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Abstract—One of the challenges in automatic face recognition is to achieve

temporal invariance. In other words, the goal is to come up with a representation

and matching scheme that is robust to changes due to facial aging. Facial aging is

a complex process that affects both the 3D shape of the face and its texture (e.g.,

wrinkles). These shape and texture changes degrade the performance of

automatic face recognition systems. However, facial aging has not received

substantial attention compared to other facial variations due to pose, lighting, and

expression. We propose a 3D aging modeling technique and show how it can be

used to compensate for the age variations to improve the face recognition

performance. The aging modeling technique adapts view-invariant 3D face models

to the given 2D face aging database. The proposed approach is evaluated on

three different databases (i.g., FG-NET, MORPH, and BROWNS) using

FaceVACS, a state-of-the-art commercial face recognition engine.

Index Terms—Face recognition, facial aging, aging modeling, aging simulation,

3D face model.
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1 INTRODUCTION

FACE recognition accuracy is usually limited by large intraclass
variations caused by factors such as pose, lighting, expression, and
age [2]. Therefore, most of the current work on face recognition is
focused on compensating for the variations that degrade face
recognition performance. However, facial aging has not received
adequate attention compared with other sources of variations such
as pose, lighting, and expression.

Facial aging is a complex process that affects both the shape and
texture (e.g., skin tone or wrinkles) of a face. This aging process
also appears in different manifestations in different age groups.
While facial aging is mostly represented by facial growth in
younger age groups (e.g., �18 years old), it is mostly represented
by relatively large texture changes and minor shape changes (e.g.,
due to change of weight or stiffness of skin) in older age groups
(e.g., >18). Therefore, an age correction scheme needs to be able to
compensate for both types of aging processes.

Some of the face recognition applications where age compensa-
tion is required include 1) identifying missing children, 2) screening,
and 3) multiple enrollment detection problems. These three
scenarios have two common characteristics: 1) significant age
difference between probe and gallery images (images obtained at
enrollment and verification stages) and 2) inability to obtain a user’s
face image to update the template (gallery).

Ling et al. [8] studied how age differences affect the face
recognition performance in a real passport photo verification task.
Their results show that the aging process does increase the
recognition difficulty, but it does not surpass the effects of
illumination or expression. Studies on face verification across age
progression [9] have shown that: 1) Simulation of shape and
texture variations caused by aging is a challenging task as factors

like lifestyle and environment also contribute to facial changes in
addition to biological factors, 2) the aging effects can be best
understood using 3D scans of human head, and 3) the available
databases to study facial aging are not only small but also contain
uncontrolled external and internal variations. It is due to these
reasons that the effect of aging in facial recognition has not been as
extensively investigated as other factors that lead to intraclass
variations in facial appearance.

Some biological and cognitive studies on aging process have
also been conducted, e.g., in [10], [11]. These studies have shown
that cardioidal strain is a major factor in the aging of facial
outlines. Such results have also been used in psychological studies,
e.g., by introducing aging as caricatures generated by controlling
3D model parameters [12]. A few seminal studies [3], [13] have
demonstrated the feasibility of improving face recognition
accuracy by simulated aging. There has also been some work
done in the related area of age estimation using statistical models,
e.g., [4], [14]. Geng et al. [5] learn a subspace of aging pattern
based on the assumption that similar faces age in similar ways.
Their face representation is composed of face texture and the 2D
shape represented by the coordinates of the feature points as in the
Active Appearance Models. Computer graphics community has
also shown facial aging modeling methods in 3D domain [15], but
the effectiveness of the aging model is not usually evaluated by
conducting face recognition test.

Table 1 gives a brief comparison of various methods for
modeling aging proposed in the literature. The performance of
these models is evaluated in terms of the improvement in the
identification accuracy. The identification accuracies of various
studies in Table 1 cannot be directly compared due to the
differences in the database, number of subjects, and the underlying
face recognition method used for evaluation. Usually, the larger
the number of subjects and the larger the database variations in
terms of age, pose, lighting, and expression is, the smaller the
recognition performance improvement due to aging model.

