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Abstract— With the wide deployment of face recognition
systems in applications from de-duplication to mobile device
unlocking, security against face spoofing attacks requires in-
creased attention; such attacks can be easily launched via printed
photos, video replays and 3D masks of a face. We address
the problem of facial spoof detection against print (photo) and
replay (photo or video) attacks based on the analysis of image
aliasing (e.g., surface reflection, moiré pattern, color distortion,
and shape deformation) in spoof face images (or video frames).
The application domain of interest is mobile phone unlock, given
that growing number of phones have face unlock and mobile
payment capabilities. We build a mobile spoof face database
(MSU MSF) containing more than 1, 000 subjects, which is,
to our knowledge, the largest spoof face database in terms
of the number of subjects. Both print and replay attacks are
captured using the front and rear cameras of a Nexus 5 phone.
We analyze the aliasing of print and replay attacks using (i)
different intensity channels (R, G, B and grayscale), (ii) different
image regions (entire image, detected face, and facial component
between the nose and chin), and (iii) different feature descriptors.
We develop an efficient face spoof detection system on an Android
smartphone. Experimental results on three public-domain face
spoof databases (Idiap Print-Attack and Replay-Attack, and
CASIA), and the MSU MSF show that the proposed approach
is effective in face spoof detection for both cross-database and
intra-database testing scenarios. User studies of our Android face
spoof detection system involving 20 participants’ show that the
proposed approach works very well in real application scenarios.

Index Terms— Face antispoofing, phone unlock, spoof detection
on mobile, mobile spoof database, image aliasing

I. INTRODUCTION

With the widespread use of smartphones, biometric authen-
tication, such as face and fingerprint recognition, is becoming
increasingly popular for confirming user identity. Two of the
most popular mobile operating systems, Android and iOS, cur-
rently use face and fingerprint to authenticate users. With the
release of Android 4.0 (Ice Cream Sandwich), Android allows
users to unlock their smartphone via facial recognition (FR)
technology; on all iPhones released after the iPhone 5c, iOS
allows users to unlock their smartphone with their fingerprint
(Touch ID). As the use of biometrics for smartphone unlocking
and user authentication continues to increase, capabilities to
detect spoof biometric attacks are needed to alleviate fraud
and user concerns. Spoof biometric attacks launched against a
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Fig. 1. A face recognition (FR) system with a spoofing detection module.
Many FR systems either do not currently include this module or this module
does not perform effectively.

smartphone’s authentication system may allow malicious users
to gain access to the smartphone, and therefore lead to the
leakage of sensitive private data such as bank information via
apps like Google Wallet and Apple Pay.

Given the prevalence of high resolution face images shared,
(often publicly) through social media, it is relatively easy
to obtain a face image of a user and launch a spoof attack
against FR systems (see Fig. 1). Compared to attacks against
fingerprint, iris or speech recognition systems, the ubiquitous
nature of image acquisition devices, such as cameras and
smartphones, allows attackers to acquire facial images of a
user easily and discretely [26]–[34].

A recent study of face recognition using a commercial off-
the-shelf (COTS) matcher shows that the state-of-the-art face
matchers are fragile against face spoof attacks [18], [35].
Spoof attacks against FR systems mainly consist of (i) print
attacks, (ii) replay attacks, and (iii) 3D mask attacks. Print and
replay attacks are 2D face spoof attacks, that can be launched
using a smartphone to obtain a photograph or video of the
target subject’s face. By contrast, 3D face mask attacks require
high resolution fabrication systems capturing the 3D shape and
texture information of the target subject’s face. Therefore, print
and replay attacks can be more easily launched by malicious
individuals than 3D mask attacks. For this reason, we focus
on 2D face spoof attacks, such as printed photos, displayed
photos, and video replays.

Significant progresses have been achieved in biometric
spoofing detection technologies of individual modalities in
recent years [36], [37]. As shown in Table I, the state-of-
the-art face spoof detection methods were able to achieve
less than 2% HTER on the public-domain Idiap Replay-attack
database using an intra-database testing protocol. Despite
recent progress [1], [7], [9], [12], [17], [18], [21], [25], [38],
face spoof detection remains a difficult problem that requires
continued efforts. A number of the published methods on face
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TABLE I
A SUMMARY OF PUBLISHED METHODS ON 2D FACE SPOOF DETECTION.

Method Strength Limitation State of the art performance (HTER)†

Face motion analysis
[2]–[5] Effective for print attack Requires multiple frames

ZJU Eyeblink [3] (Intra-DB, Cross-DB)
[3]: (95.7%, n/a)‡
Idiap Replay-attack [6] (Intra-DB, Cross-DB)
[2]: (1.25%, n/a)

Face texture analysis
[7]–[11]

Relatively low computational
cost and fast response

Poor generalizability,
Requires face and/or
landmark detection

Idiap Replay-attack (Intra-DB, Cross-DB)
(5.11% [12], 47.1% [10])
CASIA [13] (Intra-DB, Cross-DB)
(11.8% (EER) [11], 48.3% [10])

Face 3D shape or depth
analysis [8], [14]–[16] Effective for 2D attacks Requires multiple frames or

additional devices

Private database [14] (Intra-DB, Cross-DB)
[14]: (85%, 50.0%)
Idiap Replay-attack [16] (Intra-DB, Cross-DB)
[16]: (12.5%, n/a)

