
First International Workshop on Video Processing for Security (VP4S-06), June 7-9, Quebec City, Canada, 2006. 

3D Face Reconstruction from Stereo Video 
 
 

Unsang Park and Anil K. Jain 
Computer Science and Engineering 

Michigan State University 
{parkunsa, jain}@cse.msu.edu 

 
 
 

Abstract 
 

Face processing in video is receiving substantial 
attention due to its importance in many security-
related applications. A video provides rich information 
about a face (multiple frames and temporal coherence) 
that can be utilized in conjunction with 3D face 
models, if available, to establish a subject’s identity.  
We propose a 3D face modeling method that 
reconstructs a user-specific model derived from a 
generic 3D face model and two video frames of the 
user. The user-specific 3D face model can be enrolled 
into the 3D face database at the enrollment stage to be 
used in later identification process. The reconstruction 
process can also be used for the probe data in 
recognition stage, where the reconstructed 3D face 
model using probe face is used to generate an optimal 
view and lighting for the recognition process. The 
advantage of utilizing reconstructed 3D face model is 
demonstrated by conducting face recognition 
experiments for 15 probe subjects against a gallery 
database containing 100 subjects. 
 
1. Introduction 
 

With increasing demands for higher security in a 
number of critical applications, developing a robust 
method of utilizing face as a biometric has emerged as 
an important research issue. Recent advances in 3D 
sensing technology and a better understanding of 3D 
geometry have shifted the focus of face recognition 
from 2D to 3D and 2D/3D hybrid domain. There are a 
number of advantages in using 3D face models. Three-
dimensional model based face recognition is robust 
against pose and lighting variations. The identification 
can be performed between two (2.5D) range (depth) 
images or between a 2D image and the 3D face model 
[1]. Even though 3D face modeling with the assistance 
of 3D sensing devices (range sensors) has proved its 

effectiveness for 3D face recognition, the limited 
applicability and high cost of these sensors underscore 
the importance of 3D face reconstruction from 2D 
images or video streams. 

There have been many studies on 3D face 
recognition using reconstructed 3D models from a set 
of 2D images [2], [3], from multiple video frames [4], 
[5] or other methods [6]. The reconstructed 3D model 
is used to generate the 2D projection images that are 
matched with (2D) probe images [1]. Alternatively, the 
reconstructed 3D model can be used to generate a 
frontal view of the probe image with arbitrary pose and 
lighting; the recognition is then performed with the 
synthesized frontal faces. A combination of 2D and 3D 
face recognition systems is also regarded as a 
promising method [7]. A 2D and 3D hybrid matching 
method described in [7] used the 2D projection images 
of the 3D model to construct the LDA subspace for 2D 
face recognition.  

It has been shown that utilizing multiple face images 
per subject with varying pose and illumination can 
effectively handle the pose and lighting variations 
observed in medium quality video [9]. Since multiple 
face images with various pose and lighting can be 
synthesized from a 3D face model, acquiring an 
accurate 3D face model is a prerequisite. In [9], 3D 
face models of all the subjects were acquired during 
enrollment using a range sensor. However, some 
subjects of interest may not be available for enrollment 
using the range sensor, so alternate methods of 
obtaining 3D face model need to be explored. 

3D face reconstruction problem for the purpose of 
face recognition consists of the following main 
components: i) face and facial feature point detection, 
ii) 2D to 3D reconstruction and iii) utilizing 3D face 
model for recognition. In this paper, we focus on parts 
ii) and iii) and allow manual interventions for part i) 
for better control and evaluation in the face 
reconstruction and recognition process.  

