets, up to 123 million face images. As discussed, we will
use the randomized k-d tree nearest neighbor approximation
method to reduce the total cost of computing nearest neighbors
for these datasets; however, when considering very large scale
datasets, additional problems arise. Considering the total size of
the dataset, 123 million 320-dimensional feature vectors, with
each dimension represented by one float takes up approximately
157 gigabytes of space, without considering any supporting data
structures. This amount of data is difficult to fit on a single
machine, considering that a tree structure must also be loaded
in memory, and additionally since the approximation method we
are using incurs a full O(n2) cost in time, computing nearest
neighbors for this dataset becomes infeasible on a single machine.

Fortunately, a distributed memory variation of the randomized
k-d tree algorithm is available as part of the FLANN library [30].
The strategy employed is to split the dataset into disjoint subsets,
assign one subset to every discrete machine used, and construct
separate k-d tree indices for each disjoint chunk. During nearest
neighbor computation, we find a separate set of nearest neighbor
candidates from each chunk, and merge the results to get a final
set of nearest neighbors for the search. In practice, this simple
strategy works well. In the following experiments the initial
dataset is partitioned into 1 million image chunks, and each chunk
is distributed to a separate machine for index construction. Since
our datasets are a small labeled subset (LFW), in a larger unlabeled
background set, we randomize the order of the LFW images, and
assign a portion of the labeled images to each of the discrete
chunks of data, to avoid any bias due to constructing one of the
sub-indices with e.g. the entire LFW dataset as part of it.

Results for progressively larger datasets (constructed by
adding larger and larger sets of unlabeled background data to
LFW) are presented in Table 5. Due to our strategy of allocating
1 million images per core, we linearly increase the number of
cores with dataset size, resulting in an overall O(n) increase



10

(a)	   (b)	  

(c)	   (d)	  

Fig. 8: Example image pairs flagged at 5 std. dev. below the mean
genuine score on LFW. (a) a genuine LFW match, (b), an impostor
LFW match, (c) a near duplicate in the background dataset, and
(d) poor quality images in the background dataset.

in runtime when moving to larger datasets. Computing nearest
neighbors for the largest dataset considered (123 million images)
took approximately 2 weeks of real-time using 123 nodes in the
MSU High-Performance Computing Center. While the observed
run time increases is approximately linear, the clustering accuracy
progressively decays when considering larger and larger datasets.
This is as expected, considering a larger dataset means a larger
chance of finding impostors for each individual image as nearest
neighbors. Even so, on the 123 million image dataset, we still
attain 0.27 F-measure on the labeled subset, which is considerably
better than a random result (which is close to zero, since 13, 233
images can easily be grouped into 123M images without keeping
any of the same identity face images together).

5.4 Deduplication
The background set used in these experiments consists of 123
million unlabeled images harvested from the Internet, and some
fraction of these images are near-duplicates of each-other. For
example, there may be multiple copies of the same image, which
were uploaded at slightly different resolutions, or with slightly
different encodings, or digitally modified. We attempted to identify
these images by examining outlier match distances in the set of
nearest neighbors we computed for the full 123 million image
dataset. To define outliers, we considered the distribution of
genuine match distances produced by our face representation on
the LFW dataset, computed the mean and standard deviation of
that distribution, and flagged comparisons more than 5 standard
deviations below the genuine mean as outliers.

On the LFW dataset, this threshold flags 3 genuine matches
(all very similar looking images of George W. Bush, one of
which is shown in Figure 8-a), and a number of impostor
matches. Examining these high scoring impostor comparisons
typically indicated cases like Figure 8-b where one of the involved
images was handled poorly by our algorithm (e.g. extreme profile
images are not typically present in our training data, and are
handled poorly by our representation). Applying this threshold
to the full 123 million image background set flagged a total of
33, 359, 232 of our computed nearest neighbor pairs, but these
matches involved a total of just 3, 405, 294 unique image files.
Manually examining these matches revealed some near-duplicate
images (as in Figure 8-c), but also revealed a number of cases
similar to Figure 8-d, where one or both of the pairs of images are
of low visual quality, but the pair are not near-duplicates.