Compared with the other published approaches, the proposed
method for aging modeling has the following features:

. 3D aging modeling: We use a pose correction stage and
model the aging pattern more realistically in the 3D
domain. Considering that the aging is a 3D process, 3D
modeling is better suited to capture the aging patterns. We
have shown how to build a 3D aging model given a 2D
face aging database. The proposed method is our only
viable alternative to building a 3D aging model directly as
no 3D aging database is currently available.

. Separate modeling of shape and texture changes: We have
compared three different modeling methods, namely,
shape modeling only, separate shape and texture model-
ing, and combined shape and texture modeling (e.g.,
applying second level PCA to remove the correlation
between shape and texture after concatenating the two
types of feature vectors). We have shown that the separate
modeling is better than combined modeling method, given
the FG-NET database as the training data.

. Evaluation using a state-of-the-art commercial face matcher,
FaceVACS: All of the previous studies on facial aging
have used PCA-based matchers. We have used a state-
of-the-art face matcher, FaceVACS from Cognitec [16], to
evaluate our aging model. The proposed method can thus
be useful in practical applications requiring age correction
process. Even though we have evaluated the proposed
method only on one particular face matcher, it can be used
directly in conjunction with any other 2D face matcher.

. Diverse Databases: We have used FG-NET for aging
modeling and evaluated the aging model on three different
databases, FG-NET (in leave-one-person-out fashion),
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MORPH, and BROWNS. We have observed substantial
performance improvements on all the three databases. This
demonstrates the effectiveness of the proposed aging
modeling method.

The rest of this paper is organized as follows: Section 2

introduces the preprocessing step of converting 2D images to 3D

models, Section 3 describes our aging model, Section 4 presents the

aging simulation methods using the aging model, and Section 5

provides experimental results and discussions. Section 6 sum-

marizes our contributions and lists some directions for future work.

2 CONVERTING 2D IMAGES TO 3D MODELS

We propose to use a set of 3D face models to learn the model for

recognition, because the true craniofacial aging model [11] can be

appropriately formulated only in 3D. However, since only 2D

aging databases are available, it is necessary to first convert these

2D face images into 3D. We first define major notations that are

used in the following sections:

. Smm ¼ fSmm;1; Smm;2; . . . ; Smm;nmmg: a set of 3d face models
used in constructing the reduced morphable model.

. S�: reduced morphable model represented with model
parameter �.

. Sj2d;i ¼ fx1; y1; . . . ; xn2d
; yn2d
g: 2D facial feature points for the

ith subject at age j. n2d is the number of points in 2D.

. Sji ¼ fx1; y1; z1; . . . ; xn3d
; yn3d

; zn3d
g: 3D feature points for the

ith subject at age j. n3d is the number of points in 3D.
. Tj

i : facial texture for ith subject at age j.
. sji : reduced shape of Sji after applying PCA on Sji .
. tji : reduced texture of Tj

i after applying PCA on Tj
i .

. Vs: top Ls principle components of Sji .

. Vt: top Lt principle components of Tj
i .

. Sjws : synthesized 3D facial feature points at age j

represented with weight ws.
. Tj

wt
: synthesized texture at age j represented with weightwt.

. nmm ¼ 100, n2d ¼ 68, n3d ¼ 81, Ls ¼ 20, and Lt ¼ 180.

In the following sections, we first transform Sj2d;i to Sji using the
reduced morphable model S�. Then, 3D shape aging pattern space
fSwsg and texture aging pattern space fTwtg are constructed using
Sji and Tj

i .

2.1 2D Facial Feature Point Detection

We use manually marked feature points in aging model construc-
tion. However, in the test stage, we need to detect the feature points
automatically. The feature points on 2D face images are detected
using the conventional Active Appearance Model (AAM) [17], [18].

