
2268 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 10, OCTOBER 2016

Secure Face Unlock: Spoof Detection
on Smartphones

Keyurkumar Patel, Student Member, IEEE, Hu Han, Member, IEEE, and Anil K. Jain, Life Fellow, IEEE

Abstract— With the wide deployment of the face recognition
systems in applications from deduplication to mobile device
unlocking, security against the face spoofing attacks requires
increased attention; such attacks can be easily launched
via printed photos, video replays, and 3D masks of a face.
We address the problem of face spoof detection against the print
(photo) and replay (photo or video) attacks based on the analysis
of image distortion (e.g., surface reflection, moiré pattern, color
distortion, and shape deformation) in spoof face images
(or video frames). The application domain of interest is
smartphone unlock, given that the growing number of smart-
phones have the face unlock and mobile payment capabilities.
We build an unconstrained smartphone spoof attack database
(MSU USSA) containing more than 1000 subjects. Both the print
and replay attacks are captured using the front and rear cameras
of a Nexus 5 smartphone. We analyze the image distortion of the
print and replay attacks using different: 1) intensity channels
(R, G, B, and grayscale); 2) image regions (entire image,
detected face, and facial component between nose and chin);
and 3) feature descriptors. We develop an efficient face spoof
detection system on an Android smartphone. Experimental
results on the public-domain Idiap Replay-Attack, CASIA FASD,
and MSU-MFSD databases, and the MSU USSA database show
that the proposed approach is effective in face spoof detection
for both the cross-database and intra-database testing scenarios.
User studies of our Android face spoof detection system involving
20 participants show that the proposed approach works very
well in real application scenarios.

Index Terms— Face antispoofing, face unlock, spoof detection
on smartphone, unconstraint smartphone spoof attack database,
image distortion analysis.

I. INTRODUCTION

W ITH the widespread use of smartphones, biometric
authentication, such as face and fingerprint recognition,

is becoming increasingly popular for confirming user identity.
Two of the most popular smartphone operating systems,
Android and iOS, currently use face and fingerprint
to authenticate users. With the release of Android 4.0

Manuscript received November 30, 2015; revised March 28, 2016 and
May 21, 2016; accepted May 31, 2016. Date of publication June 8, 2016; date
of current version July 21, 2016. This paper was presented at the 8th IAPR
International Conference on Biometrics, Phuket, 2015 [1]. The associate editor
coordinating the review of this manuscript and approving it for publication
was Dr. Sebastien Marcel (Corresponding author: Hu Han).

K. Patel and A. K. Jain are with the Department of Computer Science
and Engineering, Michigan State University, East Lansing, MI 48824 USA
(e-mail: patelke6@msu.edu; jain@msu.edu).

H. Han is with the Key Laboratory of Intelligent Information Processing,
Chinese Academy of Sciences (CAS), Institute of Computing Technology
(ICT), CAS Beijing 100190, China (e-mail: hanhu@ict.ac.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2016.2578288

Fig. 1. A face recognition (FR) system with a spoof detection module. Many
FR systems either do not currently include this module or this module does
not perform effectively. This paper addresses printed photo and replay attacks.

(Ice Cream Sandwich), Android allows users to unlock their
smartphone via facial recognition (FR) technology, and iOS
on all iPhones released after the iPhone 5c allows users to
unlock their smartphone with their fingerprint (Touch ID).
As the use of biometrics for smartphone unlocking and
user authentication continues to increase [2], capabilities to
detect spoof biometric attacks are needed to alleviate fraud
and user concerns. Spoof biometric attacks launched against
smartphone authentications may allow malicious users to gain
access to the smartphone, potentially leading to leakage of
sensitive private data such as banking information via apps
like Google Wallet and Apple Pay.

Given the prevalence of high resolution face images shared,
(often publicly) through social media, it is relatively easy to
obtain a face image of a user and launch a spoof attack against
FR systems as these systems most often do not contain spoof
detection modules (see Fig. 1). Compared to attacks against
fingerprint, iris or speech recognition systems, the ubiquitous
nature of image acquisition devices, such as cameras and
smartphones, allows attackers to acquire facial images of a
user easily and discretely [27]–[35].

A recent study on face recognition using commercial
off-the-shelf (COTS) matchers shows that face matchers are
fragile against face spoof attacks [20], [36]. Spoof attacks
against FR systems mainly consist of (i) print attacks,
(ii) replay attacks, and (iii) 3D mask attacks. Print and replay
attacks are 2D face spoof attacks that can be launched using
a smartphone to obtain a photograph or video of the target
subject’s face. By contrast, 3D face mask attacks require high
resolution fabrication systems capturing the 3D shape and
texture information of the target subject’s face. Therefore, print
and replay attacks can be more easily launched by malicious
individuals than 3D mask attacks. For this reason, we focus

1556-6013 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

PATEL et al.: SECURE FACE UNLOCK: SPOOF DETECTION ON SMARTPHONES 2269

TABLE I

A SUMMARY OF PUBLISHED METHODS ON 2D FACE SPOOF DETECTION

on 2D face spoof attacks, such as printed photos, displayed
photos, and video replays.

Significant progress has been made in biometric spoof
detection technologies of individual modalities [37], [38].
Table I summarizes the state-of-the-art in face spoof detection
methods. Despite this progress, face spoof detection remains
a difficult problem that requires continued efforts. A number
of the published methods are designed to safeguard the FR
system [26] against a specific spoof detection attack, and
thus lack good generalizability to different face spoof attacks
and application scenarios. Additionally, they are based on
databases in which the spoof videos were captured using
either low resolution (e.g., webcam) or very high-resolution
(e.g., DSLR) cameras [4], [7] (e.g., the CASIA FASD and
Idiap databases released in 2012). Therefore, these face spoof
databases are not representative of smartphone unlock sce-
narios. While face spoof detection under the smartphone
unlock scenarios was studied in [20], it used a database
containing only 50 subjects (videos of only 35 subjects are
publicly available). Additionally, results based on a face spoof
detection system running on a smartphone platform were not
reported.

In this paper, we study the problem of face spoof detection
on smartphones using a large unconstrained smartphone spoof
attack database, and provide a prototype face spoof detection
system running on Android. This paper expands upon our
preliminary work [1] in the following ways:

• Collection of a large unconstrained smartphone spoof
attack database (MSU USSA) with diverse 2D face spoof
attacks (printed photos, and displayed photos) from more
than 1, 000 subjects to replicate the real scenarios of
smartphones unlock.1

• A new feature representation method for face liveness
detection by considering the complementarity between
different feature cues.

• Study of reject options using IPD constraint and bezel
detection to efficiently reject easy cases of spoof attacks.

• Verification of the conclusions drawn in [1] by using
the significantly larger MSU USSA database and the
inclusion of several new experiments on MSU USSA.

1A 10k image portion of the MSU USSA database (where subjects
have given approval) will be made available to interested researchers:
http://biometrics.cse.msu.edu/pubs/databases.html.

2270 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 10, OCTOBER 2016

• Promising generalization ability from intra-database to
cross-database testing scenarios.2

• Implementation of the proposed method on Android
smartphones, and tests in real application scenarios.

The remainder of the paper is organized as follows.
In Section II, we briefly review published methods, and 2D
face spoof databases. We detail the analysis of image distor-
tions in 2D spoof face images, and the proposed face spoof
detection approach on smartphones in Sections III and IV,
respectively. Experimental setup, protocols, and results are
given in Section V. Finally, we conclude this work in
Section VI.

II. RELATED WORK

In this section, we summarize published 2D face spoof
detection methods in the literature, give an overview of com-
monly used 2D face spoof databases, and provide details of
the 2D face spoof database that was collected for smartphone
unlock scenarios.

A. Literature Review

As summarized in [38], studies on face spoofing detection
date back over 15 years. Since then, a number of methods
have been proposed for face spoofing detection under print
attacks [4], [6], [8], [10], replay attacks [3], [9], [39], and
3D mask attacks [40]. Since our focus is 2D face spoof attack
detection (on smartphones), we provide a brief summary and
analysis of published 2D face spoof detection methods. Table I
groups the published methods into six categories: (i) face
motion analysis, (ii) face texture analysis, (iii) face 3D depth
analysis, (iv) image quality analysis, (v) frequency domain
analysis, and (vi) active methods.

Spoofing detection methods based on face motion analysis
extract behavioral characteristics of the face, such as eye
blink [4], and lip or head movement [3]. These methods
require accurate face and landmark detection to localize the
facial components. Additionally, multiple frames must be used
in order to estimate the facial motions. These methods are
designed to detect print attacks, and thus are not able to handle
video replay attacks with facial motions.

Spoofing detection methods based on face texture analy-
sis capture the texture differences (due to different reflec-
tion properties of live face and spoof material) between
face images captured from live faces and face images cap-
tured from various spoof mediums (e.g., paper and digital
screen) [7], [8], [42]. These methods can perform spoof
detection based on a single face image, and thus have relatively
fast response. However, face texture analysis based methods
may have poor generalizability when using small training sets
with a limited number of subjects and spoofing scenarios.