For simplicity, we used a transitive merge on the flagged
match pairs resulting in 1, 188, 326 groups, randomly selected

(a)	  

(b)	  
(c)	  

Fig. 9: Example images from clusters generated from the YTF
dataset. a) two clusters, each containing frames from one video of
the same subject, b) a cluster containing frames from two videos of
the same subject, where the background for the video is apparently
identical, c) a subset of a cluster containing 28 different identities;
many of these images are poorly lit.

one image per group to retain, and deleted the rest (removing a
total of 2, 216, 968 images). We evaluated LFW images removed
in this process as recall errors, that is we considered them to still
be part of their relevant classes when computing recall, but did
not place them in any cluster (this reduces the F-measure of
our method on just the LFW images from 0.87 to 0.86). We
then performed clustering again on the remaining 121 million
images, and as shown in the last two rows of Table 5, deletion
of approximately 1.8% of the background dataset in this manner
improved F-measure from 0.27 to 0.32.

5.5 Video Frame Clustering

We also consider the problem of clustering video frames, using the
Youtube Faces (YTF) dataset. Similar to our treatment of LFW, we
cluster all faces in YTF, and evaluate the results in terms of their
consistency with arranging the individual frames by identity. The
results are summarized in Table 6. The overall F-measure appears
reasonably consistent with our LFW results, at 0.74 for 621, 126
total frames of video (compared to 0.79 F-measure for clustering
the LFW + 1M dataset); a lower accuracy on the YTF dataset is
expected because of its generally lower image quality. However,
closer analysis of the results reveals some confounding factors.

Unlike LFW clustering results, where precision and recall are
relatively close for the optimal F-measure values, our clustering
results on YTF have very high precision, and relatively lower
recall. Effectively, we are getting more clusters than the number
of identities, but the clusters are relatively pure. Further analyzing
the recall, we find that although the overall value is 0.589, the
fraction of same-video pairs grouped together is much higher than
the fraction of cross-video pairs grouped together. This indicates
that we are successfully grouping frames into videos, but having
relatively little success grouping identities across videos. Some
example clusters are shown in Figure 9. In most cases, clusters
roughly correspond to single videos, in a few cases, e.g. 9(b),
frames from different videos of the same individual are correctly
grouped together, and in a small subset of clusters (e.g. 9(c)),
multiple identities are grouped in the same cluster.

To investigate the impact of the high number of similar frames
in each video on our algorithm, we also performed clustering after
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TABLE 6: YTF clustering results using the proposed Approximate
Rank-Order clustering for clustering all frames in the dataset,
and for randomly sampling 3 frames per video. Time is given
as HH:MM:SS, measured using 20 cores of an Intel Xeon CPU
clocked at 2.5 GHz.

Performance Measure All Frames Sampled 3 Frames

F-Measure 0.71 0.53

Precision 0.79 0.82
Recall 0.67 0.39

Within-Video Recall 0.91 0.89
Cross-Video Recall 0.56 0.20

Nearest Neighbor Computation Time 00:04:10 00:00:07

sampling a random set of 3 frames per video, and again performed
clustering. These results are also shown in Table 6, and exhibit
similar overall trends to the full frame clustering experiment.
In particular, precision and recall are again unbalanced, but
overall results are worse since within-video pairs form a much
smaller part of the overall evaluation, and cross-video recall also
decreases. This indicates that the presence of many near-duplicate
frames is not primarily responsible for reducing the performance
of our algorithm on the task, rather it seems that the main difficulty
is in reliably matching frames across videos. The difficulty in
matching across video is also reflected in the performance of
our face representation on the standard YTF evaluation protocol,
where our True Accept Rate at 1% False Accept Rate is 61%,
compared to 92% on the standard LFW protocol.