2.2 3D Model Fitting

We use a simplified deformable model based on Blanz and
Vetter’s model [19]. For efficiency, we drastically reduced the
number of vertices in the 3D morphable model to 81, 68 of which
correspond to salient features present in the FG-NET database,
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while the other 13 delineate the forehead region. Following [19],
we perform PCA on the simplified shape sample set, fSmmg. We
obtain the mean shape Smm, the eigenvalues �ls, and unit
eigenvectors Wls of the shape covariance matrix. We use only
the top L (¼ 30) eigenvectors, again for efficiency and stability of
the subsequent fitting algorithm performed on the possibly very
noisy data sets. A 3D face shape can then be represented using
the eigenvectors as

S� ¼ Smm þ
XL

l¼1

�lWl; ð1Þ

where the parameter � ¼ ½�l� controls the shape and the covariance
of �s is the diagonal matrix with �i as the diagonal elements. We
now describe how to transform the given 2D feature points Sj2d;i to
the corresponding 3D points Sji using the reduced morphable
model S�.

Let Eð�Þ be the overall error in fitting the 3D model of one face
to its corresponding 2D feature points, where

E
�
P;R; t; a; f�lgLl¼1

�
¼
��Sji;2d �TP;R;t;aðS�Þ

��2
: ð2Þ

Here Tð�Þ represents a transformation operator performing a
sequence of operations, i.e., rotation, translation, scaling, projec-
tion, and selecting n2d points out of n3d that have correspondences.
To simplify the procedure, an orthogonal projection P is used.

In practice, the 2D feature points that are either manually
labeled or generated by AAM are noisy, which means overfitting
these feature points may produce undesirable 3D shapes. We
address this issue by introducing a Tikhonov regularization term
to control the Mahalanobis distance of the shape from the mean
shape. Let � be the empirically estimated standard deviation of the
energy E induced by the noise in the location of the 2D feature
points. We define our regularized energy as

E0 ¼ E=�2 þ
XL

l¼1

�2
l =�l: ð3Þ

To minimize the energy term defined in (3), we initialize all
of the �ls to 0, set the rotation matrix R to the identity matrix
and translation vector t to 0, and set the scaling factor a to
match the overall size of the 2D and 3D shapes. Then, we
iteratively update R, T, and � until convergence. There are
multiple ways to find the optimal pose given the current �. In
our tests, we found that first estimating best 2� 3 affine
transformation followed by a QR decomposition to get the
rotation works better than running a quaternion-based optimiza-
tion using Rodriguez’s formula [20]. Note that tz is fixed to 0 as
we use an orthogonal projection.

Fig. 1 illustrates the 3D model fitting process to acquire the
3D shape. The associated texture is then retrieved by warping
the 2D image.

3 3D AGING MODEL

Following [5], we define the aging pattern as an array of face
models from a single subject indexed by her age. We assume that
any aging pattern can be approximated by a weighted average of
the aging patterns in the training set. Our model construction
differs from [5] mainly in that we model shape and texture
separately at different ages using the shape (aging) pattern space
and the texture (aging) pattern space, respectively, because the 3D
shape and the texture images are less correlated than the 2D shape
and texture that they use. We also adjust the 3D shape as explained
below. The two pattern spaces are described below.

3.1 Shape Aging Pattern

Shape pattern space captures the variations in the internal shape
changes and the size of the face. The pose-corrected 3D models
obtained from the preprocessing phase are used for constructing
the shape pattern space. Under age 19, the key effects of aging are
driven by the increase in the cranial size, while, at later ages, the
facial growth in height and width is very small [21]. To
incorporate the growth pattern of the cranium for ages under 19,
we rescale the overall size of 3D shapes according to the average
anthropometric head width found in [22].

