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Face Tracking and Recognition at a Distance: A
Coaxial and Concentric PTZ Camera System

Unsang Park, Member, IEEE, Hyun-Cheol Choi, Anil K. Jain, Fellow, IEEE, and Seong-Whan Lee, Fellow, IEEE

Abstract—Face recognition has been regarded as an effective
method for subject identification at a distance because of its covert
and remote sensing capability. However, face images have a low
resolution when they are captured at a distance (say, larger than
5 meters) thereby degrading the face matching performance. To
address this problem, we propose an imaging system consisting of
static and pan-tilt-zoom (PTZ) cameras to acquire high resolution
face images up to a distance of 12 meters. We propose a novel
coaxial-concentric camera configuration between the static and
PTZ cameras to achieve the distance invariance property using a
simple calibration scheme. We also use a linear prediction model
and camera motion control to mitigate delays in image processing
and mechanical camera motion. Our imaging system was used to
track 50 different subjects and their faces at distances ranging
from 6 to 12 meters. The matching scenario consisted of these
50 subjects as probe and additional 10 000 subjects as gallery.
Rank-1 identification accuracy of 91.5% was achieved compared
to 0% rank-1 accuracy of the conventional camera system using
a state-of-the-art matcher. The proposed camera system can op-
erate at a larger distance (up to 50 meters) by replacing the static
camera with a PTZ camera to detect a subject at a larger distance
and control the second PTZ camera to capture the high-resolution
face image.

Index Terms—Face recognition at a distance, PTZ camera,
coaxial, concentric, tracking.

I. INTRODUCTION

F ACE recognition in surveillance environments is crucial
to identify potential terrorists and criminals on a watch

list. While the performance of face recognition has improved
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substantially in the last decade [2], [3], the intrinsic (expres-
sion, aging, etc.) and extrinsic (illumination, pose, etc.) varia-
tions are still the major bottlenecks in face recognition. Face
recognition at a distance of over 5 meters introduces another
challenge, namely the low image resolution problem. Typical
commercial face recognition engines require face images with at
least 60 pixels between the eyes (called interpupillary distance)
for successful recognition, which is difficult to achieve in many
surveillance systems. Fig. 1 shows degradations in image reso-
lution as the standoff between the camera and subject increases.
Existing approaches that have studied face recognition at

a distance can be essentially categorized into two groups:
(i) generating a super resolution face image from the given low
resolution image and (ii) acquiring high resolution face image
using a special camera system (e.g., a high resolution camera
or a PTZ1 camera). While reconstructing a high resolution face
image from its low resolution counterpart(s) can improve image
quality and help the face recognition process, the performance
of this approach highly depends on the training data. High-res-
olution cameras can potentially overcome the low resolution
problem, but either they expect the subject to be at a fixed
location/distance or the camera has to be manually focused
on the subject. The above mentioned limitations have lead to
the extensive use of Pan-Tilt-Zoom (PTZ) cameras, since PTZ
cameras provide an inexpensive way to automatically track and
obtain close-up face images of subjects of interest. However,
the field of view of PTZ cameras is severely limited when it
zooms into an object. Therefore, systems with paired static
and PTZ cameras have emerged as a promising method to
achieve tracking and zooming capability for wide surveillance
areas; the static camera provides the wide field of view and
then directs the PTZ camera to obtain high resolution images
of target objects. The main challenge faced by such a system
arises in registering the image coordinates of static camera and
the pan and tilt angles of the PTZ camera. Due to the lack of
depth information, the image coordinates of the static camera
are not in one to one correspondence with pan and tilt angles of
the PTZ camera. A direct estimation of the depth using a 3-D
sensor or stereography method could be a possible solution, but
they are either too expensive or not sufficiently accurate.
Dedeoglu et al. [33] recognized faces in low resolution

images using the super-resolution method. Park et al. [34]
proposed a stepwise reconstruction of a high-resolution facial
image based on the extended morphable face model. The
performances of their systems [33], [34] is highly dependent
on the training data and the recognition accuracy rapidly drops
when the image resolution is less than 16 16. Yao et al. [35]

1P, T, and Z represent pan, tilt, and zoom, respectively.

