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Abstract

The variation caused by aging has not received adequate
attention compared with pose, lighting, and expression vari-
ations. Aging is a complex process that affects both the 3D
shape of the face and its texture (e.g., wrinkles). While the
facial age modeling has been widely studied in computer
graphics community, only a few studies have been reported
in computer vision literature on age-invariant face recog-
nition. We propose an automatic aging simulation tech-
nique that can assist any existing face recognition engine
for aging-invariant face recognition. We learn the aging
patterns of shape and the corresponding texture in 3D do-
main by adapting a 3D morphable model to the 2D ag-
ing database (public domain FG-NET). At recognition time,
each probe and all gallery images are modified to compen-
sate for the age-induced variation using an intermediate
3D model deformation and a texture modification, prior to
matching. The proposed approach is evaluated on a set of
age-separated probe and gallery data using a state-of-the-
art commercial face recognition engine, FaceVACS. Use of
3D aging model improves the rank-1 matching accuracy on
FG-NET database from 28.0% to 37.8%, on average.

1. Introduction

Law enforcement agencies have built, over time, very
large databases of facial images of offenders. Digital face
images are becoming prevalent in government issued doc-
uments (e.g., passports and driver licenses). This is due to
the high compatibility of face biometric in machine read-
able travel document systems based on a number of evalu-
ation factors among the six major biometric modalities [6].
The non-intrusiveness characteristic of face biometric of-
ten compensates for its relatively lower accuracy, which has
made it popular in applications dealing with official docu-
ments. As a result, a number of critical security and forensic
applications require automatic identification or verification

capability based on facial images.
A major problem that various government and law en-

forcement agencies face is to detect “multiple enrollments”
in the facial database that they maintain (such as mugshot,
driver license photos or passport pictures). To address this
problem, we need to develop face recognition systems in-
variant to images of the same user captured at different
times. Many offenders will commit crimes at different pe-
riods in their lives, often starting as a young adult - or even
before - and continue throughout their lives. It is not un-
usual to encounter a time difference of many years between
enrollment and verification in some applications. Ling et
al. [10] studied how age differences affect face recognition
performance in a real passport photo verification task. Their
results show that the aging process does increase the diffi-
culty, but it does not surpass the influence of illumination or
expression. However, as these latter issues, namely, illumi-
nation and expression, are being successfully addressed by
incorporating 3D models, aging process will continue to be
a major obstacle for performance improvement [20] [19].

The Face Recognition Grand Challenge (FRGC, 2006)
evaluation showed that substantial progress has been made
in face recognition [16]. Results of FRGC demonstrated
that the performance improved by an order of magnitude
over Face Recognition Vendor Test (FRVT 2002). How-
ever, automatic face recognition in unconstrained situations
remains a challenging problem. The difficulties come from
potentially large variations in face images from the same
subject due to differences in pose, lighting, expression, age,
and occlusion, leading to drastic performance degradation
[11]. The FRVT report estimated a decrease in performance
by approximately 5% for each additional year of age differ-
ence. Therefore, the development of age correction capabil-
ity remains an important issue for robust face recognition.

The use of 3D face models and 3D range images
has helped in achieving pose and expression invariance
[11][13]. 3D face matching is intrinsically pose-invariant,
and a deformable model can achieve robustness to expres-
sion variation. However, although range scanners and other
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Table 1. A comparison of age modeling methods for face recognition.

Approach Face matcher Database Rank-1 identification ac-
curacy (%)

before aging
simulation

after aging
simulation

Ramanathan
et al. (2006)
[20]

Shape growth modeling up
to age 18 PCA 109 subjects in a

private database 8.0 15.0

Lanitis et al.
(2002) [8]

Build an aging function in
terms of PCA coefficients
of shape and texture

Mahalanobis dis-
tance between PCA
coefficients

12 subjects in a
private database 57.0 68.5

Geng et al.
(2007) [5]

Learn aging pattern based
on concatenated PCA co-
efficients of shape and tex-
ture across a series of ages

Mahalanobis dis-
tance between PCA
coefficients

10 subjects in FG-
NET 14.4 38.1

Wang et al.
(2006) [24]

Build an aging function in
terms of PCA coefficients
of shape and texture

PCA

No. of subjects
n/a; 2,000 im-
ages in a private
database

52.0 63.0

Patterson et
al. (2006)
[14]