Image quality analysis
[17]–[19]

Good generalizability,
Low computational cost,
Fast response time,
Face and/or landmark
detection not required

Image quality measures
can be device dependent

Idiap Replay-attack (Intra-DB, Cross-DB)
[17]: (15.2%, n/a)
CASIA (Intra-DB, Cross-DB)
[18]: (6.7% (EER), n/a)
MSU MFSD [18] (Intra-DB, Cross-DB)
[18]: (5.8% , 11.4%)

Frequency domain analysis
[9], [20], [21]

Good generalization ability,
Low computational cost

Spectral features
can be device dependent

Idiap Replay-attack (Intra-DB, Cross-DB)
[21]: (2.8%, 34.4%)
CASIA (Intra-DB, Cross-DB)
[21]: (14.0%, 38.5%)
3DMAD [22] (Intra-DB, Cross-DB)
[21]: (8.0%, 44.0%)
UVAD [21] (Intra-DB, Cross-DB)
[21]: (29.9%, 40.1%)

Active approach [23] Good generalizability Requires additional devices

Private photo dataset [23] (Intra-DB, Cross-DB)
[23]: (92.2%, n/a)‡
Private 3D mask dataset [23] (Intra-DB, Cross-DB)
[23]: (100.0%, n/a)‡

Multi-clue fusion
[24], [25], [Proposed]

Good generalizability,
Less sensitive to face
and/or landmark detection errors,
Whole image frame analysis

Moderate computational
cost (0.47 sec. on desktop)

Idiap Print-attack (Intra-DB, Cross-DB)
Proposed∗: (0.5%, 50.0%)
Idiap Replay-attack (Intra-DB, Cross-DB)
Proposed∗: (0.26%, 4.5%)
CASIA (Intra-DB, Cross-DB)
Proposed∗: (0.0%, 2.5%)
RAFS (Intra-DB, Cross-DB)
Proposed∗: (0.1%, 9.5%)
MSU MSF (Intra-DB, Cross-DB)
Proposed∗: (6.25%, n/a)

†Half Total Error Rate (HTER) is defined as the average of false acceptance rate and false rejection rate; at the Equal Error Rate (EER) point where false
acceptance rate equals false rejection rate, the HTER equals EER. The HTERs of the published methods in this table are from the original papers.
‡Classification accuracy was reported. ∗We used a five-fold, subject-exclusive cross validation protocol, and no reject option was used.

spoof detection are designed to safe guard the FR system [25]
against one type of attack, and thus lack good generalizability
to different face spoof attacks and application scenarios.
Additionally, most of the published methods on face spoof
detection are based on databases in which the spoof videos
were captured using either low resolution (e.g., webcam) or
very high-resolution (e.g., DLSR) cameras [3], [6] (e.g., the
CASIA and Idiap databases released in 2012). Therefore, these
face spoof databases are not representative of mobile phone
unlock scenarios. While face spoof detection under the mobile
phone unlock scenarios was studied in [18], the mobile face
spoof database used in [18] contained only 50 subjects (images
of only 35 subjects are publicly available). Additionally, results
based on a face spoof detection system running on a mobile
platform were not reported.

In this paper, we study the problem of face spoof detection
on mobile phones using a large mobile spoof face database,
and provide a prototype face spoof detection system running
on Android. This paper expands upon our preliminary work
[1] in the following ways:

• Collection of a large mobile spoof face database (MSU

MSF) with diverse 2D face spoof attacks (printed photos,
displayed photos, and video replays) from more than
1, 000 subjects to replicate the scenario of smartphones
unlock.1

• A new feature representation method for face liveness
detection by considering the complementarity between
different feature clues, and study of possible reject op-
tions in face liveness detection.

• Verification of the conclusions drawn in [1] by using the
MSU MSF database and the inclusion of several new
experiments based on this new database.

• Leading edge spoof detection performance for cross-
database testing scenarios.2

• Implementation of the proposed method on Android
smartphones, and tests in real application scenarios.

1A 10k image portion of the MSF database (where subjects have given
approval) will be made available to interested researchers.

2Cross-database testing involves, training on database A and testing on a
different database B, collected in a different setting from database A and with
different subjects. This is in contrast to the easier, but, not realistic protocol of
intra-database testing where, cross-validation is used on a specific database.
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The remainder of the paper is organized as follows. In
Section II, we briefly review published methods, and face
spoof databases for 2D face spoof detection. We detail the
analysis of image aliasing in 2D spoof face images, and the
proposed face spoof detection approach on mobile in Sections
III and IV, respectively. Experimental setup, protocols, and
results are given in Section V. Finally, we conclude this work
in Section VI.

II. RELATED WORK

A. Literature Review

As summarized in [37], studies of face spoofing detection
can date back over 15 years. Since then, a number of methods
have been proposed for face spoofing detection under print
attacks [3], [5], [7], [9], replay attacks [2], [8], [13], and
3D mask attacks [39]. Since our focus is 2D face spoof
attack detection (on mobile), we provide a brief summary and
analysis of published 2D face spoof detection methods. Table I
groups the published 2D face spoof detection methods into five
categories: (i) face motion analysis based methods, (ii) face
texture analysis based methods, (iii) face 3D depth analysis
based methods, (iv) image quality analysis based methods,
(v) frequency domain analysis based methods and (vi) active
methods.