1556-6013 © 2013 IEEE
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Fig. 1. Images at three different distances (1–5 m): (a) images captured by
a webcam (Logitech, Pro9000, image size of 640 480) and (b) face images
cropped and resized. The interpupillary distances (IPDs) are 35, 12, and 7 pixels
from left to right, respectively.

used a high magnification static camera to capture face images
at long distances (50–300 m). However, the camera does not
provide pan and tilt motion, resulting in a very small field of
view. Bernardin et al. [4] proposed an automatic system for the
monitoring of indoor environments using a single PTZ camera.
However, their system requires frontal pose in every frame to
properly control the PTZ camera and the system has to zoom
out when it fails to detect the face. Scotti et al. [24] and Chen
et al. [23] used an omnidirectional camera for the monitoring
of wide area. Everts et al. [11] and Liao et al. [12] used PTZ
cameras to monitor wide areas in zoomed-out mode and used
them to zoom-in and capture high resolution images whenever
possible. Marchesotti et al. [18] used a pair of static and PTZ
cameras to capture high resolution face images. Hampapur
et al. [31] used multiple static cameras and a PTZ camera to
accurately estimate the 3-D world coordinates of a subject’s
face and then zoom into the face to capture a high resolution
image. Stillman [30] used multiple static cameras to estimate
the location of a person in a calibrated scene, where the PTZ
camera tracks the detected face. Most of these systems rely
on the reconstruction of 3-D world coordinates or a crude
approximation of the calibration between static and PTZ cam-
eras. The 3-D world coordinate estimation is computationally
expensive and is not suitable for real time applications. Table I
summarizes most of the available approaches to recognize a
face at a distance using PTZ camera(s). These methods can be
categorized in terms of the number of static and PTZ cameras
as below.
• Single PTZ camera: face location is first estimated in the
zoomed-out view and the camera is controlled to acquire
a high resolution face image. However, the single PTZ
camera needs to continuously zoom in and out, so it is very
easy to loose track of moving subjects.

• Single static camera and PTZ camera(s): The face location
is estimated in the static view and the PTZ camera is con-
trolled to capture a high resolution face image [22], [17],
[19], [24], [21], [22], [36], [23], [26], [29]. However, due
to the lack of depth information ( coordinate), it is dif-
ficult to accurately estimate the values in the static
image. So, most of the automatic tracking systems using
PTZ cameras provide a limited operating range and do not
capitalize on the zooming feature of the PTZ camera. The
main challenge faced by such a system is the camera cal-

ibration; image coordinates of static camera are calibrated
to obtain the pan and tilt angle values of the PTZ camera.

• Dual (multiple) static cameras and PTZ camera(s) [31],
[32], [30]: multiple static views allow stereographic recon-
struction to estimate the 3-D world coordinates. However,
the stereographic reconstruction is computationally expen-
sive and has a limited operating range. Multiple static cam-
eras are utilized primarily to increase the surveillance cov-
erage, while multiple PTZ cameras are considered to track
multiple subjects concurrently.

• Single static high resolution camera [35]: by using a tele-
scope attached to the camera, face image can be acquired at
long distances (indoor: 10–16 m and outdoor: 50–300 m),
but the field of view is severely limited. By using a high
definition video camera, the field of view is increased, but
the operating distance becomes smaller compared to the
system using PTZ cameras.

Systems using static and PTZ cameras require a camera
calibration process to correlate the world coordinates, image
coordinates of static cameras, and parameters that control
the PTZ cameras. To facilitate this calibration process, we
propose a Coaxial-Concentric camera system that uses PTZ
and static cameras with a relative camera calibration scheme
between the image coordinate of static camera, , and
PTZ camera parameters, . Compared to other camera
systems proposed in the literature, our approach has the fol-
lowing advantages: (i) calibration process does not involve the
world coordinates, (ii) only one relative calibration process is
required and the calibrated system can be easily deployed at a
different location with no recalibration, (iii) face images can be
captured irrespective of the distance between the camera and
subject, and (iv) by predicting subject’s location and a camera
speed control scheme, we obtain a smooth PTZ camera control
capability.
The Coaxial-Concentric camera system developed by us was

evaluated in a face recognition test with 50 probe subjects and
10,050 gallery subjects. The probe images were captured at dis-
tances ranging from 6 to 12 m whereas the gallery subjects are
typical mug shots captured at a distance of about 1 m. A rank-1
identification accuracy of 91.5% was obtained in case of single
person tracking. For multiperson tracking in four different sce-
narios with 3 subjects, a rank-1 accuracy of 93.4%was obtained.