Build an aging function in
terms of PCA coefficients
of shape and texture

PCA 9 subjects in
MORPH 11.0 33.0

Proposed
method

Learning aging pattern
based on PCA coefficients
in separated shape and
texture. Modeling in 3D
domain given 2D database

FaceVACS 82 subjects in FG-
NET 28.0 37.8

3D acquisition methods are becoming more accessible, it
may not be feasible in the foreseeable future to replace ex-
isting mugshot capture systems by expensive 3D systems
and to ask a user to provide 3D images both at enrollment
and identification stages. A strategy involving matching 2D
images to 3D models is more appropriate, where the 2D
probe images are compared to 2D renderings of the gallery
3D model under varying pose, lighting condition and ex-
pression. Another possibility is to warp 2D probe images
by 3D models fitted to those images, and then compare the
warped images to 2D gallery images.

1.1. Related Work

Studies on face verification across age progression [19]
have shown that: (i) simulation of shape and texture varia-
tions caused by aging is a challenging task, as factors like
life styles and weather contribute to changes in addition to
biological factors, (ii) the aging effects can be best under-

stood using 3D scans of human heads, and (iii) the few ex-
isting aging databases are not only small but also contain
uncontrolled external variations. Due to these reasons, the
effect of aging in facial recognition has not been as exten-
sively investigated as other factors of intra-individual varia-
tions in facial appearance. A few studies on aging process
can be found in biological sciences, e.g. in [23, 18]. These
studies have shown that cardioidal strain is a major factor
in aging of facial outlines. Such results have also been used
in psychological studies, e.g. introducing aging by carica-
tures generated by shifting 3D model parameters [12]. Pat-
ternson et al. [15] compared automatic aging simulation re-
sults with forensic sketches and showed that further stud-
ies in aging are needed to improve face recognition tech-
niques. A few image-based approaches in 2D have already
been proposed to simulate both growth and adult aging, e.g.
[20, 22]. These seminal studies demonstrated the feasibility
of improving face recognition accuracy by simulated aging.
There are also some developments in the related area of age
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estimation using statistical models, e.g. [8, 7]. Geng et al.
[5] propose to learn a subspace of aging pattern based on
the assumption that similar faces age in similar ways. Their
face representation is composed of face texture and the 2D
shape represented by the coordinates of the feature points
as in Active Appearance Models. Table 1 gives a brief com-
parison of these aging methods where the performance is
evaluated by the identification accuracy. When multiple ac-
curacies are reported in any of the studies in the same ex-
perimental setup, average value is used for the comparison.
In case multiple accuracies are derived from different ap-
proaches, the best performance is used for the comparison.
The identification accuracies of various studies reported in
the literature that are shown in Table 1 cannot be directly
compared due to the differences in the database, number
of subjects and the face recognition method. Usually, the
larger the number of subjects and the larger the database
variations in terms of age, pose, lighting and expression,
the smaller the recognition performance. The identification
accuracy for each approach in Table 1 before age simula-
tion represents the difficulty of the experimental setup for
the face recognition test as well as the capability of the face
matcher.

1.2. Aging Database

There are two well known public domain face aging
databases; FG-NET [1] and MORPH [21]. The FG-NET
database contains 1,002 images of 82 subjects (∼12 im-
ages/subject), with the minimum age being 0 (< 12 months)
and the maximum age being 69. The MORPH database
contains 1,724 images of 515 subjects (∼3 images/subject).
Since it is desirable to have as many images as possible at
different ages for each subject for the aging pattern mod-
eling, FG-NET database is more useful for age simula-
tion than MORPH. We have used the complete FG-NET
database for aging model construction and used it in the
leave-one-out fashion for recognition. Note that while Geng
et al. [5] also used FG-NET, they used very small subsets
of it with only 10 subjects in each. We have used all the 82
subjets in FG-NET for face recognition.

1.3. Contributions

We have developed a 3D deformation model for cranio-
facial aging, which is compatible with 3D model-assisted
methods [13, 11] used for pose and expression invariance.
This way, major factors influencing the face recognition
performance (illumination, pose and aging) can be handled
by a single framework. With the fitted 3D model, we can ef-
fortlessly establish the correspondence based on facial tex-
ture and incorporate texture in aging-simulation. Once the
aging-simulated shape of a probe image is obtained, we can
use the aging-simulated texture to render the age-adjusted
face image.