Face motion analysis based spoofing detection methods
extract behavioral characteristics of the face, such as eye blink
[3], and lip or head movement [2]. These methods require
accurate face and landmark detection to localize the facial
components. Additionally, multiple frames must be used in
order to estimate the movement. These methods are designed
to detect print attacks, and thus are not able to handle video
replay attacks.

Face texture analysis based spoofing detection methods
capture the texture differences (due to the different reflection
properties of live face and spoof material) between face images
captured from live faces and face images captured from various
spoof medium (e.g., paper and screen) [6], [7], [43]. These
methods can perform spoof detection based on a single face
image, and thus have relatively fast response. However, face
texture analysis based methods may have poor generalizability
when using small training sets with a limited number of
subjects and spoofing scenarios.

Face 3D depth analysis based spoofing detection methods
estimate the 3D depth of a face to discriminant between 3D
live face and 2D spoof face [5], [8]. While live faces are
3D objects, spoof faces presented on 2D planar medium are
2D. Thus, these methods can be quite effective to identify 2D
face spoof attacks if the 3D depth information of a face can
be reliably estimated. Face 3D depth analysis based methods
usually rely on multiple frames to estimate the depth or 3D
shape information of face.

Image quality analysis based spoofing detection methods
analyze the image quality differences between live face images
and spoof face images [17], [18], [44]. Since the spoof face
images and videos are generated by recapturing live face
images and videos in photographs or screens, there will be
degradations of color, reflection, and blurriness in the spoof

Fig. 2. Face images of a subject under the visible light (RGB) spectrum,
ultraviolet light (UV) spectrum, and the infrared light (IR) spectrum.

face images compared to the live face images and videos.
These methods have been found to have good generalization
ability to different scenarios [17]. However, studies on face
spoofing detection based on image quality analysis are limited.

Frequency domain based spoofing methods analyze noise
signals in recaptured video to distinguish between live and
spoof face access [9], [20], [21]. During the recapture of
printed photos or video replays, there is a decrease of low
frequency components, and an increase of high frequency
components. In order to quantize these signal changes, the
input is usually transformed into the frequency domain using
a Fourier Transform.

Active methods utilize additional sensors to capture modal-
ities, such as near-infrared (NIR) and 3D depth of a face
besides the 2D visual face image (see Fig. 23) [22], [23].
These methods benefit from the information contained in the
additional modalities, and provide better robustness against
illumination and pose variations of the face. However, the use
of additional sensors also limit the application scope of these
approaches, particularly in mobile phone scenarios.

While many of the published methods belonging to the
above five categories reported favorable results for intra-
database testing, they did not show their method’s effective-
ness in cross-database testing scenarios, which are more rep-
resentative of real applications. The few publications that do
report cross-database testing tend to report poor results [10],
[18], [21]. One plausible approach to improve the robustness
of face spoof detection methods under cross-database testing
scenarios, is to consider fusion of multiple physiological or
behavioral clues [25].

B. 2D Spoof Face Databases

1) Public-domain Databases: In this section, we review
the commonly used public-domain 2D face spoof databases
in terms of their collection process and their limitations. Ad-
ditionally, we discuss the database we collected that contains
diverse 2D face spoof attacks from a large number of subjects.

The Print-attack and Replay-attack databases are both avail-
able from Idiap. While Print-Attack consists of only 2D face
spoof attacks of printed photos from 50 subjects, Replay-
Attack consists of photo and video replay attacks from 50
subjects. Live face videos of subjects were captured using
the webcam on a MacBook. Replay attacks for each subject
were captured using a Cannon PowerShot SX 150 IS camera

3www.cnet.com/news/uv-photography-reveals-our-sun-
damaged-selves/
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TABLE II
A SUMMARY OF PUBLIC-DOMAIN 2D FACE SPOOF DATABASES.

Database # Subs. # Images or Videos
(Live, spoof)

Live face
acqusition device Spoof medium Spoof face

acquisition device Subject race

NUAA [40] 15 (5105, 7509) Webcam (640 × 480) A4 paper Webcam (640 × 480) Asian
ZJU Eyeblink [41] 20 (80, 100) Webcam (320 × 240) High-quality photo Webcam (320 × 240) Asian

Idiap Print-attack [42] 50 (200, 200) MacBook Webcam
(320 × 240) A4 paper MacBook Webcam

(320 × 240)
Mainly
Caucasian

Idiap Replay-attack [6] 50 (200, 1000) MacBook webcam
(320 × 240)

iPad 1 (1024 × 768)
iPhone 3GS (480 × 320)

Cannon PowerShot
SX 150 IS (1280 × 720)

Caucasian 76%,
Asian 22%,
African 2%

CASIA [13] 50 (200, 450) Sony NEX-5 (1280x720)
USB camera (640x480) iPad 1 (1024x768) Sony NEX-5 (1280x720)

Webcam (640 × 480) Asian 100%

MSU RAFS† [1] 55 (55, 110)
Nexus 5
(frontal: 720 × 480)
(rear: 1920 × 1080)