Spoofing detection methods based on 3D depth analysis
estimate the 3D depth of a face to discriminate between
3D live face and 2D spoof face [6], [9]. While live faces

2Cross-database testing involves, training on database A and testing on a
different database B, collected in a different setting from database A and with
different subjects. This is in contrast to the easier, but, not realistic protocol of
intra-database testing where, cross-validation is used on a specific database.

are 3D objects, spoof faces presented on 2D planar medium
are 2D. Thus, these methods can be quite effective to identify
2D face spoof attacks if the 3D depth information of a face can
be reliably estimated. Face 3D depth analysis based methods
usually rely on multiple frames to estimate the depth or
3D shape information of a face.

Spoofing detection methods based on image quality analysis
utilize the image quality differences between live face images
and spoof face images [19], [20], [43]. Since the spoof face
images and videos are generated by recapturing live face
images and videos in photographs or screens, there will be
degradations of color, reflection, and blurriness in the spoof
face images compared to the live face images and videos.
These methods have been found to have good generalization
ability to different scenarios [19]. However, studies on face
spoofing detection based on image quality analysis are limited.

Frequency domain based anti-spoofing methods analyze
noise signals in recaptured video to distinguish between live
and spoof face access [10], [22], [23]. During the recapture
of printed photos or video replays, there is a decrease in
low frequency components, and an increase of high frequency
components. In order to quantize these changes, the input is
usually transformed into the frequency domain.

Active methods utilize additional sensors, such as near-
infrared (NIR) and 3D depth to capture a face besides the
2D visual face image [24], [44]. While these methods provide
better robustness against illumination and pose variations of
the face, the use of additional sensors also limit their applica-
tion scope, particularly in smartphone scenarios.

While many of the published methods belonging to the
above five categories report favorable results for intra-database
testing, their effectiveness in cross-database testing scenar-
ios, has not been carefully evaluated. The few publications
that did conduct cross-database testing tend to report poor
results [11], [20], [23]. One plausible approach to improve
the robustness of face spoof detection methods under cross-
database testing scenarios, is to consider fusion of multiple
physiological or behavioral cues [26].

B. 2D Spoof Face Databases

1) Public-Domain Databases: In this section, we review
the commonly used public-domain 2D face spoof databases
in terms of their collection process and their limitations.
Additionally, we discuss the database we collected that
contains diverse 2D face spoof attacks from a large number
of subjects. See Table II.

The Print-attack and Replay-attack databases are both
available from Idiap [36]. Live face videos of subjects were
captured using the webcam on a MacBook and replay attacks
were captured using a Cannon PowerShot SX 150 IS camera
from the screens of iPhone 3GS and iPad I.

Different from the Print-attack and Replay-attack databases,
the spoof face images in the CASIA FASD database were
captured using a variety of cameras (Sony NEX-5-HD, two
low-quality USB) [39].

A key limitation of these databases is that they captured
spoof attacks using either low-resolution cameras (USB

PATEL et al.: SECURE FACE UNLOCK: SPOOF DETECTION ON SMARTPHONES 2271

TABLE II

A SUMMARY OF PUBLIC-DOMAIN 2D FACE SPOOF DATABASES

Webcam for CASIA FASD), or DSLR cameras which are
expensive. The low-quality cameras used to create the Idiap
Replay-Attack and CASIA FASD databases lack autofocus
capability, often leading to the capture of unsharp and low res-
olution videos. Modern smartphones contain high-resolution
front-facing cameras (1.3-megapixels on the Nexus 5 and
8-megapixels on the HTC Desire Eye). Additionally, DSLR
cameras are different compared to smartphone cameras as they
come equipped with anti-aliasing filters in front of the CCD
to minimize moiré patterns.3 Hence, using low-resolution or
DSLR cameras does not replicate the real application scenarios
of interest, namely user authentication on smartphones.

In smartphone unlock, FR systems will capture replay
attacks using their built-in cameras instead of an external
camera. In [20], a database named MSU Mobile Face Spoofing
Database (MFSD) was collected to study the effects of using
such videos or images for spoof attacks against smartphones.
However, the MSU-MFSD contains only 280 video clips of
photo and video attacks from 35 subjects.

2) MSU Unconstrained Smartphone Spoof Attack (USSA)
Database: In [1], we collected a replay attack database for
smartphones with 465 videos from 155 subjects. Of these
465 videos, 155 videos were live face videos, and the remain-
ing 310 videos were spoof face videos which were captured by
showing the live face videos from the Replay Attack, CASIA
FASD, and MSU-MFSD databases on a MacBook screen
(1280 × 800), and recapturing the face videos using the built-
in rear camera of Google Nexus 5 and built-in rear camera of
iPhone 6,4 respectively. Videos were not deliberately captured
to include moiré patterns; only a single attempt was made to

3www.lifepixel.com/blog/anti-aliasing-low-pass-filter-removal
4Nexus 5 spec.: https://en.wikipedia.org/wiki/Nexus_5, iPhone 6 spec.:

https://en.wikipedia.org/wiki/IPhone_6

Fig. 2. Sample images of live and spoof faces from Idiap Replay-attack (top),
CASIA FASD (middle), and MSU MFSD (bottom) databases. (a) Live faces;
(b) Original spoof faces; (c) Spoof faces generated by Google Nexus 5 using
a MacBook for replay from the RAFS database; (d) Spoof faces generated by
iPhone 6 using a MacBook for replay from the RAFS database.

capture the video. Some spoof images are shown in Fig. 2.
A highly desirable property of capturing spoof videos with
smartphone devices is that it simulates input videos that may
be presented to devices that contain FR systems, such as the
Google Nexus 5. The average standoff of the smartphone
camera from the screen of the MacBook was 15 cm to ensure
that replay videos did not contain the bezels (edges) of the
MacBook screen.

In this work, we have significantly increased the number
of subjects (1,000+ subjects) as well as the number of live
face and spoof images (13,000) in the MSU USSA database.
Public-domain spoof databases often lack diversity in terms
of background, illumination, and image quality, and thus do

2272 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 10, OCTOBER 2016

Fig. 3. Sample images of (a) live faces, (b) spoof faces captured by the front
facing camera, (c) spoof faces captured by rear facing camera on the Nexus 5.
The 4 spoof images are captured using 4 spoof mediums in the following order
MacBook, Nexus 5, NVIDIA Shield Tablet, and Printed Photo.

not replicate real application scenarios [45]. The MSU USSA
database was specifically created to ensure that it contains
diversities of environment, image quality, image acquisition
device, and subject. Such a database is essential to obtain
generalizable and robust anti-spoofing methods, particularly
in face unlock scenarios on smartphones. By contrast, existing
databases contain face images with controlled pose, illumina-
tion, and expression variations. The MSU USSA database also
contains a small percentage of partial-frontal face images, as
social media sites often contain such images that could be used
by malicious users to spoof a FR system. Running evaluations
on a large database of this size will provide statistically
significant results for predicting real world performance.

Two versions of the MSU USSA database were created, a
10K (public) and a 13K (private) dataset. The 13K dataset
contains images from subjects who withheld consent to share
their face images with other researchers as well as images
from a private database that we used to supplement the live
face images (2,818 additional images in which users withheld
consent). We will report a majority of the results using the
public set of the MSU USSA database to allow interested
researchers to replicate our findings and further improve face
anti-spoofing capabilities.

To create the MSU USSA database, we used a subset
(1,000 subjects) of the web faces database collected in [46].
This database contains images of celebrities taken under a
variety of backgrounds, illumination conditions and resolu-
tions. We filtered the images to retain only a single frontal
face image. The other 140 subjects are from the Idiap (50),
CASIA FASD (50) and the MSU MFSD (40) public databases.
Thus, the new database contains color face images of 1,140
subjects, where the average resolution of the live face images
is 705 × 865.

In order to capture the spoof attacks, we used both the
front (1280 × 960) and rear (3264 × 2448) facing cameras on
the Google Nexus 5, and spoof mediums such as MacBook,

Fig. 4. Examples of spoof attacks launched using a digital screen show
evidence of surface refection. The two leftmost images show bright indoor
lighting reflecting off a digital screen. The two rightmost images show the
screen of a smartphone reflecting the spoof image it is capturing. Note these
images are not a part of the MSU USSA database.

Fig. 5. Demonstration of how samples of (a) print attacks, and (b) display
and replay attacks were collected, using paper and laptop screen as the spoof
medium and a smartphone as an acquisition device. This set-up simulates how
a user may launch an attack against a FR system.

Nexus 5, and Tablet screens (see Table II). This allows
researchers to study how the quality of the spoof images affects
spoof detection performance. Moreover, it allows researchers
to examine the images to understand how camera quality
affects image quality which in turn affects the presence of
image distortion artifacts (i.e., moiré patterns and reflections).
Additionally, we captured the spoof attacks to minimize illu-
mination reflections such as the ones shown in Fig. 4. Note the
images shown in Fig. 4 are not from the MSU USSA database.