II. CAMERA CALIBRATION

A. Problem Formulation

We first define the variables used to describe the proposed
camera system.
• : target (face) location in the real
world coordinate system

• : real world coordinate at
calibration distance corresponding to

• : image coordinate of the th static camera
• : pan, tilt, and zoom parameters to control
the PTZ camera; represents

• : displacement vector from the focal point
of the static camera to the center of rotation of the PTZ
camera
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TABLE I
COMPARISON OF SURVEILLANCE SYSTEMS THAT USE PTZ CAMERA

Our objective is to drive the PTZ camera via the parame-
ters towards the face location to capture a high resolution
face image (interpupillary distance greater than 60 pixels). To
determine the desired , we can either try to directly esti-
mate or use the relationship between and .

B. Coaxial-Concentric Camera Calibration

The conventional camera calibration process typically refers
to establishing the relationship between the world coordinate
and static image coordinate systems [37], [38]. The calibration
process in PTZ camera systems for the high resolution face
image acquisition involves calculating the relationship between
the world coordinate and parameters via the image coordi-
nates of static camera; the calibration between the world coor-

dinate and static image coordinate is not needed. Therefore, the
calibration process involves calculating the mapping function
from to . The zoom parameter is obtained based on
the estimated object (face) size (see Section II-D). The mapping
function can be calculated by a linear equation using a set of
corresponding ground truth values of and as:

(1)

We find a set of corresponding point pairs between and
by manually driving the PTZ camera to a number of dif-

ferent positions (15 in our case) in the static view. Even though
a nonlinear mapping function gave smaller residual error in our
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Fig. 2. Schematics of (a) noncoaxial-concentric and (b) coaxial-concentric camera systems. Targets (faces) at two different locations being projected to the same
spot on the image plane share the same pan and title angles for the PTZ camera control in the proposed coaxial-concentric camera system. (a) Noncoaxial-concentric
configuration. (b) Coaxial-concentric configuration.

experiments, we chose to use the linear method for computa-
tional efficiency.
Fig. 2(a) shows that the world coordinates of a target ap-

pearing at two different locations correspond to the same image
coordinate in the static view . As a result, the desired
values obtained from the image coordinates of the static view
may not always give the correct pan and tilt values to accu-
rately capture the image of an object in the PTZ view. The
error between the desired and calibrated values is defined
as follows:

(2)

The condition to achieve the minimum error can be derived
as:

(3)

where is the angle between and . We call
the condition a degenerate case where only
the Coaxial condition is partly satisfied (See Appendix B for
more detail). The expanded derivation of (3) is provided in the
Appendix A.
In order to minimize the error in , at least one of the fol-

lowing conditions must be satisfied: (1) the object must be ob-
served at the calibrated distance or (2) the focal point
of static camera and center of rotation of PTZ camera coincide

. In case an object is located at farther or closer dis-
tance than the calibrated distance, the object will not be in the
center of the PTZ camera’s field of view, as shown in Fig. 3(a).
The first condition is difficult to satisfy in practice because the
object can appear at any distance from the camera independent
of the calibrated distance. However, the second condition can be
satisfied using the proposed camera configuration, whichwe call
the Coaxial-Concentric camera configuration. Fig. 4 shows the
simulation results of the amount of error with different values
of and . It can be seen that the error is always zero when

, regardless of or . The error also increases
with at fixed and . The overall error decreases
as increases.
The proposed Coaxial-Concentric configuration of static

and PTZ cameras has the following properties: (i) coaxial; the
axes of both the cameras are parallel so that the views of static
and PTZ cameras overlap and (ii) concentric; focal point of
static camera and center of rotation of PTZ camera coincide

. Due to the infeasibility of designing such a hard-
ware system,2 we propose two types of camera systems that
effectively satisfy the requirements of coaxial and concentric
camera configurations as follows.
1) Camera System With Dual Static Cameras: We configure

two static cameras, one above (horizontal camera), and one be-
side (vertical camera) the PTZ camera, so that the coordi-
nate ( coordinate) of the horizontal (vertical) camera’s focal
point coincides with the coordinate ( coordinate) of the PTZ
camera’s center of rotation as shown in Fig. 5(a) [1]. All cameras
are also configured to have parallel camera axes. The mapping
function from the static image coordinate to the pan-tilt pa-
rameters can thus be estimated as from the
coordinates of the horizontal and vertical static cameras. How-
ever, this configuration is computationally demanding since it
has to estimate corresponding points in the two static camera
images.