MacBook (1280 × 800) iPhone 6 (rear: 1920 × 1080)
Nexus 5 (rear: 1920 × 1080)

Caucasian 44%,
Asian 53%,
African 3%

UVAD [20], [21] 404 (808, 16, 268)
Six different cameras
(no mobile phone)
(1366 × 768)

Seven display devices
Six different cameras
(no mobile phone)
(1366 × 768)

Caucasian 44%,
Asian 53%,
African 3%

MSU MSF (this paper)
To be made public 1,140 (1,140, 9,120)

Nexus 5
(frontal: 720 × 480)
(rear: 3264 × 2448)
Cameras used to capture
celebrity photos

MacBook (2880 × 1800)
Desktop (1280 × 800)
Tablet (1920 × 1200)
Printed photo on
11 × 8.5 in. paper

Nexus 5
(frontal: 1280 × 960)
(rear: 3264 × 2448)

Diverse Set

†Contains an additional 200 spoof videos, 2 videos per subject from the Replay-Attack and CASIA databases.

Fig. 3. Sample images of live and spoof faces from Idiap Replay-attack
(top), CASIA (middle) and MSU RAFS (bottom) databases. (a) Live faces;
(b) Original spoof faces; (c) Spoof faces generated by Google Nexus 5 using a
MacBook for replay; (d) Spoof faces generated by iPhone 6 using a MacBook
for replay.

that records 720p video clips. The high-resolution camera
captured replay attacks displayed on an iPhone 3GS (480×320
resolution) and iPad I (1024× 768 resolution).

The CASIA Face Anti-Spoofing Database consists of 600
video clips of 50 subjects [13]. Out of the 600 video clips, 150
clips represent video replay attacks. Compared to the Idiap
database, the CASIA DB used a variety of cameras (Sony
NEX-5-HD, two low quality USB) to capture replay attacks
displayed on an iPad.

A key limitation of both the Idiap and CASIA databases
is that they capture replay video attacks using either low-
resolution cameras and spoof mediums that are now obsolete
or DSLR cameras that are expensive. Low quality webcams
often lack autofocus capability or have relatively slow autofo-
cus speed. Because of these reasons, webcams often capture
blurry images of a digital screen. Many DSLR cameras come
equipped with anti-aliasing filters that sit immediately above
the photo sensor (CCD array in most cameras) to reduce
the occurrence of moiré patterns.4 These filters reduce the
sharpness of an image by smoothing the transitions between

4www.lifepixel.com/blog/anti-aliasing-low-pass-
filter-removal

pixels, in turn reducing moiré patterns (but not completely
eliminating them). These two types of cameras also do not
replicate the real application scenarios of interest, namely user
authentication on smartphones.

Smartphones that are equipped with FR systems will capture
replay attacks using their built-in cameras instead of an exter-
nal camera. In [18], a database named Mobile Face Spoofing
Database (MFSD) was collected to study the effects of using
such videos or images for spoof attacks against smartphones.
However, MFSD contains only 280 video clips of photo and
video attacks from 35 subjects.

2) MSU Mobile Spoof Face (MSF) Database: In [1], we
collected a replay attack database for smartphones with 465
videos from 155 subjects. Of these 465 videos, 155 videos
were live face videos, and the remaining 310 videos were
spoof face videos which were captured by showing the live
face videos on a MacBook screen (1280×800), and recaptur-
ing the face videos using the built-in rear camera of Google
Nexus 5 and built-in rear camera of iPhone 65, respectively.6

The average standoff of the smartphone camera from the
screen of the MacBook was 15 cm to ensure that replay videos
did not contain the bezels (edges) of the MacBook screen.

In this work, we have significantly increased the number
of subjects (1,000+ subjects) as well as the number of live
face and spoof images (13,000) in the MSU MSF database.
Current public-domain spoof databases often lack diversity in
terms of background, illumination, and image quality. The
MSU MSF database was specifically created to ensure that
it contains a mixture of environments, image qualities, image
capture devices and subject diversity. This is essential to obtain
generalizable and robust antispoofing methods. Additionally,
running evaluations on a large database of this size will
provide statistically significant results for predicting real world
performance.

5Nexus 5 spec.: https://en.wikipedia.org/wiki/Nexus_5,
iPhone 6 spec.: https://en.wikipedia.org/wiki/IPhone_6

6Videos were not deliberately captured to include moiré patterns; only a
single attempt was made to capture the video.
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Fig. 4. Sample images of live faces included in the MSU MSF database.

Fig. 5. Sample images of spoof faces from the MSU MSF database. Images
on the left were captured using the front camera, and images on the right
were captured using the rear camera on the Nexus 5. a) Replay attack on
MacBook, b) Replay attack on Nexus 5, c) Reply attack on Nvidia shield
tablet, and d) Printed photo attacks.

Two versions of the MSU MSF database were created,
a 10K and 13K datasets. The 13K dataset contains images
from subjects who withheld consent to allow us to share their
face images with other researchers as well images from a
private database that we used to supplement the live face
images (2,818 additional images in which users withheld
consent). However, both the 10K and 13K datasets contain the
same number of spoof images (9,120 images). We will report
performance on both datasets; the 10K MSU MSF database
will allow interested researchers to verify our findings.