Given that most people have access to a laptop, tablet or
smartphone, we captured replay attacks on all three spoof
mediums. The spoof attacks are captured by showing the live
face image on the screen of one of the spoof mediums and
using both the front and rear facing cameras of the Google
Nexus 5 to capture the simulated attack. This way, the public
set of the MSU USSA database contains 6,840 images of
replay attacks captured using different camera quality and
spoof mediums.

In order to capture printed photo attacks, we printed images
of all 1,140 subjects using a HP Color Laserjet CP6015xh
printer (1200× 600dpi) on a matte 8.5 × 11 inch white paper.
The live subject images were scaled to ensure the image
covered as much of the paper as possible while maintaining
the original image aspect ratio to minimize distortions.
Additionally, we placed the photos in a manner to minimize
reflection from ambient lighting inside our laboratory. Both
the frontal and rear cameras of Nexus 5 were then used
to capture photo attacks. This way, the public set of the
MSU USSA database contains 2,280 images of printed photo
attacks. Figure 5 shows our setup used to capture both printed
photo attacks and replay attacks.

PATEL et al.: SECURE FACE UNLOCK: SPOOF DETECTION ON SMARTPHONES 2273

Fig. 6. Examples of color distortion in spoof attacks due to improper printing
or rendering of live face images. The plots show the histogram of the image’s
hue, saturation and value components.

To demonstrate the utility of the collected database for
face spoof detection studies, we conducted an experiment
using a Commercial Off-The-Shelf (COTS) FR system, which
reported promising results in the Face Recognition Vendor
Tests 2006 (FRVT).5 We enrolled the live face images of the
1,140 subjects into a gallery and used the eight spoof images
captured for each subject (1,140 subjects) as probe images.
In this experiment, at 0.01% FAR, more than 97.7% of the
probe images (spoof faces) were successfully matched to their
corresponding live face images. This indicates that the COTS
matcher cannot effectively distinguish between the live and
spoof face images in MSU USSA, and MSU USSA is realistic
and helpful for studies on face spoof detection.

III. IMAGE DISTORTION ANALYSIS FOR

2D SPOOF FACE IMAGES

Different types of image distortion appear during the recap-
ture of a face image or video, which generally include
(i) surface reflection by the spoof medium, (ii) moiré patterns,
(iii) color distortions, and (iv) shape deformations.

A. Spoof Medium Surface Reflection

2D face spoofing attacks are mainly launched by printing a
face image or displaying a digital face image or video on a
screen. Glossy photo papers and digital screens often generate
specular reflections, which lead to reflection distortions in the
spoof face images (see Fig. 4). Additionally, both paper and
digital screens have different reflective properties than the skin
of a face [21], which leads to reflectance differences between
live and spoof face images.

B. Color Distortion

Color distribution may change during the capture of a face
image, which leads to either reduced color diversity or color

5http://www.nist.gov/itl/iad/ig/frvt-2006.cfm

Fig. 7. Examples of moiré patterns. (a) an overlay of two patterns generates
moiré patterns, (b) moiré patterns exist in color printing with halftoning,
(c) moiré patterns appear while capturing the screen of digital devices, and
(d) moiré patterns appeared in replay attacks in the MSU USSA database that
the authors collected (We magnify the bottom portion of a face to show the
moiré patterns more clearly).

cast. For example, while the color distortion of printed attacks
is due to the quality of the printer and photo paper, the color
distortion of replay attacks is mainly caused by the fidelity
and resolution of the screen [20]. Figure 6 shows the color
distortion in spoof face images from two subjects in the MSU
USSA database.

C. Moiré Pattern

Moiré patterns are an undesired distortion of images caused
by an overlap of digital grids [47]. Moiré patterns appear
when two or more patterns are overlaid on top of each other,
resulting in a third new pattern (Fig. 7 (a)).6 The display
mediums (laptop, smartphone, and tablet screens) exhibit a
naturally occurring fixed repetitive pattern created by the
geometry of color elements that are used for color displays.
Therefore, whenever an image of a digital screen is recorded or
captured, moiré patterns will most likely present themselves
due to the grid overlap between the digital screen and the
digital camera. In color printing with CMYK (cyan, yellow,
magenta, and black) halftoning model, moiré patterns are often
inevitable (Fig. 7 (b)).7 Moiré patterns are also observed in
screen shooting photography (Fig. 7 (c)).8 The fundamental
reason for moiré patterns in screen shooting photography is
the spatial frequency differences between the display and the
acquisition device. For example, when the image (on the
display of a replay device) contains repetitive details that
exceed the camera resolution, moiré patterns are observed.
While moiré patterns may not appear for video replays at
a distance, replay attacks are typically presented close to a
smartphone camera so that the face can be detected. Therefore,
moiré patterns can be quite useful in face spoof detection of
displayed photo and video replay attacks [43].

6www.ishootshows.com/2012/04/09/understanding-moire-patterns-in-
digital-photography/

7users.ecs.soton.ac.uk/km/imaging/course/moire.html
8blog.ishback.com/?cat=132

2274 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 10, OCTOBER 2016

Fig. 8. Example of face shape distortion. (a) Normal face image, (b) skewed
image due to holding the camera closer to the bottom portion of the image
than top of the image, (c) skew caused by bending of the sides of an image.

D. Face Shape Deformation

In print attacks, the bending of the photo paper may lead
to skewed face shape in the spoof images. Additionally, the
viewing direction of the camera will also lead to deformation
of the face shape in the spoof images. Figure 8 shows the face
shape distortion in spoof face images of print attacks for one
of the subjects in the MSU USSA database.

IV. 2D SPOOF FACE DETECTION ON A ANDROID

In this section, we detail the individual steps of the proposed
face spoof detection method for smartphone unlock scenario.

A. Face Detection and Normalization

To detect faces on a smartphone in the input image from
its camera, we used the built-in Android face detector. This
detector only returns the IPD value and the mid-point of the
face if detected; it does not provide coordinates of the left and
right eyes. Thus, we used a scale factor between the IPD and
the mid-point of a detected face to normalize the face image
into an 144 × 120 pixel image. We observed that the Android
face detector returns values that can vary greatly leading
to inconsistent face cropping even in frames captured only
milliseconds apart. This variability in face detection can lead
to inaccurate face spoof detection. Hence, for our experiments
on a desktop, we use the face detector from the PittPatt face
recognition SDK.9

B. Representation

One popular and simple image descriptor for face images is
Local Binary Patterns (LBP) [8]. LBP was later generalized to
multi-scale LBP (MLBP) which has been shown to perform
better than LBP, for example in [48] when matching composite
sketches to face photos. This motivated us to consider MLBP
features in face spoof detection. We also analyzed the SIFT
(scale invariant feature transform) feature descriptor as this
descriptor is largely invariant to scale, illumination, and local
affine distortions [50]. Additionally, we consider a new low
complexity, effective image descriptor called Locally Uniform
Comparison Image Descriptor (LUCID) [49]. Since we are
focusing on 2D face spoof detection which contains printed
photo, displayed photo, and replayed video attacks, we also

9PittPatt was acquired by Google in 2011, and the SDK is no longer publicly
available.

TABLE III

FEATURE DIMENSIONALITY, COMPUTATIONAL COST FOR FEATURE
EXTRACTION, AND SPOOF DETECTION PERFORMANCE ON THE

PRIVATE AND PUBLIC SETS OF THE MSU USSA DATABASE.
A 5-FOLD CROSS-VALIDATION TESTING PROTOCOL

IS USED. BOTH AVERAGE AND THE STANDARD
DEVIATION OF EER ARE REPORTED HERE

chose to use some feature representation methods that work
for both single face image and multiple video frames. Table III
provides a summary of various feature extraction methods that
we considered.

Given the strengths and limitations of individual representa-
tion methods (Table I), we choose our feature representation by
considering the complementarity between different cues. For
example, the color moments based methods depend upon how
the image was presented to the FR system when conducting a
spoof attack. A digital screen such as a laptop or a smartphone
can display millions of colors; thus the color diversity in
a spoof face image might be very similar to a live face
image. However, the color diversity of a photo is greatly
reduced, therefore this feature might be better suited to handle
printed photo attacks. Similarly, blurriness difference exists
between live face images and printed photo attacks. Thus,
we hypothesized that integrating texture features and image
quality features would achieve robust spoof detection.