We propose a fast and realistic 3D face 
reconstruction method by fitting a semi-dense generic 



face model to specific subjects through a set of 
reconstructed facial landmarks observed from two-
view video. The reconstructed facial landmarks are 
used as a set of control points for the Thin Plate Spline 
(TPS) [10] fitting process. Our method of 3D face 
reconstruction to assist face recognition has some 
advantages compared to other approaches: i) higher 
quality of reconstructed 3D face than [4], ii) faster 
processing time than [3] and iii) not requiring user’s 
range data as in [9], [6]. We have evaluated the 
proposed 3D face modeling method on a probe 
database of 15 subjects with gallery database 
containing 100 subjects, which is larger than the 
gallery sizes in [1] and [2].  

This paper is composed as follows. Section 2 
introduces 3D face model reconstruction process. 
Section 3 introduces face recognition process. Section 
4 describes the experimental results and section 5 
concludes the paper. 

 
2. 3D Face Reconstruction 

 
Our 3D face modeling process starts with 

reconstructing sparse set of facial landmark points 
from stereo video. The reconstructed 3D facial 
landmarks are fed to the generic face model and the 
generic model undergoes non-linear transformation 
process based on TPS. Finally, the adapted 3D face 
model is mapped with the texture data available from 
the video to generate realistic user-specific 3D face 
models. The overall process of 3D face reconstruction 
is depicted in Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 1. System diagram of 3D face model 
reconstruction. 
 
2.1. Data Collection 

 
The two cameras used to obtain a pair of stereo 

images are calibrated with an open source package. 
[11] Videos of 15 subjects are recorded from two 

cameras and a pair of images is selected from the video 
stream for the 3D face reconstruction experiment. The 
pair of images is selected to have one of the two 
images show near frontal pose in order to ensure the 
texture image of frontal view is available. 
 
 
 
 
 
 
 

(a)  (b)  (c) 
 
Figure 2: Facial feature points overlaid on the 
(a) face image from left camera, (b) face image 
from right camera, and (c) generic model. 
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    (a)    (b)              (c) 
 

Figure 3. Sparse facial feature point 
reconstruction from stereography. (a) raw 
image, reconstructed 3D geometry at (b) 
frontal pose, and (c) left pose. 
 
2.2. Sparse Point Set Reconstruction 

 
Our reconstruction scheme for the facial landmarks 

is based on a set of known corresponding point pairs. 
Facial landmark points from multiple face images can 
be obtained automatically by adapting one of the 
available facial feature point localization approaches 
[12], [13]. However, we currently use manually 
selected facial feature points and focus on the 
reconstruction process and its effect on face 
recognition accuracy.  



We select up to 64 feature points in each pair of 2D 
images, where 54 out of 64 points capture the semantic 
structure of the internal facial features and the 
remaining 10 points give the face boundary as shown 
in Figs. 2 (a) and (b). With the viewpoint changes, 
some parts of the face boundary are occluded and the 
corresponding point pairs are not available. In the 
reconstruction process, only half of the face boundary 
is recovered and the other half is interpolated based on 
the facial symmetry to overcome the occlusion of 
facial boundary. 

From the camera projection matrices and a set of 
point correspondences, 3D shape of facial feature 
points is obtained from a closed form equation as 
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where Pi represents the ith row vector of the calibration 
matrix, x and y represent the pixel coordinates in the 
image and X represents the 3D coordinates of each 
corresponding point pair. Some example images of 
reconstructed sparse facial feature points are shown in 
Fig. 3. 
 
 
 
      
            
 
           (a)   (b)     (c) 

 
Figure 4. Generic model generation; (a) 
original mean face of the morphable model 
with ~70,000 vertices, (b) trimmed model with 
~40,000 vertices and  (c) a model when the 
number of vertices is reduced to 5,000. 
 
2.3. Generic 3D Face Model 

 
The generic model can be chosen from any 3D face 

model with a reasonable number of vertices. We used 
the average 3D face model of the Morphable face 
model [14] in our experiment. By using the average 
face model, it is expected that the overall deformation 
in the fitting process will be minimal. Fig. 4 shows the 
process of generating generic model from the mean 
shape of the morphable model. The full 3D model is 
trimmed along the face boundary (e.g., to delete ears 
and neck) and then the number of vertices is reduced to 

about 5,000. The ears and neck are removed because 
their reconstruction does not lead to any improvement 
in face recognition. The reduced number of vertices 
makes the fitting process faster without losing 
significant amount of information. From the generic 
model, 72 control points are selected for the model 
fitting process. The 72 control points are shown 
overlaid on the generic model in Fig. 2 (c). 
 