We perform PCA over all the 3D shapes, Sji , in the database
irrespective of age j and subject i. We project all the mean
subtracted Sji onto the subspace spanned by the columns of Vs to
obtain sji as

sji ¼ Vs
T
�
Sji � S

�
; ð4Þ

which is an Ls � 1 vector.
Assuming that we have n subjects at m ages, the basis of the

shape pattern space is then assembled as an m� n matrix with
vector entries (or, alternatively, as an m� n� Ls tensor), where
the jth row corresponds to age j and the ith column corresponds
to subject i, and the entry at ðj; iÞ is sji . The shape pattern basis is
initialized with the projected shapes sji from the face database (as
shown in the third column of Fig. 2). Then, we fill missing values
using the available values along the same column (i.e., for the
same subject). We tested three different methods for the filling
process: linear, Radial Basis Function (RBF), and a variant of RBF
(v-RBF). Given available ages ai and the corresponding shape
feature vectors si, a missing feature value sx at age ax can be
estimated by sx ¼ l1 � s1 þ l2 � s2 in linear interpolation, where s1

and s2 are shape features corresponding to the ages a1 and a2 that
are closest from ax and l1 and l2 are weights inversely
proportionate to the distance from ax to a1 and a2. In the v-RBF
process, each feature is replaced by a weighted sum of all
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Fig. 1. 3D model fitting process using reduced morphable model.

Fig. 2. 3D aging model construction.



available features as sx ¼
P

i �ðax � aiÞsi=ð
P
�ðax � aiÞÞ, where

�ð:Þ is an RBF function defined by a Gaussian function. In the RBF
method, the mapping function from age to shape feature vector is
calculated by sx ¼

P
i ri�ðax � aiÞ=ð

P
�ðax � aiÞÞ for each avail-

able age and feature vector ai and si, where ris are estimated
based on the known scattered data. Any missing feature vector sx
at age x can thus be obtained.

The shape aging pattern space is defined as the space
containing all linear combinations of the patterns of the following
type (expressed in PCA basis):

sjws ¼ sj þ
Xn

i¼1

�
sji � sj

�
ws;i; 0 � j � m� 1: ð5Þ

Note that the weight ws in the linear combination above is not
unique for the same aging pattern. We can use the regularization
term in the aging simulation described below to resolve this issue.
Given a complete shape pattern space, mean shape S and the
transformation matrix Vs, the shape aging model with weight ws is
defined as

Sjws ¼ SþVss
j
ws
; 0 � j � m� 1: ð6Þ

3.2 Texture Aging Pattern

The texture pattern Tji for subject i at age j is obtained by mapping
the original face image to frontal projection of the mean shape S

followed by column-wise concatenation of the image pixels. After
applying PCA on Tji , we calculate the transformation matrix Vt and
the projected texture tji . We follow the same filling procedure as in
the shape pattern space to construct the complete basis for the
texture pattern space using tji . A new texture Tj

wt
can be similarly

obtained, given an age j and a set of weights wt, as

tjwt ¼ tj þ
Xn

i¼1

�
tji � tj

�
wt;i; ð7Þ

Tj
wt
¼ TþVtt

j
wt
; 0 � j � m� 1: ð8Þ

Fig. 2 illustrates the aging model construction process for shape
and texture pattern spaces.

4 AGING SIMULATION

Given a face image of a subject at a certain age, aging simulation
involves the construction of the face image of that subject adjusted
to a different age.

Given an image at age x, we first produce the 3D shape, Sxnew,

and the texture, Txnew, by following the preprocessing step

described in Section 2, and then project them to the reduced

spaces to get sxnew and txnew. Given a reduced 3D shape sxnew at age x,

we can obtain a weighting vector, ws, that generates the closest

possible weighted sum of the shapes at age x as

ŵs ¼ argmin
c��ws�cþ

��sxnew � sxws

��2 þ rskwsk2; ð9Þ

where rs is the weight of a regularizer to handle the cases when

multiple solutions are obtained or when the linear system used to

obtain the solution has a large condition number. We constrain

each element of weight vector, ws;i, within ½c�; cþ� to avoid strong

domination by a few shape basis vectors.
Given ŵs, we can obtain age-adjusted shape at age y by carrying