2. Aging Model
We propose to create a 3D aging model suitable for the

task of face recognition, since the true craniofacial aging
model can be naturally formulated in 3D. With 2D pro-
jection, growth parameters for landmarks can only be esti-
mated based on a limited number of facial proportions that
can be reliably estimated from photogrammetry of frontal
images. The proposed 3D model would allow us to incor-
porate texture into individual facial components such as eye,
mouth, and forehead, which is in line with the aging simu-
lation method based on a graph structure [22]. 3D models
can also be used to locate muscle fibers, and wrinkles can be
generated across and orthogonal to the fibers [9]. The gen-
eral form of the model is a narrow furrow with a bulge that
can be rendered using a modified texture or an additional
bump map. The simulation of aging in the texture based on
the analysis of muscle fiber structure is beyond the scope of
this paper. However, we provide a straightforward image-
based aging simulation for the texture.

2.1. 3D Model Fitting

Ideally, we would like to have high resolution 3D models
at both enrollment stage and identification stage. However,
the database FG-NET [1], only contains 2D images. Some
of these images, especially those taken tens of years back,
are of poor quality. To create coarse 3D models for the sub-
jects at different ages before analyzing the 3D aging pattern,
we fit a general model based on feature correspondences.

The morphable model used here is a simplified version of
the Blanz and Vetter model [2]. We keep the same point to
point correspondences, but reduce each face mesh to 81 ver-
tices, including the 68 feature points used in FG-NET. The
additional 13 feature points are used to delineate the contour
of the forehead, which is inside the region used to generate
the feature sets and the reference sets in FaceVACS.

Following [2], we perform a Principal Component Anal-
ysis on the simplified meshes represented by shape-vectors
(Si’s) containing the X , Y , Z-coordinates of all the ver-
tices, and get the mean shape S̄, the eigenvalues λi’s and
eigenvectors si’s of the shape covariance matrix. We use
only the top m (= 30) eigenvectors, for efficiency and sta-
bility of the fitting performed on the possibly very noisy
dataset. Any shape in the space can then be represented as

Sα = S̄ +
m∑

i=1

αisi, (1)

where α contains the coordinates of the shape in the PCA
basis, and the covariance matrix for (αi) is diag[λi].

As the FG-NET database contains 68 feature points for
each face, we use them for the construction of a 3D model
in the above space instead of using the matching between a
rendered image of the 3D model and the original photo. In
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Figure 1. Aging simulation in 3D shape aging pattern space.

case we need to use other photos, we use Active Appearance
Model [3] to extract the feature points as the input to the
fitting algorithm.

To extract αi’s from a set of 68 2D points, we follow
an iterative procedure similar to [17]. However, the de-
formable models we use are different as we are not tracking
the motion of the face, but fitting a generic model to the
feature set of a face projected to 2D. We assume the pic-
ture is taken at a distance much greater than the typical size
of a human face, and thus we ignore the effect of perspec-
tive projection. Our goal is to find the minimizer (shape
descriptor αi, and rigid body transformations R and T ) of
the following target function

E =
n∑

i=1

(P (R(S̄+
m∑

j=1

αjsj)+T )i−pi)2/σ2
N +

m∑

j=1

α2
j/λj ,

(2)
where n is the number of 2D feature points pi’s, P is the
projection matrix to x − y plane, σN is the standard devia-
tion of the estimated noise in the location of the 2D feature
points, and the second term is a regularizer to control the
Mahalanobis distance of the shape from the mean shape S̄.

We initialize all the αj’s to 0, and the rotation matrix R
is set to the Identity matrix. We then minimize E by alter-
nately changing R and T with αj fixed, and changing αj

with R and T fixed. Note that when both R and T are
fixed, the target function E is a simple quadratic energy
with Tikhonov regularization. There are multiple ways to
estimate pose when we fix all the αj’s. Based on our tests,
we found that first estimating the best 2× 3 affine transfor-
mation (P R) followed by a QR decomposition to get the
best rotation works better than running a quaternion based
optimization using Rodriguez’s formula. Note that Tz is set
to 0, as we use a simple orthogonal projection.

3. Aging Simulation
All 3D shapes are rescaled according to the anthropo-

metric head width found in [4] to incorporate the global

shape growth pattern. Then, our 3D shape pattern space is
represented as a matrix of size M by N , where M is the
number of different ages and N is the number of different
subjects. Each element in the shape pattern space, Sj

i , is
a vector representing the 3D shape of the subject i at age
j generated by the procedure in Sec. 2. We use a simple
interpolation to fill the missing values in the shape pattern
space.