Given the performance of individual features and require-
ment of a fast-response spoof detection system on smart-
phones, we chose to use a fusion of LBP (effective for face
texture analysis) and color moments (effective for image qual-
ity analysis). Color moments tend to highlight the differences
in color distribution in live face images compared to spoof

PATEL et al.: SECURE FACE UNLOCK: SPOOF DETECTION ON SMARTPHONES 2275

Fig. 9. The top row shows the LBP representation of three different live
subjects. The bottom row shows the LBP representation of the spoof faces of
the same subjects when displayed on a digital screen.

attacks. To calculate these color moments, we first convert an
RGB image into the HSV (Hue, Saturation, and Value) space
and then compute the mean, deviation and skewness of each
channel [20]. To extract the face texture features, we calculate
LBP8,1, with parameter values P = 8, and R = 1, by dividing
the image into 32×32 patches with 16 pixels overlap. Parame-
ter P defines the quantization of the angular space and para-
meter R defines the spatial resolution of the operator (radii).
The LBP features from individual patches are concatenated
together to construct a feature vector with 4,248 dimensions.
As shown in Fig. 9, the LBP feature descriptor can capture
patterns that appear in spoof imagery quite effectively.

The proposed complementary feature representation is
effective in detecting individual image distortion artifacts in
spoof face images (summarized in Section III), particularly
under cross-database testing scenarios. Specifically, while
texture analysis of the proposed approach is effective in
capturing surface reflection, moiré pattern, and shape defor-
mation, image quality analysis of the proposed approach is
effective in capturing color distortion and surface reflection.
Additionally, this 4,263-dimensional feature vector can be
computed very efficiently, 0.021 sec. per face image, on
average (about 47 FPS). Reported times are profiled with
a Matlab implementation on a Windows 7 platform with
Intel Core 2 quad 3.0 GHz CPU and 8GB RAM.

While the previous work in [20] also studied image qual-
ity features for spoof detection, in this work we propose
a complementary feature representation by considering both
image quality and face texture features. Such a representation
leads to more robust performance on the challenging scenarios
(such as the CASIA FASD database). Additionally, we build
a large face spoof database with over than 1,000 subjects
and 13,000 images for robust training of spoof detector and
evaluation.

C. Multi-Frame Voting

We perform face spoof detection on smartphones by cap-
turing a sequence of three face image frames. We enforce
a 200 millisecond separation between the successive image
captures to allow for the motion of a subject’s hand holding
the device to introduce subtle changes in the images captured.

With the face texture and image quality features, we train
a SVM classifier with an RBF kernel (using optimized para-
meters) to distinguish between live and spoof faces.10 If two
or more frames within the three frames in a sequence are
classified as live faces, then this sequence is classified as live
(majority voting), otherwise it is classified as spoof. Using
input from multiple frames allows us to stabilize the decisions.
While more frames may further improve the performance, we
use three frames to ensure the proposed approach can run
efficiently on smartphones.11

D. Reject Option

We observed that most malicious users tend to hold the
spoof medium (smartphone or printed photo) at a certain
distance to a smartphone camera when they are trying to
spoof FR systems. They do this so that high-quality face
images can be captured. Additionally, to hide the evidence
of a spoof attack (bezels of a digital device and boundary of a
printed photo), malicious users may hold the spoof medium as
close as possible to the camera. An experiment conducted on
Nexus 5 by 10 subjects validated this tendentiousness. These
observations motivated us to utilize a threshold on IPD to
reject an image.

In order to find an acceptable range of IPD, we conducted
experiments using 20 subjects, where we asked the users
to take 10 pictures of themselves using a Google Nexus 5.
Subjects that were used for this study had arms of varying
lengths. The subjects were instructed to hold a smartphone
as they would during normal usage and to capture a number
of selfie pictures. Using these 200 images, we determined
the typical IPD values under normal smartphone use. The
average IPD of live faces (captured by the front facing camera
of a smartphone) is μI P D = 28.8% of the image width
(720 pixels), and the standard deviation of IPD is σI P D =
3.6% of image width. Based on these statistics, we reject
faces that are either too small (faces that are very far from
the smartphone camera) or too large (faces are that very close
to the smartphone camera) by using

rI P D(d, a) = |d − μI P D | ≤ a · σI P D , (1)

By setting a = 2, about 95% of the input face images to the
smartphone camera are accepted and submitted to the spoof
detection system.

Additionally, we define another reject option based on the
detection of bezels of the spoof medium being used. This
is done by detecting black stripes along the left and right
sides (bezels) of the image as shown in Fig. 3, when the
whole image is used. These stripes quickly allow us to detect
spoof attacks, as these black stripes will only appear on digital
screens such as on laptops, smartphones and tablets.

The bezel detection algorithm looks for areas in which the
pixel intensity values remain fairly consistent along the top,
bottom, right, and left edges of an image. Bezels tend to

10LIBSVM is used: www.csie.ntu.edu.tw/~cjlin/libsvm.
11We also tried the score level fusion of all the frames, but it gives worse

performance than the proposed voting scheme. A possible reason is the
presence of abrupt changes in decision scores between successive frames.

2276 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 10, OCTOBER 2016

Fig. 10. The proposed spoof detection method with reject options and complementary feature representation (face texture: LBP, and image quality: Color
Moments). An input image frame will be skipped, if face detection fails.

be uniform in color (black) along the borders and thus the
pixel intensity values remain fairly consistent. On the other
hand, in live subject images, the pixel intensity values in the
background tend to vary significantly. We analyze columns of
60 consecutive pixels for bezel detection for the left and right
side of an image and rows of 50 pixels for the top and bottom
of an image given a normalized image of 144 × 120 pixels.
We iteratively analyze up to 10 different areas by moving the
areas in question closer to the center by 3 pixels at a time until
we reach a max offset of 30 pixels from the edge. The system
will report a bezel detection if any of these areas satisfy the
following constraint

t (μ, σ) =

⎧
⎪⎨

⎪⎩

1 if μ < 5, σ < 5

1 if μ > 220, σ < 5

0 otherwise,

(2)

where μ and σ are defined as the average pixel intensity
value and the standard deviation for the area in question. The
parameter values were determined empirically based on the
performance on individual scenarios.

Biometric systems with reject options are not new [51], but
studies of reject options for face spoof detection are limited.
Using the two reject options described above greatly helps in
detecting spoof attacks using minimal processing time. The
combination of restricting the IPD of a subject and detecting
the bezels of an input image reduces the number of images
that are processed using the proposed spoof detection method.
This is due to the fact that when replay attacks are fabricated,
the restriction on the IPD leads to capture of images that
often contain the bezels of the spoof medium. Thus, the reject
options help in reducing the number of false accepts in our
system. Moreover, due to the update to Face Unlock with the
release of Android 5.0, users no longer can view what the FR
system is capturing. Therefore, malicious users no longer can
ensure input to a FR system is free of any bezels.

It should be noted that printed photo attacks may evade the
bezel detection if a malicious user cuts the image to remove the
bezels. However, the restriction of the IPD may still help detect
the presence of a printed-photo attack. The goal is to reject
the “easy cases” of spoof attacks using minimal processing

Fig. 11. Examples of inputs that were rejected using the proposed reject
option: (a) IPD value below the lower threshold, (b) IPD value above the
upper threshold, and (c) detected bezels along the top and left side of input
image.

time. Figure 10 shows the system diagram of the proposed
method and how the reject option fits into our overall spoof
face detection system. Figure 11 shows a couple of examples
of input face images that are rejected by the proposed method.

E. Prototype System on a Smartphone

We implement a prototype system of the proposed approach
on a Nexus 5 with API level-21 support from Android v5.1.
A minor change over the proposed method in the prototype
system on desktop is that now we use Android face detector
instead of the PittPatt face detector. This necessitated a retrain-
ing of our face spoof detection model by utilizing the Android
face detector to detect individual faces in the training dataset,
and retraining the face spoof detector using the same method
described in Sections IV.B-IV.D.

V. EXPERIMENTAL RESULTS

We perform face spoof detection experiments using the
MSU USSA database, and the Idiap Replay-Attack, CASIA
FASD, MSU-MFSD and RAFS spoof face databases. We
study the influences of a number of factors (e.g., image
acquisition device, image region, IPD, and database size) to
the proposed face spoof detection approach. The proposed
approach is compared with state of the art methods in both
cross-database and intra-database testing scenarios. Besides

PATEL et al.: SECURE FACE UNLOCK: SPOOF DETECTION ON SMARTPHONES 2277

TABLE IV

PERFORMANCE OF FACE SPOOF DETECTION USING FACE
IMAGES CAPTURED WITH FRONT AND REAR

CAMERAS OF A NEXUS 5 PHONE†

performing evaluations using the original testing protocol of
each database, we also design a protocol for the scenario of
face unlock on smartphones. The subject IDs used in each
fold of the designed five-fold subject-exclusive cross validation
protocol for the MSU USSA database will be included in our
public release. Unless otherwise stated, the experiments are
conducted using the public set of the MSU USSA database.