2.4. Coarse Alignment 

 
The reconstructed facial feature points are coarsely 

aligned with the generic model before the fine 
adaptation process. Let X1={x∈left eyebrow or x∈left 
eye}, X2={x∈right eyebrow or x∈right eye} and 
X3={x∈mouth} be three semantic sets of points 
belonging to the set of control points in generic model. 
The corresponding three points sets are defined as X1’, 
X2’ and X3’ in the target model. The coarse alignment 
minimizes 
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Given two sets of three points with known 
correspondences, the average distance D can be 
minimized by using the approach in [16]. 
 
 
 
 
 
 
 
 
 

                   (a)         (b) 
 
Figure 5. Fitting Control points using TPS. (a) 
Point sets before the fitting, and (b) after 
fitting. Blue (cross hair) points belong to the 
generic model and red (dot) points belong to 
the target model.  
 
2.5. Generic Model Fitting Using TPS 

 
Our generic model fitting process relies on learning 

the deformation between a set of control points in 
generic model and the target model. Let X = {xi | i=1, 
2, …,n} be the control points on the generic model and 
Y be the control points on the target model. The 
deformation between these two point sets can be 
obtained by the mapping function F(u): 



 
F(u) = c + Au + WTs(u),      (3) 

 
where c accounts for translation, A for rotation, WT for 
the non-linear deformation and s(u) is expressed as: 
 

s(u) =  (σ(u-u1), σ(u-u2), …, σ(u-un))T (4) 
 

and σ(u) is defined as:   
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          (a)   (b)          (c)  (d) 
 
Figure 6. Reconstructed 3D face models 
based on generic model of Fig. 4. 2D face 
images from (a) left camera and (b) right 
camera. Reconstructed 3D face models at 
about 30° (c) upper to left, and (d) down to 
right pose. 
 

With two additional constraints, 1n
TW=0 and 

UTW=0, parameters in Eq. (3) can be solved by: 
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This procedure is well known as the Thin-Plate 

Spline (TPS) [10] method. Once the mapping function 

F(u) is obtained, all the other vertices in the generic 
model are mapped by F(u) and the final reconstructed 
3D face model is obtained. Fig. 5 shows the 
deformation of control points through TPS. 

 
2.6. Texture mapping 

 
Texture is very important information in face 

recognition. Therefore, the user-specific 3D face 
model needs to be augmented with a proper texture to 
appear realistic. The reconstructed 3D face model is 
aligned with one of the texture image that is used to 
reconstruct the 3D shape of facial feature points. The 
same set of control points as shown in Fig. 2 is used 
for the alignment process and all vertices in the generic 
model are projected onto the texture image and 
assigned the corresponding color values. Some 
example 3D face reconstruction results are shown in 
Fig. 6. 
 
 
 
 
 
 

   (a)           (b)     (c) 
 
Figure 7. A 3D face model of a randomly 
selected subject used for the reconstruction 
at (a) right pose, (b) frontal and (c) left pose. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. Reconstructed 3D face models of the 
same subjects shown in Fig. 6. 
Reconstruction is performed by using the 
arbitrarily selected 3D face model as shown in 
Fig 7 as opposed to generic model shown in 
fig. 4. 