Given an unseen shape Sx,new at age x, we can generate
a weighted sum of the shapes at age x as

Sx,new = S̄x +
N∑

i=1

ws
i (S

x
i − S̄x). (3)

We again add a simple Tikhonov regularization term
α2

∑
i w2

i to the sum of the squares of the residuals, to
resolve the case when there are multiple solutions for the
weight vector ws = {ws

1, w
s
2, ..., w

s
N} and the case when

Sx,new does not lie in the space spanned by the Si
x’s. Then

we can generate a synthetic shape Sy,new at an arbitrary age
y using the weight vector ws as

Sy,new = S̄y +
N∑

i=1

ws
i (S

y
i − S̄y). (4)

The texture pattern space is built independently of the
shape. The full-filling of the texture aging pattern space
and the simulation process are exactly the same:

T x,new = T̄ x +
N∑

i=1

wt
i(T

x
i − T̄ x), (5)

T y,new = T̄ y +
N∑

i=1

wt
i(T

y
i − T̄ y), (6)

where T x
i is the texture of subject i at age x expressed in a

global mean shape, and the weight vector wt is independent
of ws. The aging simulation process for a new image at age
x to age y is depicted in Figure 1. The pseudocode of shape
aging pattern space construction and simulation are shown
in Algorithms 3.1 and 3.2. The texture component follows
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the same steps.

Algorithm 3.1: 3D SHAPE SPACE CONSTRUCTION( )

Input : S2d = {s1
1,2d, . . . , s

j
i,2d, . . . , s

M
N,2d}

P = {p1
1, . . . , p

j
i , . . . , p

M
N }

Output : S3d = {s1
1,3d, . . . , s

j
i,3d, . . . , s

M
N,3d}

T = {t11, . . . , tji , . . . , tMN }
i ← 1, j ← 1
while i < N & j < M

do





if sj
i,2d is available

k ← 1, e ← fitting error between sj
i,2d

and sj
i,3d

while k < τ & e < θ

do





update pose (model param. fixed)
update model param. (pose fixed)
k ← k + 1, update e

construct sj
i,3d using pose and model param.

construct tji using shape, pose and photopj
i .

i ← 1, j ← 1
while i < N & j < M

do

{
if sj

i,3d is not available
Fill sj

i,3d and tji using interpolation

Algorithm 3.2: AGING SIMULATION ( )

Input : S3d = {s1
1,3d, . . . , s

M
N,3d}, Sx,new

Output : Sy,new

Estimate ws by Eq.(3)
Calculate Sy,new by Eq.(4)

4. Performance Evaluation
We evaluate the performance of the proposed method

by comparing the face recognition accuracy before and af-
ter aging simulation. We construct the probe data, P =
{px1

1 , . . . , pxn
n }, by selecting one image pxi

i for each sub-
ject i at age xi in the FG-NET database, i ∈ {1, . . . , 82},
xi ∈ {0, . . . , 69}. The gallery data G = {gy1

1 , . . . , gyn
n }

is similarly constructed. The ages of probe data, xi, are
chosen as X = {0, 5, 10, . . . , 30} and the corresponding
ages of gallery data, yi, are chosen as Y = {xi + 5, xi +
10, . . . , xi +30}. Note that for none of the subjects, images
at all the ages in the range [0, 69] are available. Therefore,
the closest possible ages of xi and yi to P and G, respec-
tively, are selected with keeping xi 6= yi.

Let P , Pa,s and Pa,st be the probe, aging simulated
probe using shape only and aging simulated probe using

Figure 2. Cumulative Match Characteristic (CMC) curves before
and after aging simulation in three different scenarios.

shape and texture, respectively. Let G, Ga,s and Ga,st be
the gallery, aging simulated gallery using shape only and
aging simulated gallery using shape and texture, respec-
tively. All aging simulated images are generated in leave-
one-out fashion using the shape and texture pattern space.
Then the face recognition test is performed on the pairs P -
G, Pa,s-Ga,s and Pa,st-Ga,st. The identification rate for
the probe-gallery pair P -G is the performance on original
images. The accuracy of Pa,s-Ga,s and Pa,st-Ga,st are the
performances after aging simulation. For the matching with
aging simulation, we generated a symmetric transformation
of (xi → yj) and (yj → xi) and the average matching score
is used for the identification. We have observed that the
combination of shape aging and shape+texture aging using
score level fusion provide slightly better results. Score-sum
based fusion with shape aging and shape+texture aging was
used in our tests.