2The concentric configuration requires two different cameras physically
overlapped.
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Fig. 3. Facial images at a distance of 5 to 10 m. The PTZ camera was controlled by a static camera (a) in noncoaxial-concentric configuration and (b) in the
proposed coaxial-concentric configuration ( m). The IPDs are 60 pixels for images in row (b). Note that the proposed system keeps the target face
in the center of the image frame.

Fig. 4. Localization error in degrees between the desired and es-
timated directions of the PTZ camera with respect to the ratio between

and and the distance between the static and PTZ cam-
eras. The error is minimized when or . (a) m.
(b) m. (c) m.

2) Camera System With a Beam Splitter: A beam splitter is
an optical device that splits a beam of light into two. We con-
figure a hexahedral dark box with one of its side tilted by 45 de-
grees and attached to a beam splitter as shown in Figs. 5(d)
and 6. The inside of the hexahedral box also needs to be suf-
ficiently dark to get sharp images. PTZ camera is configured in-
side the dark box and the static camera is placed outside the box.
The incident beam is split at the beam splitter and captured by
both PTZ and static cameras to provide almost the same image3

to both the cameras. All the camera axes are effectively par-
allel in this configuration. This configuration enables the use of
a single static camera to estimate the pan and tilt parameters of
the PTZ camera.
Fig. 3 shows the effectiveness of the proposed Coaxial and

Concentric system over the Noncoaxial-Concentric system. In
Fig. 3, the mapping function is calculated at m,
the resolution of the PTZ camera images is 640 480, the zoom
is controlled to capture the target face with pixels of IPD,
and the face images are captured from five to ten4 meter range.
The Coaxial-Concentric system captures the face in the center
of the image at all distances, while the Noncoaxial-Concen-
tric system ( cm) is not even able to capture the
face as the distance increases. The proposed Coaxial-Concen-
tric camera system can also be operated at a distance of less
than 5 m or larger than 12 m. However, for distances larger than
12 m the static camera used in our system (with a resolution of
1280 720) cannot reliably detect the subject and his face lo-
cation5. We manually adjusted camera positions to ensure the

3Images are slightly different due to the differences in camera optics (e.g.,
lens, charge-coupled device, etc.).
4Our system can handle objects up to 12 meters.
5This is the highest image resolution static and PTZ type of cameras available

in the market with regular video frame rate .

system satisfied the Coaxial-Concentric requirement. Since it is
difficult to directly match static camera’s focal point and PTZ
camera’s center of rotation, we tried to make two cameras’ cen-
ters coincide by manually adjusting two cameras while overlap-
ping their captured images. This is actually making their focal
points coincide, but the experimental results demonstrate that
the Coaxial-Concentric configuration is well established.

C. Subject Tracking

We use a conventional background subtraction method [39],
followed by morphological operations to obtain the “blob” as-
sociated with the subjects in the field of view (Fig. 7(c)). Back-
ground subtraction method is a commonly used technique to
segment an object from the background. However, the segmen-
tation often fails when the color of the object is similar to the
background as shown in Fig. 7(c). Thus, we utilize a heuristic
clusteringmethod to combine nearby blobs as shown in Fig. 7(d)
to improve the segmentation.
Typical blob tracking processes utilize the size of overlap-

ping area [40], or other blob features such as color or distance
between the blobs. A combination of various blob features
(e.g., color, distance, etc.) are also used to create the so-called
matching matrices [41]. In many cases, Kalman filter is used to
predict the position of the blob in a frame and match it with the
closest blob [42]. The use of blob trajectory [42] or blob color
[40] helps to solve occlusion problems.
After the blob detection, we compare the detected blobs in

each frame to associate an ID with smooth spatio-temporal con-
tinuity. Given a captured image, , detect blobs

in each image. Let represent the number
of blobs, , in the th image. Then, the addition or removal of
a blob (person) can be decided by comparing and . The
blobs in the th image can be associated with those in th
image by comparing the similarities between and .
This person tracking is essentially associating the membership
of blobs detected in each image, , or in succes-
sive images, and . Rather than comparing and ,
we introduce the predicted blob, and com-
pare and . The predicted blob, , is computed using