 
2.6. Generic versus specific model 
 

The effect of the initial 3D face model on the 
proposed reconstruction is investigated by comparing 
the reconstruction result of using generic model (Fig. 
6) with that of using a specific user’s model (Fig. 8). A 



3D face model is randomly selected from our gallery 
database and used as the generic model for the 
reconstruction. The specific subject’s model and 
reconstruction results are shown in Fig. 7 and Fig. 8, 
respectively. The reconstructed face models using 
specific user’s 3D model show close resemblance to 
those using generic model with a slight degradation in 
the quality. We performed the remaining experiments 
based on generic 3D face model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. System diagram for the enrollment 
process using 3D face reconstruction from 
stereo images. 
 
3. Face Recognition  
 
3.1. Overall System 

 
The proposed 3D face reconstruction system can be 
used both in enrollment and identification stages in 
either 2D or 3D domain. Some of the components that 
can be improved using the 3D reconstruction scheme 
are i) enrollment of 3D face model using a 2D camera 
and ii) enrollment of 2D face images with various pose 
and lighting conditions. The system diagram for the 
enrollment process using 3D face reconstruction from 
video is shown in Fig. 9. In the identification stage, the 
matching process can be performed both in 2D and 3D 
domains. 
 

3.2. Face Recognition in 2D domain 
 
Fifteen video files were recorded from fifteen 

subjects under three different lighting conditions at 
various poses with yaw and pitch motion. A subset of 
pose and lighting variations is captured from the video 
for the design and evaluation purposes for the face 
recognition system. The selected variations are about 
20 degrees to the right, left, up, and down under 4 
different lighting conditions. The lighting conditions 
we employed are normal, dark, and light source at 45 
and 90 degrees from front to right. The sample frames 
from the video of one subject are provided in Figure 
10. 

Gallery data is prepared in two sets: one from the 
real 3D face models and the other from the adapted 
generic face models combined with real 3D face 
models. The “real” face model represents the 3D 
model constructed from the range sensor. The range 
data of each subject is captured at frontal, right pose 
and left pose. These three range images are stitched 
together by an interactive tool to generate the real 3D 
model. First gallery data consists of 100 real 3D face 
models including 15 probe subjects. Second gallery 
data consists of reconstructed 3D face models of 15 
probe subjects and additional real 3D face models of 
85 subjects.  

 

    
             (a)         (b)         (c)         (d)         (e) 
 
Figure 10. Pose and lighting variations 
observed in the video of one subject. (a) 
Frontal pose, (b) Left pose, (c) Right pose, (d) 
Up pose and (e) down pose. First row shows 
normal lighting, second and third row shows 
images with a light source at 45 and 90 
degrees from frontal to right and the last row 
shows images under dark lighting.  
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Accurate eye locations are needed both from probe 
and gallery images for proper alignment in the face 
recognition process. Currently, we use manually 
selected eye locations to minimize the effect of feature 
extraction errors on the face recognition performance. 

Let χ = {χi, i=1,2,…,Nχ} be the set of 3D models 
enrolled in the gallery. Given a 2D probe image p, the 
identity is decided by 
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where s(⋅) represents the matching score measured by 
FaceIt® SDK [15] or FaceVAC® SDK [17]. The 
matching scores obtained from the two face 
recognition SDKs are combined using the sum method 
after min-max normalization [8]. Having a set of 2D 
projection images λi = {λij, j=1, 2,…,Nλi} for each 
model χi, the identity can be equivalently decided by  
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We generate 20 projection images from each of the 

100 3D models to build the gallery. Therefore, Nχ is 
equal to 100 and Nλi is equal to 20. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11.  Face recognition system using 
video input and 3D model gallery.  

 

To utilize the information contained in the input 
video, majority-voting rule is used to fuse the 
recognition results from multiple frames. Among the 
various fusion rules, it has been shown that the simple 
majority voting achieves good performance [9]. In 
majority voting, the maximum matching scores are 
computed for a set of probe images γ = {γ

k
, 

k=1,2,…,Nγ} as in Eq. (8). Then, the identity is 
decided from the majority ID in the set of probe 
images as 
 

{ , 1,2,..., }mv kID majority ID k Nγ= = .          (9) 

 
The face recognition process using video and 3D face 
gallery is depicted in Fig. 11. 
 