5. Results and Discussion

Fig. 2 shows the Cumulative Match Characteristic
(CMC) curves before and after aging simulation. The im-
provement from aging simulation is more or less similar
with those of other studies as show in Table 1. However,
we have used FaceVACS, a state-of-the-art face matcher,
which is known to be more robust against internal and ex-
ternal facial variations (e.g., pose, lighting, expression, etc)
than the simple PCA based matcher. We believe the per-
formance improvement using FaceVACS is more realistic
than the performance improvement of PCA matcher. Fig. 3
shows the rank-one identification accuracies in each of the
42 different age pair groups of probe and gallery. The ag-
ing process can be separated as growth and development
(age≤18) and adult aging process (age>18). The face

5



8th IEEE Int’l Conference on Automatic Face and Gesture Recognition.

(a) Before Aging

(b) After Aging (shape+texture)

(c) Amount of improvement

Figure 3. Rank-one identification accuracies in each probe and
gallery age groups: (a) before aging, (b) after aging and (c) amount
of improvement after aging.

recognition performance is somewhat lower in the growth

process where more changes occurs in the facial appear-
ance. However, our aging process provides performance
improvements in both age groups ≤ 18 and > 18. The av-
erage recognition results for age groups ≤ 18 are improved
from 12.4% to 25.4% and those for age groups > 18 are
improved from 42.3% to 53.1%.

Fig. 4 shows matching results for 7 subjects in FG-NET
where the face recognition fails without age simulation but
succeeds with age simulations for the first five subjects. The
age simulation fails to provide correct matching for the last
two subjects. For the first five subjects in Fig. 4 the probe
and gallery images have similar shapes after the age simula-
tion process. But, the probe and gallery images of the sixth
subject are blurred and the probe image of the last subject
shows distortion after pose correction and the gallery image
contains severely different lighting condition. This is one
of the reasons of failure in the matching even after aging
simulation.

6. Conclusions and Future Work
We have proposed a 3D facial aging modeling and sim-

ulation method for aging-invariant face recognition. The
extension of shape modeling from 2D to 3D domain gives
additional capability of compensating for pose and light-
ing variations. The proposed age modeling method is capa-
ble of modeling the growth pattern as well as the adult ag-
ing. We have evaluated the proposed approach using a state-
of-the-art commercial face recognition engine (FaceVACS),
and obtained improvement in face recognition performance.
We have shown that our proposed method is capable of han-
dling both growth-and-development and adult face aging
and provide performance. However, we have observed that
in a small percentage of cases the proposed aging modeling
causes failure of matching after the aging simulation. This
shows the need to improve the proposed aging modeling
technique. We plan to evaluate the proposed approach to a
wider range of images, e.g., the MORPH database. We will
also explore the optimal method for building aging pattern
space given noisy 2D or 3D shape and texture data by cross
validating the aging pattern space and aging simulation re-
sults in terms of face recognition performance.

References
[1] FG-NET Aging Database, http://www.fgnet.rsunit.com. 3
[2] V. Blanz and T. Vetter. A morphable model for the synthesis

of 3d faces. In SIGGRAPH ’99: Proc. 26th annual con-
ference on Computer Graphics and Interactive Techniques,
pages 187–194, New York, NY, 1999. 3

[3] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active ap-
pearance models. IEEE Trans. on Pattern Anal. and Mach.
Intell., 23(6):681–685, 2001. 4

[4] L. G. Farkas, editor. Anthropometry of the Head and Face.
Lippincott Williams & Wilkins, 1994. 4

6



8th IEEE Int’l Conference on Automatic Face and Gesture Recognition.

(a) (b) (c) (d) (e)

Figure 4. Example matching results before and after age simu-
lation for seven different subjects: (a) probe, (b) pose-corrected
probe, (c) age-simulated probe, (d) pose-corrected gallery and (e)
gallery. All the images in (b) failed to match with the correspond-
ing images in (d) but images in (c) were successfully matched to
the corresponding images in (d) for the first five subjects. Match-
ing for the last two subjects failed both before and after aging sim-
ulation. The ages of (probe, gallery) pairs are (0,18), (0,9), (4,14),
(3,20), (30,54), (0,7) and (23,31), respectively, from the top to bot-
tom row.