To create the MSU MSF database, we used a subset (1,000
subjects) of the web faces database collect in [45] to construct
the new large spoof database. This database contains images of
celebrities taken under a variety of backgrounds, illumination
conditions and resolutions. We filtered the images to only
contain a single fontal facing face (for mobile face unlock
applications, it is reasonable to expect cooperative user sce-
nario). The other 140 subjects are from the Idiap (50), CASIA
(50) and the MSU RAFS (40) public databases. Thus, the new
database contains color face images of 1,140 subjects, where
the average resolution of the live subject images is 705×865.

We simulated spoof attacks for both replay attacks as well
as printed photo attacks as these two types of attacks are
relatively inexpensive to launch. In order to capture the spoof
attacks, we used both the front (1280×960) and rear (3264×
2448) facing cameras on the Google Nexus 5. This allows

Fig. 6. Demonstration of how samples of (a) print attacks, and (b) display
and replay attacks were collected, using paper and laptop screen as the spoof
medium and a smartphone as an acquisition device. This simulates how a user
may launch an attack against a FR system.

Fig. 7. Examples of spoof attacks launched using a digital screen show
evidence of surface refection. The top row shows bright indoor lighting
reflecting off a digital screen. The bottom row shows the screen of a mobile
device reflecting the image it’s capturing.

researchers to study how the quality of the spoof images affects
spoof detection performance. Moreover, it allows researchers
to examine the images to understand how camera quality
affects image quality which in turn affects the presence of
artifacts (i.e., moiré patterns, reflections).

Given that most people have access to either a laptop,
a mobile device or a tablet, we captured replay attacks on
all three spoof mediums. The spoof attacks are captured by
showing the live face image on the screen of one of the
spoof mediums and using both the front and rear facing
cameras of the Google Nexus 5 to capture the simulated attack.
Therefore, the MSU MSF database contains 6,840 images
of replay attacks captured using different camera quality and
spoof mediums.

To capture printed photo attacks, we printed images of all
1,140 subjects using a HP Color Laserjet CP6015xh printer
(1200×600dpi) on a 8.5×11 inch white paper. The live subject
images were scaled to ensure the image covered as much of
the computer paper as possible while maintaining the original
image aspect ratio to minimize distortions. Additionally, we
placed the photos in a manner to minimize reflection from
ambient lighting inside our laboratory. Then we used both the
cameras on the Google Nexus 5 to simulate printed photo
attacks to a FR system. Thus, the MSU MSF contains 2,280
images of printed photo attacks. Figure 6 shows the setup used
to capture both printed photo attacks and replay attacks for the
MSU MSF database.
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Fig. 8. Examples of moiré patterns. (a) an overlay of two patterns generates moiré patterns, (b) moiré patterns exist in color printing with halftoning, (c)
moiré patterns appear while capturing the screen of digital devices, and (d) moiré patterns appeared in video replay attacks in the MSU MSF database we
collected (We magnify the bottom portion of a face to show the moiré patterns more clearly).

Fig. 9. Examples of spoof attacks reducing color diversity due to improper
printing or rendering of live face images. Top row shows live face images
whereas bottom row shows the corresponding spoof face images.

III. IMAGE ALIASING ANALYSIS FOR 2D SPOOF FACE
IMAGES

Different types of image aliasing appear during the recapture
of a face image or video, which generally include (1) surface
reflection by the spoof medium, (2) moiré patterns, (3) color
distortions, and (4) shape deformations.

A. Spoof Medium Surface Reflection

2D face spoofing attacks are mainly lunched by printing a
face image or displaying a digital face image or video on a
screen. Glossy photo papers and digital screens often generate
specular reflections of the light, and lead to reflection aliasing
in the spoof face images (see Fig. 7). Additionally, both paper
and digital screens have different reflective properties than
the skin of a face [19], which leads to reflectance differences
between live and spoof face images.

B. Color Distortion

Color distribution may change during the recapturing of a
face image, which leads to either reduced color diversity or
color cast. For example, while the color distortion of printed
attacks is due to the quality of the printer and photo paper,
the color distortion of replay attacks is mainly caused by the
fidelity and resolution of the screen [18]. Figure 9 shows the
color distortion in spoof face images from three subjects in
the MSU MSF database.

Fig. 10. a) Normal face image, b) skewed image captured by holding the
camera closer to the bottom portion of the image than the top of the image,
c) skewed image caused by the bending of the sides of an image.

C. Moiré Pattern

Moiré patterns are an undesired aliasing of images caused
by a overlap of digital grids [46]. Moiré patterns appear
when two or more patterns are overlaid on top of each other,
resulting in a third new pattern (Fig. 8 (a)).7 The display of
digital devices (laptops, mobile devices, and tablets) exhibit
a naturally occurring fixed repetitive pattern created by the
geometry of color elements that are used for color displays.
Therefore, whenever a image of a digital screen is recorded,
moiré patterns will naturally present themselves due to the
grid overlap between the digital screen and the digital camera.
In color printing with CMYK (cyan, yellow, magenta, and
black) halftoning model, moiré patterns are often inevitable
(Fig. 8 (b)).8 Moiré patterns are also observed in screen
shooting photography (Fig. 8 (c)).9 The fundamental reason
for moiré patterns in screen shooting photography is because
of the spatial frequency differences between the display and
the acquisition devices. For example, when the scene (on the
display of a replay device) contains repetitive details that
exceed the camera resolution, moiré patterns are observed.
Therefore, moiré patterns can be quite useful in face spoof
detection of displayed photo and video replay attacks [44].