A. Influence of Image Acquisition Device

Table IV shows the effects on face spoof detection when
cameras of different specifications are used to capture the
training and testing face images. When face images from
the training and testing sets are captured using cameras of
different specifications, the HTER is larger than the HTER
when the training and testing face images are captured using
the same camera. See Table IV. This performance gap is
mainly due to the fact that moiré patterns do not appear
when the frontal facing camera is used as it lacks autofocus
capabilities.12 Hence, this leads to a dramatic increase in the
FAR while maintaining the FRR. To close this performance
gap, the training set used to learn face spoof detection models
should include a wide variety of image acquisition devices
for both live and spoof face images. Therefore, the MSU
USSA database should help to learn better face spoof detection
models, as it contains both live and spoof face images captured
using several different cameras.

B. Influence of Different Image Regions

We study the effect of different image regions (i.e. whole
image, detected face image, and bottom half of a face shown
in Fig. 12) on spoof detection performance using the MSU
USSA database (see Fig. 13). To our surprise, at 0.01%
FAR the performance when using the whole image to train
face spoof detection models is better than when using the
detected face region. This result seems to be counter to
the prevailing wisdom that the background area of a face
contains noise which may degrade performance. However,
after further examination, we realize that the trained model
is tuned to detect the black stripes along the left and right
sides (bezels) of the image, when the whole image is used as

12Most smartphones being released now have autofocus capabilities in the
front camera as well (HTC Desire Eye, ZTE Blade S7).

Fig. 12. Examples of three different image regions (of two different subjects)
that are used for face spoof detection analysis: (a) the whole video frame,
(b) the detected face image, and (c) the bottom half of the face image.

Fig. 13. Face spoof detection performance on the MSU USSA database
using different regions of the input image (whole image frame, the detected
face region, and the bottom half of the face image).

mentioned in Section IV.D. Thus, when we consider the whole
image, only images that did not contain any black strips along
the edges were misclassified. Therefore, face spoof detection
models specifically trained with whole images can efficiently
detect printed photo and replayed video attacks, which often
have black stripes due to the limited sizes of the photograph
paper and screen. However, in more challenging scenarios,
e.g., when no black stripes appear in spoof face images (par-
ticularly when a malicious user intentionally prevents the paper
or screen boundary appearing in the camera’s field of view),
experiments in [1] showed that using the detected facial region
provides better performance than using the whole image.

C. Influence of Color Channel

We analyze the performance of the proposed face spoof
detection method by using LBP features extracted from the
grayscale, red, green and blue channels of the detected face
images from the MSU USSA database (see Fig. 14). We only
extracted LBP features as the color moment features require
an RGB image. Figure 15 shows that different color channels
highlight varying amounts of texture in an image, hence

2278 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 10, OCTOBER 2016

Fig. 14. Examples of live face images (top row) and spoof face
images (bottom row) for one subject in the Idiap database shown using the
(a) RGB image, (b) grayscale image, (c) red channel, (d) green channel, and
(e) blue channel, respectively.

Fig. 15. Performance of face spoof detection using different color channels
(red, green, blue and grayscale) on the MSU USSA database.

Fig. 16. Example of normalized face images with different
IPDs: (a) 70 pixels, (b) 60 pixels, (c) 50 pixels, and (d) 40 pixels.

leading to performance differences. The red channel gives
better performance than the other color channels. Apparently,
texture component that can distinguish between live and spoof
faces has higher contrast in the red channel of a face image.

D. Influence of IPD

Given that most published methods extract features from
the detected facial region, we analyze how the IPD affects the
face spoof detection performance on the MSU USSA database.
Given the cropped face images of a fixed size (144 × 120),
we vary the cropping of the facial region by altering the
IPD (i.e. 40, 50, 60 and 70 pixels). Figure 16 shows the
normalized face image of a subject when cropping images
using different IPD. As shown by the ROC curves in Fig. 17,
using an IPD of 60 or 70 pixels when cropping a face leads
to better performance than using an IPD of 40 or 50. This is
due to the fact that cropping a face to have an IPD of 60 or
70 pixels removes most of the background area while retaining

Fig. 17. Performance of face spoof detection using face images with different
IPD values (40, 50, 60, and 70 pixels) on the MSU USSA database.

TABLE V

PERFORMANCE OF CROSS-DATABASE TESTING ON THE Idiap REPLAY-
ATTACK, CASIA FASD, AND MSU-MFSD DATABASES USING THE

MSU USSA DATABASE FOR TRAINING, AND THE SMARTPHONE

PROTOCOL. THE TABLE SHOWS HOW THE VARYING TRAINING
SET SIZE OF THE MSU USSA DATABASE (1K, 2K, 4K, 6K,

AND 8K (ALL) FACE IMAGES) AFFECTS FACE SPOOF

DETECTION PERFORMANCE. PERFORMANCE IS

REPORTED IN TERMS OF HTER

as large of the facial region as possible. Removing the back-
ground eliminates the background clutter from a normalized
face image while a large facial region retains more distinctive
features for classification of live and spoof face images. When
reporting results for all other experiments, we normalize faces
images to an IPD of 60 pixels as using an IPD of 60 pixels
obtains a higher true accept rate at low false accept rates.

E. Influence of Database Size

Most of the available public domain face spoof databases
contain no more than 50 subjects. Therefore, we study how the
number of subjects in the training set affects spoof detection
performance using the MSU USSA database. Table V shows
that using a larger training set from the MSU USSA database
significantly improves the cross-database performance under
the smartphone protocol when testing on the Idiap Replay-
Attack, CASIA FASD and MSU-MFSD databases. When
using only 1,000 spoof images to train our classifier, the
spoof detection performance significantly degrades compared
to when we used all 8,000 spoof images. In fact, as we use
more and more spoof images to train the SVM classifier, the
performance keeps increasing. On the public-domain databases
such as Idiap replay-attack and CASIA FASD, we also noticed
such trend that utilizing more frames from each video for train-
ing leads to better cross-database performance on a completely

PATEL et al.: SECURE FACE UNLOCK: SPOOF DETECTION ON SMARTPHONES 2279

different database. The above results show that increasing the
number of training face images to cover more diversities,
from individual subjects to image acquisition devices, helps
to learn more robust classifiers. Thus, larger databases such
as the MSU USSA database will be very helpful in advancing
solutions to the face spoof detection problem.

F. Intra-Database Testing

We evaluate the proposed approach under the intra-database
testing scenarios on the newly created MSU USSA, Idiap
Replay-Attack, CASIA FASD, and the MSU-MFSD databases.
Example images of subjects from these databases are shown
in Fig. 2. We perform these tests using the protocols specified
in [7], [20], and [39] as well as a protocol we define to
simulate smartphone spoof attacks. In order to make these
databases more compatible to spoof attacks on smartphones,
we used the spoof videos generated for the Idiap Replay-
Attack, CASIA FASD and MSU-MFSD databases from the
RAFS database (smartphone protocol). The RAFS database
recaptured the spoof videos for these three databases using
a smartphone compared to the low resolution webcams and
DSLR cameras used in the original spoof videos. Note, we
did not leverage the reject option for any of these databases,
as these databases were collected in a controlled manner to
limit bezels in the videos and constraint the IPD.

On the Idiap Replay-Attack database using the original
protocol, the proposed approach achieves 14.6% HTER
which is larger than [20] (7.41%) and [14] (2.9%) but lower
than [19] (15.2%). On the CASIA FASD database using
the original protocol, the proposed approach achieves 5.88%
EER, which is smaller than the EER reported in several other
publications (6.20% [14], 7.2% [15], 12.9% [20], 14.0% [23]).
On the MSU-MFSD using the original protocol, the proposed
approached achieves 8.41% EER which is slightly larger than
the approach in [20] (5.82%). However, under the smartphone
protocol for face unlock, the proposed approach achieves very
promising results (0% HTER on Idiap Replay-Attack, 1.67%
EER on CASIA FASD, and 2.67% EER on MSU-MFSD
databases). In all these experiments, the proposed method,
achieves comparable performance to the state of the art
methods under the original testing protocols of Idiap Replay-
Attack, CASIA FASD, and MSU-MFSD databases but
achieves much better performance using the smartphone
protocol. The main reason for the difference in performance
under the two protocols is that discriminative cues (moiré
patterns, color diversity, etc.) between live and spoof
subject videos are more prevalent in spoof videos captured
by smartphones; DSLR cameras contain advance features
(specialized lens, anti-aliasing filters) to normalize such image
distortions. Thus, spoof videos in the smartphone protocol
more closely represent input that a face unlock system on a
smartphone would receive compared to DSLR cameras.

The protocol we used for intra-database testing on the
MSU USSA database was a subject-exclusive five-fold cross
validation, where the subjects were randomly split into 5 folds.
We will share the subjects’ ID list used in each fold of the
5-fold protocol so that interested researchers can replicate our

Fig. 18. Performance of the proposed face spoof detection approach on
different subsets of the MSU USSA database: (i) private subset, (ii) public
subset, (iii) replay attacks in the public subset, and (iv) printed photos in the
public subset.

results. As shown in Table III, the proposed method achieved
EER of 3.51% and 3.84% on the private and public sets,
respectively. The ROC curves for these tests are shown in
Fig. 18. Additionally, the proposed approach achieved EER
of 2.87% and 4.06% for photos displayed on screen (replay
attack) and photos printed on paper, respectively, when using
the public set of the MSU USSA database. The results show
that these two types of photo attacks can be detected with
similar accuracies. The ROC curve for this test is also shown
in Fig. 18.