3.3. Face Recognition in 3D domain 

 
Given the reconstructed 3D face model from video, 

face recognition can be performed in 3D domain by 
matching the reconstructed 3D face model at 
identification time against the one reconstructed at 
enrollment time. The matching also can be performed 
between a reconstructed face model from video against 
an enrolled 3D face model from other 3D sensing 
device (e.g., 3D laser scanner).  

 

2D-input/2D-projection matching 

Input video 2D projections 3D Face Model 

Identity 

4. Experimental Results 
 
Experimental results are provided in two stages: 

one is the 2D to 3D face reconstruction and the other is 
the face recognition by utilizing the reconstructed face 
models. 3D face reconstruction results were already 
provided in Figs. 6 and 8. The proposed reconstruction 
process takes about 2.95 seconds on average on a 
Pentium 4 3.2GHz PC besides the time for the manual 
feature point selection. 

Fig. 12 shows the rank-N accuracies of face 
identification test with and without pose and lighting 
variations. The baseline 2D face matcher (score-sum of 
FaceIt and FaceVAC) performs very well (with rank-1 
accuracy of 93%) when both probe and gallery faces 
are frontal under normal lighting condition. However, 
the performance drops drastically to rank-1 accuracy 
of 38% when the probe images have pose and lighting 
variations. This is the main problem that is being 
addressed here.  

Fig. 13 shows the performance with using multiple 
frames as probe and utilizing the real 3D face model to 
populate the pose and lighting variations in the gallery.  
Fig. 14 shows the same experimental results by using 
reconstructed 3D face models for the 15 probe subjects 
instead of the real 3D models. The performances 



shown in Figs. 13 and 14 with single frame are better 
compared to Fig. 12 (all pose and lighting with frontal 
gallery) by the effect of pose and lighting variations in 
gallery data. The performance with reconstructed face 
models (rank-1 accuracy of 78% when using 30 
frames) is lower than the performance with real 3D 
face models (rank-1 accuracy of 83% when using 30 
frames).  Example images of the real 3D model and 
reconstructed 3D model are shown in Fig. 16. Based 
on the higher face recognition performance from real 
face models than the reconstructed models, we believe 
that the noise involved in the reconstruction process is 
responsible for this degradation in the face recognition 
performance. Some example matching results are 
shown in Fig. 15, where the identification fails when 
the gallery contains only frontal images, but succeeds 
with gallery containing images with various pose and 
lighting variations. 

 
 
Figure 12. Rank-N accuracy with and without 
pose and lighting variations in the probe data. 

 
Figure 13. Rank-N accuracy by fusing different 
numbers of frames and real 3D face models. 
 

5. Conclusions and Future Work 
 

We have proposed a 3D face reconstruction method 
and showed its effectiveness in face recognition in 
video. The reconstruction process uses semi-dense 
generic model, and hence provides better quality of 
reconstructed model and fast processing time. 

 
Figure 14. Rank-N accuracy by fusing different 
numbers of frames and reconstructed 3D face 
models. 

 

 
                     (a)             (b)      (c)        
 
Figure 15. Examples of matching results with 
reconstructed 3D face models. (a) Raw image 
from video, (b) Incorrect matches with the 
gallery having only frontal faces, and (c) 
Correct matches with the gallery containing 
pose and lighting variations. 



 
The reconstructed model is able to populate the 

gallery with 2D images with pose and lighting 
variations, resulting in improved recognition accuracy.  

Future work will include developing a more robust 
and accurate reconstruction method, fully automating 
the reconstruction and recognition system from the 
video input with fewer constraints, and improving the 
system to work under arbitrary pose and lighting 
situations. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           (a)    (b)        (c)             (d) 
 
Figure 16. Reconstructed vs. real 3D face 
models. (a) and (b) Example images of real 3D 
models and (c) and (d) reconstructed 3D 
models.   
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