. The prediction starts after a minimum number
of frames are captured. Algorithm 1 summarizes the

person tracking algorithm.
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Fig. 5. Schematic of the proposed coaxial-concentric camera systems and the corresponding face images obtained at global and close-up views: (a) two static
cameras are placed above and beside the PTZ camera to generate the virtual camera in a coaxial position w.r.t. the PTZ camera and (c) beam splitter divides a
beam of light into the static and PTZ cameras. (b) and (d) are the images of the actual camera system corresponding to (a) and (c), respectively, and their static and
PTZ views. (a) Schematic of the proposed camera system with two cameras. (b) Actual implementation of the proposed system described in (a). (c) Schematic of
the proposed camera system with a beam splitter. (d) Actual implementation of the proposed system described in (c).

Algorithm 1 Blob tracking algorithm

for do
if then

else
predict

Associate membership of with
based on .

end if
end for

In order to calculate of the similarity between blobs in succes-
sive frames, we use three different attributes of each blob, head
coordinates, color, and size. These attributes are represented by

, and , for the th blob in the th image.

The location of the head is estimated using the height of the
blob; the height of head is empirically estimated as one seventh
the height of a blob. The prediction of a blob property is cal-
culated by using a linear prediction model. Let and
denote the location of a blob in the th frame and be
the time (ms) of observation of and . Then, the pre-
dicted head position , in the th image can be computed
from a number of previously estimated values using the
following two-step recursive update

(4)
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Fig. 6. Cross-sectional diagram of the proposed camera system using a beam
splitter.

Fig. 7. Object detection: (a) background image, (b) input image, (c) back-
ground subtraction to obtain blobs, and (d) detected objects.

The predicted position of the head is

(5)

The color and size can be similarly predicted by (4) and
(5). The predicted blob properties, , are av-
eraged with the observed properties in the previous image,

, to smooth noisy estimates. The predicted
blob properties are finally used to calculate the similarity
between each blob in successive images.
We define the similarity score between the th predicted and
th observed head positions in the th frame as

(6)

where and are horizontal and vertical length of
static camera images.
When a subject is moving, his limbs are often fragmented,

whereas the torso part is rather stable. Furthermore, the color
of the torso is more stable than that of, e.g., his shirt sleeve’s.
Therefore, we estimate the torso region with respect to the ratio
of height and width of the blob and compute the similarity be-
tween blobs based on the average RGB colors of the torso re-
gions as

(7)

where the component values of RGB color are stored as integer
numbers in the range [0, 255].
We also consider the size of blobs in terms of their width and

height as

(8)

This method shows better performance than using the diag-
onal length of a blob because the diagonal length can have the
same value for two different blobs with different shapes. The
final similarity score is calculate by taking the summation of
three scores as

(9)

with equal weights. Fig. 8 shows an example of the blob
similarity comparison process. For each blob being tracked, a
random ID is assigned to differentiate it from the other blobs.
When a blob is identified in the high resolution face images
captured by the proposed system, the blob is assigned with a
permanent ID.