G. Cross-Database Testing

It is now generally accepted that intra-database testing
(where training and testing images, while distinct, are cap-
tured in the same environment and possibly of the same
subjects) does not represent real world scenarios, and it lacks
generalization ability [11]. Therefore, we also evaluated the
proposed approach under cross-database testing scenarios. The
cross-database protocol performance is evaluated by training
an anti-spoofing method on database A and testing it on a
different database B. We used the public set of MSU USSA
database to train a face spoof detection model based on the
proposed method and then test it on the MSU-MFSD, Replay-
Attack and CASIA FASD databases based on the smartphone
protocol. To avoid any bias, we removed the overlapping
subjects (40 from MSU-MFSD, 50 from Replay-Attack, and
50 from CASIA FASD) that appear in both the MSU USSA
database and the testing databases. As shown in Table V, the
proposed approach achieves 9.27%, 3.50%, and 2.00% HTERs
on the MSU-MFSD, Idiap Replay-Attack and CASIA FASD
databases, respectively, using the smartphone protocol. These
results support the proposed claim that our method has good
generalization ability as it reports fairly low HTERs in the
challenging cross-database testing protocol. Additionally, this
underscores the fact that our method can differentiate live

2280 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 10, OCTOBER 2016

Fig. 19. Examples of correct (a, b) and incorrect (c) classifications by the proposed approach in cross-database testing on the Idiap Replay-Attack (top row),
CASIA FASD (middle row), and MSU MFSD (bottom row) databases.

TABLE VI

BEZEL DETECTION PERFORMANCE ON NINE DISTINCT IMAGE SETS IN

THE MSU USSA DATABASE. THIS TABLE SHOWS THE PERCENTAGE OF

IMAGES IN WHICH THE PROPOSED BEZEL DETECTOR DETECTED

A BEZEL. FRONT AND REAR SIGNIFY THE CAMERA OF THE
NEXUS 5 USED TO CAPTURE THE SPOOF IMAGES

ON THE SPECIFIED SPOOF MEDIUM

subject images vs. spoof images using image quality features
such as moiré patterns and color moments.

Examples of correct classifications and misclassifications by
the proposed approach on cross-database testing are shown
in Fig. 19. No examples of false reject of live face images
are reported by the proposed approach because in all three
experiments, the false reject rate is 0. We find that many of
the errors can be attributed to poor image quality such as
over saturation of images and color distribution which are not
represented in our training dataset. Additionally, some of the
errors are caused by motion blur and incorrect face cropping
due to dark skin.

In Table I, we also provide the best cross-database
performance achieved on the MSU-MFSD, Idiap Replay-
Attack, and CASIA FASD databases utilizing the original
protocol for the databases (original spoof videos), where we
trained a model using one of the three databases and tested
the model on the other two databases. Under this protocol, the
cross-database spoof detection performance degrades (26.7%
vs. 9.27% HTER on MSU-MFSD, 29.3% vs. 3.50% HTER on
Idiap Replay Attack and 35.4% vs. 2.00% HTER on CASIA
FASD). However, as we summarized in Section II.B, these

Fig. 20. Examples of incorrect (a) and correct (b, c) bezel detection by
the proposed algorithm on the MSU-USSA database. (a) Misclassifications as
these two images were captured in professional settings using black or white
backgrounds, (b) correct bezel detection in replay attacks, and (c) correct
bezel detection in printed photo attacks.

databases (captured using webcam or DSLR) do not replicate
smartphone unlock scenarios. Thus, we want to emphasize
the performance of the smartphone protocol as the application
of interest in this paper is spoof detection for smartphones.

H. Bezel Detection Performance

We evaluated the performance of our bezel detection algo-
rithm on the MSU USSA database. Table VI shows the results
of our bezel detector on the 9-image sets in the database
(1 live face image set and 8 spoof face image sets). The
reason why 12.3% of live face images are detected to have a
bezel is because many of these images were captured against
a pure white or black background using professional grade
cameras as shown in Fig. 20(a). When we removed such
images from the live image set, only 1.4% of live face images
had a falsely detected bezel. Moreover, in Section V.I we show
that our bezel detector has a low (but non-zero) FAR when
implemented on a smartphone.

For the 8 spoof image sets (4 spoof mediums × 2 cameras),
a bezel was detected for many of these 9,120 images. However,
some of these spoof images did not contain any bezel. The

PATEL et al.: SECURE FACE UNLOCK: SPOOF DETECTION ON SMARTPHONES 2281

spoof face images captured by the front facing camera from
the Tablet screen, always contained a bezel due to our camera
positioning, and on this image set the bezel detector detected
bezels with 99.9% accuracy. This shows that our algorithm can
detect bezels with high accuracy. Additionally, if we removed
non-bezel images from the printed photo attacks captured by
the front and rear facing cameras of the smartphone, bezels
were correctly detected with 97.7% accuracy for the rear
camera image set and with 84.9% accuracy for the front
camera image set. Thus, our reject option based on bezel
detection is effective in identifying spoof input to a FR system.

I. Performance Evaluation on Smartphones

We evaluate the performance of our Android application
by asking 20 subjects to use the app for routine smartphone
unlock. The spoof detector application was loaded onto a
Google Nexus 5 and a HTC Desire Eye (see GUI in Fig. 21).
These subjects were chosen to make sure that the test set was
diverse in terms of race, age, sex and facial hair style. The
face spoof detector was trained on a desktop using the MSU
USSA database.

One set of experiments was designed to determine whether
our application could successfully detect live faces. These tests
were conducted in various illumination conditions such as a
dark hallway, sunny outside environment, and an indoor apart-
ment setting with a large window. The users were instructed
to hold the phone at different arm lengths and to move around
in their environment to introduce illumination variations. They
were then instructed to periodically press the “verify” button
on the application so that the result of face liveness detec-
tion could be automatically recorded. For each subject, five
verification tests were conducted. Among the 100 live face
attempts (5 per subject), our Android application successfully
accepted 96 faces (96.0% accuracy) on the Google Nexus 5
and 94 faces (94.0% accuracy) on the HTC Desire Eye.
In these tests, we did have the reject option turned on. We
only encountered a single case in which the live subject was
rejected by the bezel detection in all 5 verification attempts.
These false rejects occurred due to the fact the subject was
wearing a solid black shirt and that the test was conducted in
a dark corner of the room. When we repeated the tests in the
center of the room, where the illumination conditions were
better, the bezel detection did not falsely reject the live user.

Additionally, we conducted experiments to determine
whether the application could effectively detect spoof face
access. We asked the participating subjects to capture selfie
images, which we would use later to launch spoof face
attacks. For spoof attacks, the selfie images were displayed
on an iPhone 6 and an Apple MacBook Pro laptop with
retina display. Again, we did five tests per spoof medium.
Among the 200 spoof face accesses, our Android application
on the Google Nexus 5 correctly rejected 155 spoof faces
(77.5% accuracy) and 157 spoof faces (78.5% accuracy) when
the MacBook Pro laptop and iPhone 6 were used as the spoof
medium, respectively. On the HTC Desire Eye, our appli-
cation correctly rejected 136 spoof faces (68.0% accuracy)
and 162 spoof faces (81.0% accuracy) when the MacBook

Fig. 21. The GUI of our Android application. The figure shows the recaptured
image of a face replay attack on a MacBook Pro screen; as shown on the
Nexus 5 screen, the application successfully detected the input as a spoof.
The face image in the bottom-right corner displays the detected face.

Pro laptop and iPhone 6 were used as the spoof medium,
respectively. The above spoof face detection results were
recorded by turning off our reject option. If we use the
reject option, numerous inputs to the FR system were rejected
due to the detection of a bezel and the IPD constraint. The
spoof detection performance of our application on both Google
Nexus 5 and HTC Desire Eye reached the high 90% range if
reject option was utilized.

The performance achieved in a cross-database testing sce-
nario as reported in the literature, is not very good compared
to intra-database testing (average HTER of 47.7% reported
in [11] and 38.97% reported in [23]). However, the proposed
face spoof detection system running on smartphone is able to
achieve accuracies in the 80% range. Moreover, our results
showcase the fact that performance obtained on laboratory
collected databases tend not to reflect real world performance
when users actually leverage spoof detection applications.

The results above also show that while the face spoof
detection system was trained on the MSU USSA database,
it still runs smoothly on HTC Desire Eye smartphone which
has a completely different camera than the cameras used in
collecting the MSU USSA database. These results show that
the proposed approach and a large training database, namely
MSU USSA, do not lead to a biased system; it does not
simply detect different sensors and shows it generalizes well
to different image acquisition devices.