5.6 Per-Cluster Quality: Internal Measures
We are interested in identifying a good subset of clusters from a
large group of clusters, as a means of aiding manual exploration of
large datasets. To evaluate the effectiveness of different measures
experimentally, we need methods for evaluating the effectiveness
of the internal measures. As a first approach, we consider the
correlation between the internal measures and an external measure,
the pairwise precision computed individually for each cluster.
Correlation between the various internal measures considered, and
precision are show in Table 7. In practice, the graphical measures
(coverage, modularization quality) do not perform particularly
well, while the simpler measures based on edge weights perform
better. In particular, the best correlation is observed for the
“average inter-cluster edge weight”, and this can be further
improved by subtracting the average inter and intra cluster edge
weights. This is reasonable, since we are effectively combining a
compactness measure (average intra cluster edge weight), and a
separability measure (average inter-cluster edge weight). Even so,
the best correlation achieved is only 0.42. This correlation can be
improved by excluding size 2 clusters from consideration (so only
examining clusters with 3 or more members), which improves
correlation to 0.46.

While a correlation of 0.46 is not very high, for our application
there is no particular need for the relationship between the
internal and external measures to be linear. Figure 10 plots the
external measure (Precision) vs. the best performing internal
measure {(avg. intra-cluster edge weight) - (avg. inter-cluster edge
weight)}. One notable feature on the left side of the plot is a set
of clusters with exactly zero precision, that still score relatively
highly on the internal measure. Closer examination reveals that
all of these high scoring zero-precision clusters are of size two

TABLE 7: Correlation of internal cluster quality measures with
precision, for the LFW dataset. Average Prec.@100 is the
unweighted average of per-cluster pairwise precision for the top-
100 scoring clusters for each metric, Fraction Pure @ 100 is
the fraction of the top-100 clusters which contain only a single
identity.

Internal Measure Correlation Avg. Prec.@100 Pure@100

Inter-MQ 0.128 0.748 0.70
Intra-MQ 0.117 0.837 0.72
MQ (Combined) 0.120 0.829 0.80
Coverage 0.117 0.748 0.70
Max Intra-Cluster Edge
Distance

0.022 0.860 0.86

Total Intra-Cluster Edge
Distance

0.030 0.850 0.85

Avg. Intra-Cluster Edge
Distance (1)

0.080 0.853 0.85

Min Inter-Cluster Edge
Distance

0.205 0.893 0.87

Total Inter-Cluster Edge
Distance

0.125 0.852 0.56

Avg. Inter-Cluster Edge
Distance (2)

0.325 0.880 0.85

(1) - (2) 0.427 0.908 0.89
(1) - (2), cluster size ≥ 3 0.460 0.979 0.95

(so they consist of relatively isolated faces of different people
that happen to score highly), which explains the improvement in
correlation (from 0.42 to 0.46) when restricting consideration to
size 3 or larger clusters. Another interesting feature of Fig. 10
is that the points on the plot almost form a triangle (with a
variety of precision values for low-scoring clusters, but mostly
just high precision values for high-scoring clusters), so although
the relationship between the external and internal measures is not
linear, it is still possible to select a subset of high precision clusters
by taking a high threshold on the internal measure.

5.6.1 Ranking Evaluation
As an alternative to considering correlation, we can use the internal
measure to rank all the clusters, and compute the unweighted
average of per-cluster precision values for the top C clusters
(ranked by the internal measure), inspired by analysis typically
done in retrieval problems. Table 7 shows the average precision of
the various internal measures considered for the top-100 clusters
in the full LFW dataset, and additionally shows the fraction of
clusters in the top-100 for each measure that contain a single
identity (are “pure”). The blue line in Figure 11 plots the average
precision of the top C clusters, with C cut off at each possible
rank in the sorted list of clusters, for the best performing internal
measure, while the red line plots the same information when the
clusters are ordered by their actual precision (and thus reflects
the best possible performance on this task). The internal measure
is effective in selecting high precision clusters (relative to the
average precision of all the clusters) on the LFW dataset. In fact,
the first several clusters ranked by the internal measure have a
pairwise precision of 1. Figure 12 extends this concept to the
augmented datasets (in this case, only clusters containing some
labeled data from LFW are ranked, and precision is computed
omitting unlabeled clusters as in our previous evaluation).