Color distribution may change during the recapturing of a
face image, which leads to either reduced color diversity or
color cast. For example, while the color distortion of printed
attacks is due to the quality of the printer and photo paper,
the color distortion of replay attacks is mainly caused by the
fidelity and resolution of the screen [18]. Figure 9 shows the
color distortion in spoof face images from three subjects in
the MSU MSF database.

7www.ishootshows.com/2012/04/09/understanding-
moire-patterns-in-digital-photography/

8users.ecs.soton.ac.uk/km/imaging/course/moire.html
9blog.ishback.com/?cat=132
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Fig. 11. The top row shows the LBP image of live subjects and the bottom
row shows the LBP image of a live subjects displayed on digital screens
(spoof faces).

D. Face Shape Deformation

In print attacks, the bending of the photo paper may lead
to skewed face shape in the spoof face images. Additionally,
the viewing directions of the camera will also lead to the
deformation of the face shape in the spoof face images. Figure
10 shows the face shape distortion in spoof face images of
print attacks from one subject in the MSU MSF database.

IV. 2D SPOOF FACE DETECTION ON A MOBILE

A. Face Detection and Normalization

To detect faces on a mobile phone from the camera input,
we used the built-in Android face detector. This detector only
returns values for the inter-pupillary distance (IPD) and the
mid-point of the face for all faces it detects in a given input
image and therefore does not provide extract coordinates of
the left and right eyes. Thus, we used a scale factor between
the IPD and the mid-point of a detected face to normalize the
face image. We then normalize the detected face into 144 ×
120 pixel resolution. Based on our experience, the values that
the Android face detector returns can vary greatly leading to
different face cropping even in image frames captured only
milliseconds apart. This variability in face detection results
sometimes leads to inaccurate face spoof detection results. For
our experiments on a desktop, we use the face detector that
comes in the PittPatt face recognition SDK.10

B. Feature Representation

One popular and simple image descriptors for face images is
Local Binary Patterns (LBP) [7]. This was later generalized to
multi-scale LBP (MLBP) which has been shown to perform
better than LBP, for example in [47] when matching com-
posite sketches to face photos. This motivated us to conduct
experiments to test if MLBP performs better than LBP when
detecting for face liveness. Additionally, [48] introduced a
new low complexity, effective image descriptor called Locally
Uniform Comparison Image Descriptor (LUCID), which gives
comparable results to the well known SURF descriptor. Since

10PittPatt was acquired by Google in 2011, and the SDK is no longer
publicly available.

TABLE III
FEATURE DIMENSIONALITY, COMPUTATIONAL COST FOR FEATURE

EXTRACTION, AND PERFORMANCE OF FEATURE REPRESENTATION

METHODS EXTRACTED FROM THE IMAGES IN THE MSU MSF DATABASE.
A 5-FOLD CROSS-VALIDATION TESTING PROTOCOL IS USED.

Method Feature
dimension

Avg. time
per image (s)

HTER on
MSU MSF

LBP Whole‡
Frame 4248 .014 4.95%

LBP∗ [7] 4248 .014 7.36%
LBP + Color
Hist.∗ 4349 .044 7.08%

LBP + Color
Moment∗ 4263 .021 7.80%

MLBP∗ [47] 11328 .072 8.38%
LUCID∗ [48] 51840 .021 19.49%
SIFT∗ [49] 34560 .303 15.32%
Color Hist.∗ 101 .031 38.66%
Specularity∗ 3 .112 41.34%
Blurriness∗ 1 .007 49.40%
Color Moment∗ 15 .008 24.12%
Image Quality†
Analysis∗ [18] 121 .159 19.81%

‡The whole frame is resized to the same size as the cropped face image
(144× 120). ∗Denotes facial region used for feature extraction. †Feature
level fusion of color histogram, specularity, blurriness, and color moment as
used in [18]. The time is profiled on the same desktop (Intel Core 2 quad
3.0 GHz CPU and 8GB RAM).

no results have been published on the effectiveness of LU-
CID on face liveness detection, we conducted experiments
to analyze its potential. We also analyzed the SIFT (scale
invariant feature transform) feature descriptor as this descriptor
is largely invariant to scale, illumination, and local affine
distortions [49].

Given the strengths and limitations of individual feature
representation methods (Table I), we design our feature repre-
sentation method by considering the complementarity between
different clues. For example, the color histogram (top 100
colors in an image) based method depends upon how the
image was presented to the FR system when conducting a
spoof attack. A digital screen such as a laptop or a mobile
phone can display millions of colors, thus the color diversity
in a spoof image might be very similar to a live face image.
However, in printed photo attacks the color diversity is greatly
reduced, therefore this feature might be better suited to handle
printed photo attacks. The same could be said for blurriness,
as high resolution digital screens will display photos with high
definition, however again when printing an image, the quality
could be degraded. Thus, we hypothesized that a feature level
fusion of texture features and image quality features would
provide robust performance.