For the incorrect classifications in live face unlock test,
poor illumination condition is the main reason for failure,
particularly dim light and yellow light. The main reason for
the false acceptances of spoof face accesses is the lack of
moiré patterns which are due to the occasional slow autofocus
capability of the smartphone cameras.

J. Moiré Pattern Detection on a Smartphone

Given an input face image, our method will classify it
as a spoof if moiré patterns are detected. As we discussed
in Sec. III. C and in [1], the presence of moiré patterns
provides evidence of displayed photo and video replay attacks
launched using a digital screen. The method used for moiré
pattern detection here is the same as in our earlier conference

2282 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 10, OCTOBER 2016

paper [1]. As shown in [1], moiré patterns can be well repre-
sented using LBP descriptor, and thus moiré pattern detection
method is naturally embedded in the proposed approach. It can
also be used as a pre-filtering stage similar to the reject option.

To verify that our Android application is effective in
detecting moiré patterns, we tested it on non-face images
such as solid color images, outdoor images, and wallpapers
containing cars. For each of these images, five verification tests
were conducted. Among the 75 spoof attempts, our Android
application correctly rejected 65 of them (86.7% accuracy)
when using a MacBook Pro laptop to display the non-face
images. This experiment shows that the proposed method still
performs well for detecting displayed photo and video replay
attacks, even if the face detection does not give accurate face
detection results.

K. Running Time and Memory Requirement on Smartphones

The Android spoof detection application must provide
fast response to the users. The current implementation takes
0.02 seconds for classification and 1.65 seconds to extract
features from a single image frame (144 × 120) for a total
time of 1.67 seconds. However, using three frames to make a
decision leads to only a marginal increase in the total time to
1.95 seconds because of our multithreaded implementation on
Android. Reported times are profiled on a Google Nexus 5
smartphone with 2GB of RAM and Quad-core 2.3 GHz
Krait 400 CPU running native Android 5.0 ROM. As a
comparison, the proposed approach takes 0.03 seconds on a
desktop (see Section IV.B for desktop specification) for feature
extraction and classification of a single frame. Our goal is to
bring down the total time to less than 1 sec.

On the Google Nexus 5, our application utilizes 53 MB of
RAM, a minuscule amount compared to the gigabytes of RAM
available on smartphones today. Of the 53 MB, 15 megabytes
are allocated for the SVM model file that was trained on the
desktop. This model file contains 6,248 support vectors for the
RBF SVM classifier.

VI. SUMMARY AND CONCLUSIONS

Spoofing attacks can be easily launched against face
recognition systems due to the low cost of obtaining printed
photos or video replays. In order to address the problem
of face spoofing on smartphones, we propose an efficient
detection approach based on the analysis of image distortions
in 2D spoof face images and the complementarity of
individual cues (LBP and color moments). We also collected
a large database, called the MSU Unconstrained Smartphone
Spoof Attack (MSU USSA), that contains replay and printed
photo attacks captured by different smartphone cameras.
Experimental evaluations show that a large database is
essential to learn robust face spoofing detection models,
particularly under cross-database testing scenarios. Moreover,
we show that features extracted from the red color channel
provide better discriminative ability than the green, blue, and
grayscale color channels. Additionally, we propose a simple
but efficient reject option for face images based on IPD
constraint and bezel detection. The proposed spoof detection
method was implemented on two Android smartphones

(Google Nexus 5 and HTC Desire Eye), and the proposed
approach can perform face spoof detection efficiently on
commodity smartphones. We plan to make use of the temporal
and contextual information included in multiple video frames
to build more robust face spoof detection models.

ACKNOWLEDGEMENT

We would like to thank the Idiap and CASIA for sharing
their face spoof databases, the reviewers and the editor for
providing us valuable feedback, and Lacey Best-Rowden for
proofreading the paper.

REFERENCES

[1] K. Patel, H. Han, A. K. Jain, and G. Ott, “Live face video vs. spoof face
video: Use of moiré patterns to detect replay video attacks,” in Proc.
ICB, May 2015, pp. 98–105.

[2] D. Crouse, H. Han, D. Chandra, B. Barbello, and A. K. Jain, “Contin-
uous authentication of mobile user: Fusion of face image and inertial
measurement unit data,” in Proc. ICB, May 2015, pp. 135–142.

[3] S. Bharadwaj, T. I. Dhamecha, M. Vatsa, and R. Singh, “Computa-
tionally efficient face spoofing detection with motion magnification,” in
Proc. CVPR Workshops, Jun. 2013, pp. 105–110.

[4] G. Pan, L. Sun, Z. Wu, and S. Lao, “Eyeblink-based anti-spoofing in face
recognition from a generic webcamera,” in Proc. 11th ICCV, Oct. 2007,
pp. 1–8.

[5] S. Tirunagari, N. Poh, D. Windridge, A. Iorliam, N. Suki, and A. Ho,
“Detection of face spoofing using visual dynamics,” IEEE Trans. Inf.
Forensics Security, vol. 10, no. 4, pp. 762–777, Apr. 2015.

[6] W. Bao, H. Li, N. Li, and W. Jiang, “A liveness detection method for
face recognition based on optical flow field,” in Proc. IASP, Apr. 2009,
pp. 233–236.

[7] I. Chingovska, A. Anjos, and S. Marcel, “On the effectiveness of local
binary patterns in face anti-spoofing,” in Proc. IEEE BIOSIG, Sep. 2012,
pp. 1–7.

[8] J. Määttä, A. Hadid, and M. Pietikäinen, “Face spoofing detection from
single images using micro-texture analysis,” in Proc. IJCB, Oct. 2011,
pp. 1–7.

[9] M. De Marsico, M. Nappi, D. Riccio, and J.-L. Dugelay, “Moving
face spoofing detection via 3D projective invariants,” in Proc. ICB,
Mar./Apr. 2012, pp. 73–78.

[10] J. Li, Y. Wang, T. Tan, and A. K. Jain, “Live face detection based on
the analysis of Fourier spectra,” Proc. SPIE, vol. 5404, pp. 296–303,
Aug. 2004.

[11] T. de F. Pereira, A. Anjos, J. M. De Martino, and S. Marcel, “Can face
anti-spoofing countermeasures work in a real world scenario?” in Proc.
ICB, Jun. 2013, pp. 1–8.

[12] J. Yang, Z. Lei, S. Liao, and S. Li, “Face liveness detection with
component dependent descriptor,” in Proc. ICB, Jun. 2013, pp. 1–6.

[13] D. Menotti et al., “Deep representations for iris, face, and fingerprint
spoofing detection,” IEEE Trans. Inf. Forensics Security, vol. 10, no. 4,
pp. 864–879, Apr. 2015.

[14] Z. Boulkenafet, J. Komulainen, and A. Hadid, “Face anti-spoofing based
on color texture analysis,” in Proc. ICIP, Sep. 2015, pp. 2636–2640.

[15] S. R. Arashloo, J. Kittler, and W. Christmas, “Face spoofing detection
based on multiple descriptor fusion using multiscale dynamic binarized
statistical image features,” IEEE Trans. Inf. Forensics Security, vol. 10,
no. 11, pp. 2396–2407, Nov. 2015.

[16] T. Wang, J. Yang, Z. Lei, S. Liao, and S. Z. Li, “Face liveness detection
using 3D structure recovered from a single camera,” in Proc. ICB,
Jun. 2013, pp. 1–6.

[17] A. Lagorio, M. Tistarelli, M. Cadoni, C. Fookes, and S. Sridharan,
“Liveness detection based on 3D face shape analysis,” in Proc. IWBF,
2013, pp. 1–4.

[18] W. Kim, S. Suh, and J.-J. Han, “Face liveness detection from a single
image via diffusion speed model,” IEEE Trans. Image Process., vol. 24,
no. 8, pp. 2456–2465, Aug. 2015.

[19] J. Galbally, S. Marcel, and J. Fierrez, “Image quality assessment
for fake biometric detection: Application to iris, fingerprint, and face
recognition,” IEEE Trans. Image Process., vol. 23, no. 2, pp. 710–724,
Feb. 2014.

[20] D. Wen, H. Han, and A. K. Jain, “Face spoof detection with image
distortion analysis,” IEEE Trans. Inf. Forensics Security, vol. 10, no. 4,
pp. 746–761, Apr. 2015.

PATEL et al.: SECURE FACE UNLOCK: SPOOF DETECTION ON SMARTPHONES 2283

[21] H. Yu, T.-T. Ng, and Q. Sun, “Recaptured photo detection using
specularity distribution,” in Proc. ICIP, Oct. 2008, pp. 3140–3143.

[22] A. Pinto, W. R. Schwartz, H. Pedrini, and A. Rocha, “Using
visual rhythms for detecting video-based facial spoof attacks,” IEEE
Trans. Inf. Forensics Security, vol. 10, no. 5, pp. 1025–1038,
May 2015.