Initially, the internal measure is still effective; however, for
very large datasets (LFW+ 30M and above), ranking clusters
according to the internal measure, as expected, becomes less
effective. Some example top ranking clusters are shown in



12

Fig. 10: Pairwise precision vs. the proposed internal quality
measure, for all clusters generated by the proposed Approximate
Rank-Order clustering algorithm on the full LFW dataset. Points
in blue are clusters of size 3 or larger, points in red are of size
2. The highlighted set of points on the left edge of the figure are
all of size 2, with zero pairwise precision. Since we can’t reliably
distinguish between good and bad 2-item clusters, we discard them
from consideration.

Figure 13. The top-5 clusters for the LFW dataset are all
single identity, relatively small clusters, indicating that the quality
measure works as expected. For larger datasets (LFW+10M,
LFW+123M), we show both the top-5 clusters ranked purely
in terms of the quality measure, (b) and (d), as well as the
top-5 results containing any labeled data, (c) and (e) (since
we use the labeled subset in our numerical evaluations). The
top clusters in absolute ranking typically involve near-duplicate
images (e.g. similar images uploaded in different locations, with
minor differences due to cropping, resolution, or color correction
differences), and often cartoon faces (which were detected by face
detectors) in addition to actual photographs.

The top clusters involving LFW images show that there are
in fact a number of images of the LFW subjects in the unlabeled
dataset–this indicates that our performance evaluation is overly
conservative, since we consider grouping LFW and unlabeled
data together to be incorrect (due to lack of label information).
Although the results for the LFW+10M dataset appear reasonable
(in the sense that multiple images of the same identity are being
grouped together, that are not just slight alterations of the same
original image), for the LFW+123M dataset we begin to see a
large number of near duplicate images, e.g. the clusters ranked 1
through 4 on the list of clusters with LFW images have a single
LFW image, and multiple near duplicate images that happened to
be in the background set.

Considering the results for the de-duplicated 121M image
dataset, there are still a number of near-duplicate images that
were not caught by the deduplication process. Manual examination
of higher ranked clusters (up to rank 150), revealed that after
the first 20 or so clusters, actual near duplicate images became
rare. But even with that all clusters involving LFW data until
rank 116 were actually single subject clusters, consisting of some
LFW images, and images from the background set of the same
subject. Deduplication of unconstrained face images is indeed a
challenging problem.

6 CONCLUSIONS

We have shown the feasibility of clustering a large collection of
unlabeled face images (up to 123M) into an unspecified number

Fig. 11: The blue line displays the average pairwise precision for
lists of clusters ordered by the proposed internal cluster quality
measure, terminated at each possible rank, while the red line
displays the average pairwise precision for a list ordered by
the true precision of each cluster (representing the best possible
performance on this task). The horizontal black line indicates the
unweighted average precision of all clusters considered. Clusters
are generated by the proposed Approximate Rank-Order clustering
algorithm from the full LFW dataset.

(a)	  LFW	  +	  1M	   (b)	  LFW	  +	  120M	  

Fig. 12: Average pairwise precision at rank, ordered by the
proposed internal cluster quality measure for augmented datasets.
Clusters are generated by the proposed Approximate Rank-Order
clustering algorithm.

of identities (on the order of millions). This problem is of practical
interest as a first step in organizing a large collection of unlabeled
face images prior to human examination due to the high volume of
face images uploaded to social media, and potentially encountered
in forensic investigations. There are computational challenges in
processing datasets with tens of millions of faces (which we
address via approximation methods, and parallelization). Even
if the computational challenges are met, producing meaningful
clusters on data of this scale is very difficult. In terms of
clustering accuracy, we achieved 0.27 pairwise F-measure on
the largest dataset considered (123M unlabeled faces + 13, 233
labeled images from LFW), which indicates that at least some of
the clusters produced by our algorithm correspond well to true
identities in LFW. To identify these high quality clusters, we
developed an internal per-cluster quality measure, that does not
involve external identity labels, to rank the clusters by quality
for manual examination. Experimental results showed that this
measure was extremely effective for smaller datasets, but for
the larger datasets considered (LFW + 123M unlabeled faces),
performance apparently falls (although this point is complicated
by the degree of overlap between the full background dataset
and LFW). Still, some good quality (compact and isolated) face
clusters can be identified.
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In terms of future work, while the underlying face represen-
tation we employ works reasonably well for unconstrained face
images, it could still be improved in a number of ways (e.g. using
larger training sets, or improving the deep model architecture).
While we were able to apply our clustering algorithm to datasets
up to 123 million face images, we need to improve the clustering
method (e.g. by incorporating more accurate nearest neighbor
methods) to obtain better clustering accuracy. Other areas for
improvement include the automatic selection of the number of
clusters in a fully unlabeled dataset, as well as improving our
per-cluster quality evaluation methods, and utilizing pair-wise
constraints (must-link and cannot-link) to improve clustering
accuracy.