ŵs over to the shapes at age y and transforming the shape

descriptor back to the original shape space as

Synew ¼ Syŵs ¼ SþVss
y
ŵs
: ð10Þ

The texture simulation process is similarly performed by first

estimating ŵt as

ŵt ¼ argmin
c��wt�cþ

��txnew � txwt

��2 þ rtkwtk2; ð11Þ

and then propogating the ŵt to the target age y followed by the

back projection to get

Tynew ¼ Ty
ŵt
¼ TþVtt

y
ŵt
: ð12Þ

The aging simulation process is illustrated in Fig. 3. Fig. 4

shows an example of aging-simulated face images from a subject at

age 2 in the FG-NET database. Fig. 5 exhibits the example input

images, feature point detection, and pose-corrected and age-

simulated images from a subject in the MORPH database.

5 RESULTS AND DISCUSSION

5.1 Database

There are two well-known public domain databases to evaluate
facial aging models: FG-NET [23] and MORPH [24]. The FG-NET
database contains 1,002 face images of 82 subjects (�12 images/
subject) at different ages, with the minimum age being 0
(<12 months) and the maximum age being 69. There are two
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Fig. 3. Aging simulation from age x to y. Fig. 4. Example aging simulation in FG-NET database. (a) Given image at age 2.
(b) Aging-simulated images from age 0 to 60. (c) Face images at five different
poses from the aging-simulated image at age 20. (d) Ground truth images.



separate databases in MORPH: Album1 and Album2. MORPH-
Album1 contains 1,690 images from 625 different subjects
(�2:7 images/subject). MORHP-Album2 contains 15,204 images
from 4,039 different subjects (�3:8 images/subject). Another
source of facial aging data that we have used can be found in
the book by Nixon and Galassi [25]. This is a collection of
pictures of four sisters taken every year over a period of 33 years
from 1975 to 2007. We have scanned 132 pictures of the four
subjects (33 per subject) from the book and composed a new
database, called, “BROWNS,” to evaluate our proposed aging
model. We have used the complete FG-NET database for model
construction and evaluated it on FG-NET (in leave-one-person-
out fashion), MORPH-Album1, and BROWNS.

5.2 Face Recognition Tests

We evaluate the performance of the proposed aging model by
comparing the face recognition accuracy of a state-of-the-art
matcher before and after aging simulation. We construct the probe
set, P ¼ fpx1

1 ; . . . ; pxnn g, by selecting one image pxii for each subject i

at age xi in each database, i 2 f1; . . . ; ng, xi 2 f0; . . . ; m� 1g. The
gallery set G ¼ fgy1

1 ; . . . ; gynn g is similarly constructed. We also
created a number of different probe and gallery age groups from
the three databases to demonstrate our model’s effectiveness in
different periods of the aging process.

Aging simulation is performed in both aging and de-aging

directions for each subject i in the probe and each subject j in the

gallery as (xi ! yj) and (yj ! xi). Table 2 summarizes the probe

and gallery data sets used in our face recognition test.
Let P , Pf , and Pa denote the probe, the pose-corrected probe,

and the age-adjusted probe set, respectively. Let G, Gf , and Ga

denote the gallery, the pose-corrected gallery, and age-adjusted

gallery set, respectively. All age-adjusted images are generated (in

leave-one-person-out fashion for FG-NET) using the shape and

texture pattern space. The face recognition test is performed on

the following probe-gallery pairs: P -G, P -Gf , Pf -G, Pf -Gf , Pa-Gf ,

and Pf -Ga. The identification rate for the probe-gallery pair P -G

is the performance on original images without applying the aging

model. The accuracy obtained by fusion of P -G, P -Gf , Pf -G, and

Pf -Gf matchings is regarded as the performance after pose

correction. The accuracy obtained by fusion of all the pairs P -G,

P -Gf , Pf -G, Pf -Gf , Pa-Gf , and Pf -Ga represents the performance

after aging simulation. A simple score-sum-based fusion is used

in all the experiments.