[23] A. Pinto, H. Pedrini, W. R. Schwartz, and A. Rocha, “Face spoofing
detection through visual codebooks of spectral temporal cubes,” IEEE
Trans. Image Process., vol. 24, no. 12, pp. 4726–4740, Dec. 2015.

[24] Z. Zhang, D. Yi, Z. Lei, and S. Z. Li, “Face liveness detection by
learning multispectral reflectance distributions,” in Proc. FG, Mar. 2011,
pp. 436–441.

[25] R. Tronci et al., “Fusion of multiple clues for photo-attack detection in
face recognition systems,” in Proc. IJCB, Oct. 2011, pp. 1–6.

[26] J. Komulainen, A. Hadid, M. Pietikäinen, A. Anjos, and S. Marcel,
“Complementary countermeasures for detecting scenic face spoofing
attacks,” in Proc. ICB, Jun. 2013, pp. 1–7.

[27] R. Raghavendra and C. Busch, “Robust scheme for iris presentation
attack detection using multiscale binarized statistical image features,”
IEEE Trans. Inf. Forensics Security, vol. 10, no. 4, pp. 703–715,
Apr. 2015.

[28] O. V. Komogortsev, A. Karpov, and C. D. Holland, “Attack of mechan-
ical replicas: Liveness detection with eye movements,” IEEE Trans. Inf.
Forensics Security, vol. 10, no. 4, pp. 716–725, Apr. 2015.

[29] A. Czajka, “Pupil dynamics for iris liveness detection,” IEEE Trans. Inf.
Forensics Security, vol. 10, no. 4, pp. 726–735, Apr. 2015.

[30] I. Chingovska and A. R. dos Anjos, “On the use of client identity
information for face antispoofing,” IEEE Trans. Inf. Forensics Security,
vol. 10, no. 4, pp. 787–796, Apr. 2015.

[31] J. Yang, Z. Lei, D. Yi, and S. Li, “Person-specific face antispoofing with
subject domain adaptation,” IEEE Trans. Inf. Forensics Security, vol. 10,
no. 4, pp. 797–809, Apr. 2015.

[32] J. Sanchez, I. Saratxaga, I. Hernáez, E. Navas, D. Erro, and T. Raitio,
“Toward a universal synthetic speech spoofing detection using phase
information,” IEEE Trans. Inf. Forensics Security, vol. 10, no. 4,
pp. 810–820, Apr. 2015.

[33] A. Sizov, E. Khoury, T. Kinnunen, Z. Wu, and S. Marcel, “Joint speaker
verification and antispoofing in the i-vector space,” IEEE Trans. Inf.
Forensics Security, vol. 10, no. 4, pp. 821–832, Apr. 2015.

[34] D. Gragnaniello, G. Poggi, C. Sansone, and L. Verdoliva, “An investiga-
tion of local descriptors for biometric spoofing detection,” IEEE Trans.
Inf. Forensics Security, vol. 10, no. 4, pp. 849–863, Apr. 2015.

[35] M. Hildebrandt and J. Dittmann, “StirTraceV2.0: Enhanced bench-
marking and tuning of printed fingerprint detection,” IEEE Trans. Inf.
Forensics Security, vol. 10, no. 4, pp. 833–848, Apr. 2015.

[36] A. Anjos and S. Marcel, “Counter-measures to photo attacks in face
recognition: A public database and a baseline,” in Proc. IJCB, Oct. 2011,
pp. 1–7.

[37] N. Evans, S. Z. Li, S. Marcel, and A. Ross, “Guest editorial: Special
issue on biometric spoofing and countermeasures,” IEEE Trans. Inf.
Forensics Security, vol. 10, no. 4, pp. 699–702, Apr. 2015.

[38] J. Galbally, S. Marcel, and J. Fierrez, “Biometric antispoofing methods:
A survey in face recognition,” IEEE Access, vol. 2, pp. 1530–1552,
2014.

[39] Z. Zhang, J. Yan, S. Liu, Z. Lei, D. Yi, and S. Z. Li, “A face antispoofing
database with diverse attacks,” in Proc. ICB, 2012, pp. 26–31.

[40] N. Erdogmus and S. Marcel, “Spoofing face recognition with 3D masks,”
IEEE Trans. Inf. Forensics Security, vol. 9, no. 7, pp. 1084–1097,
Jul. 2014.

[41] X. Tan, Y. Li, J. Liu, and L. Jiang, “Face liveness detection from a
single image with sparse low rank bilinear discriminative model,” in
Proc. ECCV, 2010, pp. 504–517.

[42] J. Bai, T.-T. Ng, X. Gao, and Y.-Q. Shi, “Is physics-based liveness detec-
tion truly possible with a single image?” in Proc. ISCAS, May/Jun. 2010,
pp. 3425–3428.

[43] D. C. Garcia and R. L. de Queiroz, “Face-spoofing 2D-detection based
on Moiré-pattern analysis,” IEEE Trans. Inf. Forensics Security, vol. 10,
no. 4, pp. 778–786, Apr. 2015.

[44] N. Erdogmus and S. Marcel, “Spoofing in 2D face recognition with
3D masks and anti-spoofing with Kinect,” in Proc. BTAS, 2013,
pp. 1–6.

[45] H. Han, S. Shan, X. Chen, S. Lao, and W. Gao, “Separability oriented
preprocessing for illumination-insensitive face recognition,” in Proc.
ECCV, 2012, pp. 307–320.

[46] D. Wang, S. Hoi, Y. He, J. Zhu, T. Mei, and J. Luo, “Retrieval-based
face annotation by weak label regularized local coordinate coding,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 3, pp. 550–563,
Mar. 2014.

[47] I. Amidror, The Theory of the Moiré Phenomenon: Periodic Layers,
vol. 1, 2nd ed. Springer-Verlag London, 2009.

[48] H. Han, B. F. Klare, K. Bonnen, and A. K. Jain, “Matching composite
sketches to face photos: A component-based approach,” IEEE Trans. Inf.
Forensics Security, vol. 8, no. 1, pp. 191–204, Jan. 2013.

[49] A. Ziegler, E. Christiansen, D. Kriegman, and S. J. Belongie,
“Locally uniform comparison image descriptor,” in Proc. NIPS, 2012,
pp. 1–8.

[50] D. G. Lowe, “Object recognition from local scale-invariant features,” in
Proc. ICCV, 1999, pp. 1150–1157.

[51] H. Han, C. Otto, X. Liu, and A. K. Jain, “Demographic estimation from
face images: Human vs. machine performance,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 37, no. 6, pp. 1148–1161, Jun. 2015.

Keyurkumar Patel (S’15) received the B.S. and
M.S. degrees both from the Department of Computer
Science and Engineering, Michigan State University,
in 2014 and 2016, respectively. He is currently
a research scientist at Rank One Computing. His
research interests include, pattern recognition, com-
puter vision, and image processing with applications
to biometrics.

Hu Han (M’13) received the B.S. degree in com-
puter science from Shandong University, Jinan,
China, and the Ph.D. degree in computer science
from the Institute of Computing Technology (ICT),
Chinese Academy of Sciences (CAS), Beijing,
China, in 2005 and 2011, respectively.

He was a Research Associate with the Depart-
ment of Computer Science and Engineering, Michi-
gan State University. He is currently an Asso-
ciate Professor with ICT, CAS. His research
interests include computer vision, pattern recog-

nition, and image processing with applications to biometrics, forensics,
law enforcement, and security systems.

Anil K. Jain (LF’14) is currently a University
Distinguished Professor with the Department of
Computer Science and Engineering, Michigan State
University, East Lansing. He has coauthored a num-
ber of books, including the Handbook of Fingerprint
Recognition in 2009, the Handbook of Biometrics
in 2007, the Handbook of Multibiometrics in 2006,
the Handbook of Face Recognition in 2011, Biomet-
rics: Personal Identification in Networked Society
in 1999, and the Algorithms for Clustering Data
in 1988. His research interests include pattern recog-

nition and biometric authentication.
Dr. Jain is a Fellow of the AAAS, ACM, IAPR, and SPIE. He served

as a member of the Defense Science Board and The National Acad-
emies committees on Whither Biometrics and Improvised Explosive Devices.
He received the 1996 IEEE TRANSACTIONS ON NEURAL NETWORKS Out-
standing Paper Award and the Pattern Recognition Society best paper awards
in 1987, 1991, and 2005. He received the Fulbright, Guggenheim, Alexander
von Humboldt, the IEEE Computer Society Technical Achievement, the IEEE
Wallace McDowell, ICDM Research Contributions, and IAPR King-Sun Fu
awards. He was elected to the National Academy of Engineering in 2016.
He served as the Editor-in-Chief of the IEEE TRANSACTIONS ON PATTERN

ANALYSIS AND MACHINE INTELLIGENCE from 1991 to 1994.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