Since we are focusing on 2D face spoof detection which
contains printed photo, displayed photo, and replayed video
attacks, we chose to use the feature representation methods
that work for both single face image and multiple video
frames. We summarize the feature representation methods we
considered in Table III. Given the performance of individual
features and requirement of fast response in spoof detection on
mobile phones, we choose to use a fusion of LBP (effective
for face texture analysis) and color histogram (effective for
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Fig. 12. Examples of inputs that were rejected using the proposed reject
option: (a) IPD value below threshold, (b) IPD value above threshold, and (c)
detected bezels along the top and left side of input image.

image quality analysis). Specifically, given an input face image
(can be the whole frame or a face region), we calculate the
LBP features by dividing the image into 32× 32 patches with
16 pixels overlap. The LBP features from individual patches
are concatenated together to construct a feature vector. As
shown in Fig. 11, the LBP feature descriptor can capture
patterns that appear in spoof imagery quite effectively. To
extract the color histogram features, we used the entire face
image based on the method described in [18]. We find that such
a complementary feature representation method is effective
to detect individual image aliasing artifacts in spoof face
images (summarized in Section III), particularly under cross-
database testing scenarios. Additionally, such a feature vector
can be computed very efficiently, 0.044 sec. per face image
on average, or about 20 fps. All the times are profiled with a
Matlab implementation on a Windows 7 platform with Intel
Core 2 quad 3.0 GHz CPU and 8GB RAM.

C. Multi-frame Voting

We perform face spoof detection on mobile by capturing
a sequence of three face image frames. We utilize a 200
millisecond separation between the successive image captures
to allow for the motion of a subject’s hand holding the device
to introduce subtle changes in the images captured.

Given the feature vectors extracted from the training images,
we train a SVM classifier with an RBF kernel (using optimized
parameters) to distinguish between live and spoof faces.11 If
two or more frames within the three frames in a session are
classified as live faces then a given session will be classified
as live, otherwise a spoof (majority voting). Using input
from multiple frames allowed us to stabilize the decision
for a session. While more frames may further improve the
performance, we use three frames to ensure the proposed
approach can run efficiently on mobile.12

D. Rejection Option

We observed that most malicious users tend to hold the
spoof medium (smartphone or printed photo) at a certain
distance to a smartphone camera when they are trying to
spoof FR systems. They do this as they believe this will lead

11LIBSVM is used: www.csie.ntu.edu.tw/˜cjlin/libsvm.
12We also tried the score level fusion of all the frames, but it gives worse

performance than the proposed voting scheme. A possible reason is the present
of abrupt changes in decision scores between successive frames.

to higher quality face images being captured. Additionally,
to hide the evidence of a spoof attack (bezels of a digital
device and boundary of a printed photo) a malicious user may
need to hold the spoof medium as close as possible to the FR
system. An experiment conducted on 10 subjects shows that
malicious users indeed tend to hold the spoof medium as close
as possible to the FR system. This motivated us to utilize a
threshold on IPD to reject an image.

In-order to find an acceptable range of IPD, we conducted
experiments using 20 subjects, where we asked the users
to take 10 pictures of themselves using a Google Nexus 5.
Subjects that were used for this study had arms of varying
lengths. The subjects were instructed to hold a smartphone
as they would during normal usage and to capture a number
of selfie pictures. Using these 200 images, we determined the
typical IPD values under normal smartphone use. The average
IPD of live faces (captured by the front camera of a mobile) is
µ = 25.9% of the image width (120 pixels), and the standard
deviation of IPD is σ = 4.1% of image width. Based on these
statistics, we reject faces that are too small (faces are very
far from the smartphone camera) or too large (faces are very
close to the smartphone camera) by using a threshold range
of [µ− aσ, µ+ aσ]. By setting a = 2, about 95% of the input
face images are accepted and submitted to the spoof detection
system.

Additionally, we define another reject option based on the
detection of bezels of the spoof medium being used. This is
done by detecting black stripes along the left and right sides
(bezels) of the image as shown in Fig. 5, when the whole
image is used. These stripes quickly allow us to detect spoof
attacks, as these stripes will only appear on digital screens
such as on laptops, smartphones and tablets.

Using the two rejection options described above greatly
helps in detecting spoof attacks using minimal processing time.
The combination of restricting the IPD of a subject and detect-
ing the bezels of an input image reduces the number of images
that are processed using our spoof detection method. This is
due to the fact that when replay attacks are manufactured,
the restriction on the IPD leads to capture of images that
often contain the bezels of the spoof medium. Thus, the reject
options help in reducing the number of false accepts in our
system. Moreover, due to the update to Face Unlock with the
release of Android 5.0, users no longer can view what the FR
system is capturing. Therefore, malicious users no longer can
ensure input to a FR system is free of any bezels. Figure 12
shows a couple examples of input face images that are rejected
by the proposed method.