5.3 Effects of Different Cropping Methods

We study the performance of the face recognition system with

different face cropping methods. An illustration of the cropping

results obtained by different approaches is shown in Fig. 6. The

first column shows the input face image and the second column

shows the cropped face obtained using the 68 feature points

provided in the FG-NET database, without pose correction. The

third column shows the cropped face obtained with the additional

13 points (total 81 feature points) for forehead inclusion, without

any pose correction. The last column shows the cropping obtained

by the 81 feature points, with pose correction.
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Fig. 5. Example aging simulation process in MORPH database. (a) Input images
(ages 16, 25, 39, and 42 from the same subject). (b) Feature poing detection
(AAM). (c) Pose correction. (d) Aging simulation at indicated ages for each of the
four images in (a).

TABLE 2
Probe and Gallery Data Used in Face Recognition Tests

Fig. 6. Example images showing different face cropping methods: (a) original,
(b) no-forehead and no pose correction, (c) no pose correction with forehead,
(d) pose correction with forehead.



Fig. 7a shows the face recognition performance on FG-NET

using only shape modeling based on different face cropping

methods and feature point detection methods. Face images with

pose correction that include the forehead show the best perfor-

mance. This result shows that the forehead does influence the face

recognition performance, although it has been a common practice

to remove the forehead in AAM-based feature point detection and

subsequent face modeling [4], [6], [18]. We therefore evaluate our

aging simulation with the model that contains the forehead region

with pose correction.

5.4 Effects of Different Strategies in Employing Shape
and Texture

Most of the existing face aging modeling techniques use either only
shape or a combination of shape and texture [3], [4], [5], [6], [7]. We
have tested our aging model with shape only, separate shape and
texture, and combined shape and texture modeling. In our test of
the combined scheme, the shape and the texture are concatenated
and a second stage of principle component analysis is applied to
remove the possible correlation between shape and texture as in
the AAM face modeling technique.

Fig. 7b shows the face recognition performance of different
approaches to shape and texture modeling. We have observed
consistent performance drop in face recognition performance when
the texture is used together with the shape. The best performance is
observed by combining shape modeling and shapeþ texture
modeling using score-level fusion. When simulating the texture,
we have blended the aging-simulated texture and the original
texture with equal weights. Unlike the shape, the texture is a higher
dimensional vector that can easily deviate from its original identity
after the aging simulation. Even though performing aging simula-
tion on texture produces more realistic face images, it can easily lose
the original face-based identity information. The blending process
with the original texture reduces the deviation and generates better
recognition performance. In Fig. 7b, shapeþ texture modeling
represents separate modeling of shape and texture, shapeþ
texture� 0:5 represents the same procedure but with the blending
of the simulated texture with the original texture. We use the fusion
of shape and shapeþ texture� 0:5 strategy for the following aging
modeling experiments.

5.5 Effects of Different Filling Methods in Model
Construction

We tried a few different methods of filling missing values in aging
pattern space construction (see Section 3.1): linear, v-RBF, and RBF.
The rank-one accuracies are obtained as 36.12 percent, 35.19 per-
cent, and 36.35 percent in shapeþ texture� 0:5 modeling method
for linear, v-RBF, and RBF methods, respectively. We chose the
linear interpolation method in the rest of the experiments for the
following reasons: 1) The difference is minor, 2) linear interpolation
is computationally efficient, and 3) the calculation of RBF-based
mapping function can be ill-posed.