D. Zoom Control

The height of detected objects in static camera images is used
for zoom control. We manually measure ten magnification fac-
tors of the PTZ camera to ensure that the distance between the
two eyes is at least 100 (60) pixels in the PTZ viewwith a resolu-
tion of 1280 720 (640 360) pixels and their corresponding
blob heights from a set of training data. A quadratic mapping
function between the height of the blob and zoom values

of the PTZ camera is obtained by

(10)

E. System Configuration

There are two different implementations of the proposed
system: (1) System without a beam splitter: two Sony EVI-HD1
cameras are used as static cameras to obtain the vertical and
horizontal global views and one Sony EVI-D100 camera is
used as a PTZ camera to track and acquire high resolution face
images at a distance. The image resolutions are 720 360 and
720 486 pixels for the static and PTZ views, respectively.
(2) System with beam splitter: two Sony EVI-HD1 cameras
set to 1280 720 pixel resolution are used as static and PTZ
cameras. All image acquisition and processing modules are
implemented in C++ and utilize the OpenCV Library [43]. The
PTZ camera is controlled using the standard RS-232 serial port.
The tracking and camera control components run in real time
(8 fps) on a quad core Intel 2.8 GHz machine.
The system is decomposed into static camera processing and

dynamic camera control modules (Fig. 9). The former includes
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Fig. 8. Example of person tracking with three features (head position, color, and size) in static view: blobs in (a) are from previous image frames ( and )
and (b) current image frame ; (c) features of predicted blobs at ; (d) observed blobs at ; (e) scores based on head positions; (f) scores based on the color of
torsos; (g) scores based on the size; (h) final scores obtained by combining scores in (e), (f), and (g). The symbols 1, 2, and 3 are used for identified blobs (subjects)
and a, b, and c are used for unidentified blobs. The tracking process finds the correct association of a, b, and c with 1, 2, and 3.

Fig. 9. Schematic of the process flow in the proposed camera system.

includes image capture, background subtraction, and object and
head tracking. The latter performs face location prediction and
camera control (i.e., pan-tilt and speed control). The static pro-
cessing module sends target locations of faces in each frame
to the dynamic camera control module. The PTZ camera con-
trol module adjusts pan-tilt angles to observe the target(s) in the
field of view.

III. CAMERA CONTROL FOR SMOOTH TRACKING

There are two components in the PTZ camera control module:
the pan and tilt parameter controller (PTC) and the motion ve-
locity controller (MVC). The PTC predicts the next head loca-
tion given the previous head trajectory. The estimated head lo-
cation is converted to pan and tilt values. Given a set of pan and
tilt values, the MVC controls the velocity of pan and tilt motion.
While there have been a few previous studies on the static image
processing part [44], no systematic study has been reported on
the dynamic camera control part.

A. Pan and Tilt Controller

The objective of the camera control is to keep the subject
being tracked in the center of the PTZ camera view. By setting
the head location to the center of the PTZ camera view, the pos-
sibility of losing track of the face in the next frame is minimized.
Controlling the camera with the current location of the head and
its corresponding pan and tilt values does not provide robust
tracking capability due to delays in image processing and me-
chanical camera motion. To solve this problem, we use a linear
predictionmodel similar to the predictionmodel used in the blob
tracking process (see Section II-C).

B. Motion Velocity Controller

The PTZ camera in our system provides 24 levels of pan
speeds from 2 to 300 degrees/sec and 20 levels of tilt speeds
from 2 to 125 degrees/sec. In typical PTZ camera systems, a
fixed speed is used at each camera control command. However,
the fixed speed strategy can cause nonsmooth control of the
camera, resulting in a higher probability of losing the subject
or resulting in a blurred image. In our system, the PTZ camera
speed is calculated based on the current and the next predicted
head location (average speed). Fig. 10 shows a comparison of
the two different camera velocity control methods: (i) fixed
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Fig. 10. Motion velocity-time graphs: (a) ground truth pan value-time graph of
a PTZ camera during the tracking process, (b) ground truth velocity-time graph
and simulated velocity-time graph by using (c) fixed velocity and (d) average
velocity.

velocity and (ii) average velocity. Fig. 10(a) indicates ground
truth pan values of a PTZ camera in tracking a moving object,
extracted from a 30-second static video (60 fps) and Fig. 10(b)
is the ground truth pan velocity-time graph. Assuming that
the speed of PTZ camera is controlled once every second,
Figs. 10(c) and (d) show simulated results of pan velocity-time
graph for fixed velocity and average velocity methods. While
the fixed speed method shows discontinuous speed profile, the
average speed method shows a smoother profile that is more
similar to the ground truth pan velocity-time graph.