[5] X. Geng, Z.-H. Zhou, and K. Smith-Miles. Automatic age
estimation based on facial aging patterns. IEEE Trans. Pat-
tern Anal. Mach. Intell., 29:2234–2240, 2007. 2, 3

[6] R. Heitmeyer. Biometric identification promises fast and se-
cure processing of airline passengers. ICAO Journal, 55(9),
2000. 1

[7] A. Lanitis, C. Draganova, and C. Christodoulou. Compar-
ing different classifiers for automatic age estimation. IEEE
Trans. SMC-B, 34(1):621–628, February 2004. 3

[8] A. Lanitis, C. J. Taylor, and T. F. Cootes. Toward automatic
simulation of aging effects on face images. IEEE Trans. Pat-
tern Anal. Mach. Intell., 24(4):442–455, 2002. 2, 3

[9] W.-S. Lee, Y. Wu, and N. Magnenat-Thalmann. Cloning and
aging in a vr family. In VR ’99: Proc. IEEE Virtual Reality,

page 61, Washington, D.C., 1999. 3
[10] H. Ling, S. Soatto, N. Ramanathan, and D. Jacobs. A study

of face recognition as people age. In IEEE International
Conference on Computer Vision (ICCV), 2007. 1

[11] X. Lu and A. K. Jain. Deformation modeling for robust 3d
face matching. In IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), pages 1377–1383, Washington, D.C.,
2006. 1, 3

[12] A. OT’oole, T. Vetter, H. Volz, and E. Salter. Three-
dimensional caricatures of human heads: distinctiveness and
the perception of facial age. Perception, 26:719–732, 1997.
2

[13] U. Park, H. Chen, and A. K. Jain. 3d model-assisted face
recognition in video. In CRV ’05: Proc. 2nd Canadian
Conference on Computer and Robot Vision, pages 322–329,
Washington, D.C., 2005. 1, 3

[14] E. Patterson, K. Ricanek, M. Albert, and E. Boone. Au-
tomatic representation of adult aging in facial images. In
IASTED ’06: Proc. 6th International Conference on Visu-
alization, Imaging, and Image Processing, pages 171–176,
2006. 2

[15] E. Patterson, A. Sethuram, M. Albert, K. Ricanek, and
M. King. Aspects of age variation in facial morphology af-
fecting biometrics. In BTAS ’07: Proc. First IEEE Interna-
tional Conference on Biometrics: Theory, Applications, and
Systems, pages 1–6, 2007. 2

[16] P. J. Phillips, W. T. Scruggs, A. J. O’Toole, P. J. Flynn, K. W.
Bowyer, C. L. Schott, and M. Sharpe. FRVT 2006 and ICE
2006 Large-Scale Results. Technical Report NISTIR 7408,
National Institute of Standards and Technology. 1

[17] F. Pighin, R. Szeliski, and D. H. Salesin. Modeling and an-
imating realistic faces from images. Int. J. Comput. Vision,
50(2):143–169, 2002. 4

[18] J. B. Pittenger and R. E. Shaw. Aging faces as viscal-elastic
events: Implications for a theory of nonrigid shape percep-
tion. J. Exp. Psych.: Human Perception and Performance,
1:374–382, 1975. 2

[19] N. Ramanathan and R. Chellappa. Face verification across
age progression. In IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), volume 2, pages 462–469, 2005. 1, 2

[20] N. Ramanathan and R. Chellappa. Modeling age progression
in young faces. In IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), volume 1, pages 387–394, 2006. 1, 2

[21] K. J. Ricanek and T. Tesafaye. Morph: A longitudinal image
database of normal adult age-progression. In FGR ’06: Proc.
7th International Conference on Automatic Face and Gesture
Recognition, pages 341–345, Washington, D.C., 2006. 3

[22] J. Suo, F. Min, S. Zhu, S. Shan, and X. Chen. A multi-
resolution dynamic model for face aging simulation. In IEEE
Conf. Computer Vision and Pattern Recognition (CVPR),
2007. 2, 3

[23] D. W. Thompson. On Growth and Form. New York: Dover,
1992. 2

[24] J. Wang, Y. Shang, G. Su, and X. Lin. Age simulation for
face recognition. In ICPR ’06: Proc. 18th International Con-
ference on Pattern Recognition, pages 913–916, 2006. 2

7