Fig. 8 provides the Cumulative Match Characteristic (CMC)
curves with original, pose-corrected and aging-simulated images
in FG-NET, MORPH, and BROWNS, respectively. It can be seen
that there are significant performance improvements after aging
modeling and simulation in all the three databases. The order of
improvement due to aging simulation is more or less similar with
those of other studies as shown in Table 1. However, we have used
FaceVACS, a state-of-the-art face matcher, which is known to be
more robust against internal and external facial variations (e.g.,
pose, lighting, expression, etc.) than simple PCA-based matchers.
We argue that the performance gain using FaceVACS is more
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Fig. 7. Cumulative match characteristic (CMC) curves with different methods of
face cropping and shape and texture modeling. (a) CMC with different methods of
face cropping. (b) CMC with different methods of shape and texture modeling.

Fig. 8. Cumulative match characteristic (CMC) curves. (a) FG-NET. (b) MORPH. (c) BROWNS.



realistic than that of a PCA matcher reported in other studies.

Further, unlike other studies, we have used the entire FG-NET and

MORPH-Album1 in our experiments. Another unique attribute of

our studies is that the model is built on FG-NET and then

evaluated on MORPH and BROWNS.

Fig. 9 presents the rank-one identification accuracies for each
of the 42 different age pair groups of probe and gallery in FG-
NET database. The aging process can be separated as growth
and development (age � 18) and adult aging process (age > 18).
The face recognition performance is somewhat lower in the
growth process where more changes occurs in the facial
appearance. However, our aging process provides performance
improvements in both the age groups, �18 and >18. The
average recognition results for age groups �18 are improved
from 17.3 percent to 24.8 percent and those for age groups >18
are improved from 38.5 percent to 54.2 percent.

Matching results for seven subjects in FG-NET are demon-
strated in Fig. 10. The face recognition fails without aging
simulation but succeeds with aging simulations for the first five
of the seven subjects. The aging simulation fails to provide correct
matchings for the last two subjects, possibly due to poor texture
quality (for the sixth subject) or large pose and illumination
variation (for the seventh subject).

The proposed aging model construction takes about 44 seconds.
The aging model is constructed offline; therefore, its computation
time is not a major concern. In the recognition stage, the entire
process, including feature points detection, aging simulation,
enrollment, and matching takes about 12 seconds per probe image.
Note that the gallery images are preprocessed offline. All
computation times are measured on a Pentium 4, 3.2 GHz, 3GByte
RAM machine.

6 CONCLUSION AND FUTURE WORK

We have proposed a 3D facial aging model and simulation method
for age-invariant face recognition. The extension of shape model-
ing from 2D to 3D domain gives additional capability of
compensating for pose and, potentially, lighting variations. More-
over, we believe that the use of 3D model provides more powerful
modeling capability than 2D age modeling proposed earlier
because the change in human face configuration occurs in 3D
domain. We have evaluated our approach using a state-of-the-art
commercial face recognition engine (FaceVACS), and showed
improvements in face recognition performance on three different
publicly available aging databases. We have shown that our
method is capable of handling both growth (developmental) and
adult face aging effects.

Exploring different (nonlinear) methods for building aging
pattern space given noisy 2D or 3D shape and texture data with
cross validation of the aging pattern space and aging simulation
results in terms of face recognition performance can further
improve simulated aging. Age estimation is crucial if a fully
automatic age-invariant face recognition system is needed.
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Fig. 9. Rank-one identification accuracies for each probe and gallery age groups: (a) before aging simulation, (b) after aging simulation, and (c) the amount of
improvement after aging simulation.

Fig. 10. Example matching results before and after aging simulation for seven
different subjects: (a) probe, (b) pose-corrected probe, (c) age-adjusted probe,
(d) pose-corrected gallery, and (e) gallery. All of the images in (b) failed to
match with the corresponding images in (d), but images in (c) were
successfully matched to the corresponding images in (d) for the first five
subjects. Matching for the last two subjects failed both before and after aging
simulation. The ages of (probe, gallery) pairs are (0,18), (0,9), (4,14), (3,20),
(30,49), (0,7) and (23,31), respectively, from the top to bottom row.
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