IV. APPLICATION TO FACE RECOGNITION

In order to verify the face recognition capability of the pro-
posed system in surveillance applications, we conducted face
recognition tests at a distance of up to 12 meters. We compared
the face identification accuracies using both the conventional
static camera and the proposed camera systems to show the ef-
fectiveness of the proposed system. All the data were collected
using the two-camera system with a beam splitter because of its
lower computational complexity compared to the three-camera
system. Our earlier results with the three-camera system can be
found in [1].

A. Experimental Data

We captured probe images of subjects by using the proposed
system with a beam splitter in two different surveillance sce-
narios as follows.
1) Single Person Tracking: We captured videos of 50 sub-

jects at a distance ranging from 6 to 12 m using both static
(Fig. 11(c)) and PTZ cameras (Fig. 11(b)). All the video data
were collected indoors at Korea University campus; the subjects
were Korea university students. Each subject was asked to walk
starting at about 12 m from the camera up to about 6 m distance
by making an S-shaped path to evaluate the tracking capability

Fig. 11. Gallery and probe images captured by the proposed system: (a) frontal,
left and right facial images for gallery and probe images captured by (b) PTZ
camera and (c) static camera.

of the proposed system. The average duration of each video is
about 25 seconds at 30 fps.
2) Multiperson Tracking: We captured 40 videos of 3 sub-

jects at a distance ranging from 5 to 10 m in 4 different scenarios
as shown in Fig. 12: (1) people are not moving, (2) people are
moving without overlap, (3) people are crossing each other, and
(4) people are passing each other in the same direction. After
200 frames have been captured for a subject, the camera system
automatically moves towards other subjects not yet identified.
Each video is manually segmented according to the subjects in
the field of view to establish the ground truth to evaluate the face
recognition performance.
The gallery data consists of three images per subject captured

at about 1 m distance from the camera at three different poses
(Fig. 11(a)). Additional 10,000 images of 10,000 subjects from
the MORPH database [45] were added to the gallery to increase
the complexity of face recognition in the identification mode.6

B. Results and Analysis

We performed face recognition experiments using all the
frames in the collected video data set as probe; 102,978 (36,574)
images of 50 subjects and 10,150 (10,009) images of 10,050
(10,003) subjects as gallery for single person (multiperson)
tracking. A commercial face recognition engine, FaceVACS
[46], was used for face detection and recognition. We rejected
probe images with matching scores less than 0.31 and 0.457

in the PTZ view to compare the results of previous experi-
ments with dual static cameras. The range of matching scores
provided by FaceVACS is [0,1]. The probe images from static
views show almost complete failure of face recognition and the
rejection scheme did not help in improving the identification
accuracy. Table II shows the Rank-1 face identification accura-
cies obtained from the static and PTZ views. The single person
recognition results in Table II are slightly lower than those in
[1] because of the increase in the gallery size (from 10,020 to
10,050) and different populations in probe data set (from 20 to
50 subjects). The threshold score used for rejection is indicated
by . While the identification accuracy of the PTZ view is

6Even though the face images inMORPH are different from the faces in probe
videos in terms of pose, overall face size, and ethnicity, it is the only large scale
public domain face image database available.
7The matching scores 0.31 and 0.45 correspond to the smallest nonzero score

and a score with 40% rejection rate, respectively.
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Fig. 12. Four different scenarios to evaluate the tracking capability with multiperson tracking: (a) subjects are stationary, (b) subjects are moving without overlap,
(c) subjects are crossing each other while moving into different directions, and (d) subjects are passing each other while moving in the same direction.

Fig. 13. Example probe images successfully matched at rank-1.

TABLE II
FACE RECOGNITION ACCURACY OF CONVENTIONAL STATIC AND

PROPOSED PTZ CAMERA SYSTEMS

55.1% (42.6%) in single (multi) person tracking, that of the
static view is no better than random guess.
The static camera we used provides image resolution of

1280 720 (width height), which is not sufficiently high to
perform face recognition at a distance over meters. To the
best of knowledge, there is no static camera that can capture
face images at a sufficiently high resolution to perform face
recognition over meters at an affordable cost for surveil-
lance applications. On the other hand, the PTZ camera used
in the experiments can capture face images at a sufficiently
high resolution to perform face recognition at a distance of up
to 50 meters if manually controlled. The current system only
works up to 12 meters with fully automatic control.
Frame level fusions using the score-sum method [47] with

contiguous 2, 5, and 10 frames after rejection scheme

Fig. 14. Example probe images that could not be matched at rank-1 due to
(a) tracking failure, (b) off-frontal pose, (c) motion blur, and (d) nonneutral
expression.