ACKNOWLEDGEMENTS

We would like to thank the Noblis corporation for their assistance
in acquiring the unlabeled background images used in this work.

REFERENCES

[1] J. C. Klontz and A. K. Jain, “A case study of automated face recognition:
The Boston Marathon bombings suspects,” IEEE Computer, vol. 46,
no. 11, pp. 91–94, 2013. 1

[2] B. S. Swann, “FBI video analytics priority initiative,” in 17th Annual
Conference & Exhibition on the Practical Application of Biometrics,
2014. 1

[3] J. Ho, M.-H. Yang, J. Lim, K.-C. Lee, and D. Kriegman, “Clustering
appearances of objects under varying illumination conditions,” in Proc.
CVPR. IEEE, 2003. 2

[4] M. Zha, Y. Teo, S. Liu, T. Chua, and R. Jain, “Automatic person
annotation of family photo album,” in Image and Video Retrieval.
Springer, 2006, pp. 163–172. 2

[5] J. Cui, F. Wen, R. Xiao, Y. Tian, and X. Tang, “Easyalbum: an interactive
photo annotation system based on face clustering and re-ranking,” in
Proc. of the SIGCHI conference on Human factors in computing systems.
ACM, 2007, pp. 367–376. 2

[6] Y. Tian, W. Liu, R. Xiao, F. Wen, and X. Tang, “A face annotation
framework with partial clustering and interactive labeling,” in Proc.
CVPR. IEEE, 2007. 2

[7] C. Zhu, F. Wen, and J. Sun, “A rank-order distance based clustering
algorithm for face tagging,” in Proc. CVPR. IEEE, 2011, pp. 481–488.
1, 2, 4, 5

[8] Z. Cao, Q. Yin, X. Tang, and J. Sun, “Face recognition with learning-
based descriptor,” in Proc. CVPR. IEEE, 2010, pp. 2707–2714. 2

[9] R. Vidal and P. Favaro, “Low rank subspace clustering (lrsc),” Pattern
Recognition Letters, vol. 43, pp. 47–61, 2014. 2

[10] C. Otto, B. Klare, and A. Jain, “An efficient approach for clustering face
images,” in Proc. ICB. IEEE, 2015. 2, 3, 4

[11] D. Wang, C. Otto, and A. K. Jain, “Face search at scale: 80 million
gallery,” arXiv preprint arXiv:1507.07242, 2015. 1, 2, 4, 7

[12] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled faces
in the wild: A database for studying face recognition in unconstrained
environments,” University of Massachusetts, Amherst, Tech. Rep. 07-49,
October 2007. 1, 6

[13] L. Wolf, T. Hassner, and I. Maoz, “Face recognition in unconstrained
videos with matched background similarity,” in Proc. CVPR. IEEE,
2011, pp. 529–534. 1, 6

[14] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern
Recognition Letters, vol. 31, no. 8, pp. 651–666, 2010. 2, 4

[15] J. Wang, J. Wang, G. Zeng, Z. Tu, R. Gan, and S. Li, “Scalable k-NN
graph construction for visual descriptors,” in Proc. CVPR. IEEE, 2012,
pp. 1106–1113. 2

[16] B. Bhattarai, G. Sharma, F. Jurie, and P. Pérez, “Some faces are more
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Fig. 13: Top-5 ranked clusters for the LFW, LFW+10M, LFW+123M, and deduplicated datasets. For the LFW+10M, and LFW+123M
datasets, both the absolute top-5 ranking clusters in terms of the proposed quality measure, and the top-5 ranking clusters out of those
clusters containing at least some LFW images are shown. Unlabeled images grouped in with the LFW images are outlined in red.