shows further improvement of 23.3% (28.7%) in the iden-
tification accuracy. For example, in the fusion with 5 frames,
the matching scores of the probe image at time to all the
gallery images are summed with those of probe images at time

. The identity is decided based on the summed
scores.
The recognition accuracies of multiperson setup are worse

than those of single person setup up to the fusion of two frames
due to the tracking errors and occlusion. However, multiperson
accuracies outperform those of single person from fusion of five
frames where the tracking noise is compensated. Those three
subjects in the multiperson setup showed slightly higher recog-
nition accuracies compared to other subjects, which is why mul-
tiperson setup showed better accuracy after using frame fusion.
Figs. 14 and 13 show example probe images that were

successfully matched and not successfully matched at rank-1.
Major reasons of the failures are (i) inability to track a face,
(ii) off-frontal facial pose, (iii) motion blur, and (iv) nonneutral
facial expression.

V. CONCLUSIONS AND FUTURE WORK

We have proposed a novel Coaxial-Concentric camera system
that can capture and track high resolution face images (with in-
terpupillary distance of about 100 pixels) at any distance in the
range of 6 to 12 meters for face recognition. The Coaxial-Con-
centric camera configuration provides a large operating distance
to track moving persons and recognize them with high accu-
racy. We have introduced a linear prediction model and a pan
and tilt motion velocity control method for robust tracking. The
face recognition results show the effectiveness of the proposed
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system for fully automatic subject tracking and identification at
a distance of up to 12 meters.
The limitations of the current system are as follows: (i) the

static and PTZ cameras have to be manually adjusted8 to satisfy
the Coaxial-Concentric conditions because the focal point and
center of rotation cannot be directly handled from outside the
cameras; (ii) the operating distance is limited to m due to
the limitation of object detection in static camera; and (iii) the
system can recognize a face only when it is close to the frontal
pose, which is an inherent limitation of the state of the art face
matchers. We plan to seek a more efficient method of calibra-
tion between static and PTZ cameras in the Coaxial-Concentric
configuration. We also plan to extend the operating distance be-
yond 12 meters by using either a high definition static camera or
multiple PTZ cameras to employ multistage zooming process.
In limited scenarios, manual control of the PTZ camera can also
be considered to increase the operating distance.

APPENDIX A

The condition to minimize the error between the desired and
calibrated values in (3) is derived as:

(11)

Expand the right hand side by the definition of vector norm,

(12)

By squaring both sides,

(13)

By expanding brackets and simplifying,

8The manual adjustment is required only once at the initial system setup.
The complete system can be deployed to other places with no further manual
adjustment.

Fig. 15. Schematic of coaxial-concentric and coaxial-only configurations. PTZ
cameras are shown with dotted lines at two different scales according to their
rotation angles. Static camera is supposed to be placed at the concentric posi-
tion, but not shown here. (a) Coaxial and concentric configuration. (b) Coaxial
configuration (not concentric).

(14)

where is the angle between and . Therefore,
the overall error is minimized when is equal to one or is
a zero vector; the first condition cannot be satisfied in practice
because the object can appear at any distance, but the second
condition can be satisfied by using the proposed Coaxial-Con-
centric configuration. The condition is a degen-
erate case where only the Coaxial condition is partly satisfied
(See Appendix B for more detail).

APPENDIX B

The necessity of Concentric configuration is explained here
by contrasting the Coaxial-Concentric configuration versus
Coaxial-only configuration. In Fig. 15(b) the PTZ camera is
Coaxial with the static camera with respect to the line , but
not with respect to . Whereas in Fig. 15(a), the PTZ camera
is Coaxial with the static camera with respect to both and
. This means that the focal point of the static camera and the
center of rotation of the PTZ camera should coincide to make
the cameras Coaxial for any object appearing in the field of the
view of the static camera. Fig. 15(b) also shows the degenerate
case addressed in (3).
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