E. Prototype System on Mobile
We implement a prototype system of the proposed approach

on a Nexus 5 with API level-21 support from Android v5.1. A
minor change of the proposed method in the prototype system
on desktop is that we now use Android face detector instead
of the PittPatt face detector. Therefore, we retrained our face
spoof detection model for the prototype system by utilizing
the Android face detector to detect individual faces on the
training dataset, and retrain our face spoof detection using the
same method described in Sections IV.B-IV.D.
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TABLE IV
PERFORMANCE OF FACE SPOOF DETECTION USING FACE IMAGES

CAPTURED WITH FRONT AND REAR CAMERAS OF THE GOOGLE NEXUS 5.†

Training Set Testing Set FRR FAR HTER

Rear Camera Front Camera 6.36% 44.13% 25.23%
Front Camera Rear Camera 4.07% 37.14% 20.61%
Rear Camera Rear Camera 4.72% 5.60% 5.16%
Front Camera Front Camera 4.07% 5.19% 4.63%

† A five-fold cross-validation protocol is used. Rear Camera signifies spoof
image captured by the rear facing camera on the Nexus 5 and Front Camera
signifies spoof images captured by the front facing camera. FRR is the false

rejection rate of live face images, and FAR is the false acceptance rate of
spoof face images.

Fig. 13. Examples of three different image regions (of two different subjects)
that are used for face spoof detection analysis: (a) the whole video frame, (b)
the detected face image, and (c) the bottom half of the face image.

V. EXPERIMENTAL RESULTS

We perform face spoof detection experiments using the
collected MSU MSF database, and the public-domain Replay-
Attack, CASIA, and RAFS face databases. We study the
influences of a number of factors (e.g., image acquisition
device, image region, IPD, and database size) to the proposed
face spoof detection approach. The proposed approach is
compared with the state of the art methods in both cross-
database and intra-database testing scenarios. Unless otherwise
stated, we perform each experiment using a five-fold, subject-
exclusive cross validation protocol. We report performance in
terms of HTER (see definition in Table I).

A. Influence of Image Acquisition Device

Table IV shows the effects on face spoof detection when
cameras of different specifications are used to capture the
training and testing face images. When face images from the
training and testing sets are captured using cameras of different
specifications, the HTER is larger than the HTER when the
training and testing face images are captured using the same
camera. See Table IV. To close this performance gap, the
training set used to learn face spoof detection models should
include a wide variety of image acquisition devices for both
live and spoof face images. Therefore, the MSU MSF database
should help to learn better face spoof detection models, as it
contains live and spoof face images captured using several
different cameras.

TABLE V
FACE SPOOF DETECTION PERFORMANCE ON THE MSU MSF DATABASE

USING DIFFERENT REGIONS OF THE FACE IMAGE.

Image Region HTER Standard Dev.

Whole Frame 4.95% 0.58%
Whole Face 7.08% 0.59%
Bottom Face 10.17% 0.73%

Fig. 14. Examples of live face images (top row) and spoof face images
(bottom row) for one subject in the Idiap database. Video frames are shown
using the (a) RGB image, (b) grayscale image, (c) red channel, (d) green
channel, and (e) blue channel, respectively.

B. Influence of Different Image Regions

We study the effect of different image regions (i.e. whole
image, detected face image, and bottom half of a face) on
spoof detection performance using the MSU MSF database.
Table V shows that when using the whole image to train face
spoof detection models, the HTER is smaller than the HTER
when using the detected facial region. This result seems to be
counter to the prevailing wisdom that the background area of a
face contains noise which may degrade performance. However,
with further examination, we realize that the spoof detection
model is tuned to detect the black stripes along the left and
right sides (bezels) of the image, when the whole image is
used as mentioned in Section IV.D. Thus when we consider
the whole image, only images that did not contain any black
strips along the edges were misclassified. Therefore, face spoof
detection models specifically trained with whole images can
efficiently detect printed photo and replayed video attacks,
which often have black stripes due to the limited sizes of the
photograph paper and screen. However, in more challenging
scenarios, e.g., when no black stripes appear in spoof face
images (particularly when the malicious users intentionally
prevent the paper or screen boundary appearing in the camera),
experiments in [1] showed that using the detected facial region
provides better performance than using the whole image.

C. Influence of Color Channel

We analyze the performance of the proposed face spoof de-
tection method by using features extracted from the grayscale,
red, green and blue channels of the detected face images
from the MSU MSF database (see Fig. 14). Table VI shows
that different color channels highlight varying amounts of
texture in an image. The red channel gives better performance
than the other color channels. Apparently the texture that can
distinguish between spoof and live faces has higher contrast
in the red channel of a face image.
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Fig. 15. Example of normalized face images with different IPDs: (a) 70
pixels, (b) 60 pixels, (c) 50 pixels, and (d) 40 pixels.

TABLE VI
PERFORMANCE OF FACE SPOOF DETECTION USING DIFFERENT COLOR

CHANNELS (GRAYSCALE, RED, GREEN AND BLUE) ON THE MSU MSF
DATABASE.

Color Channel HTER Standard Dev.

Grayscale 7.15% 0.68%
Red 7.08% 0.59%
Blue 7.52% 0.95%

Green 7.57% 0.74%

D. Influence of IPD
Given that most published methods extract features from

the detected facial region, we analyze how the IPD affects the
face spoof detection performance on the MSU MSF database.
Given the cropped face images of fixed size (144× 120), we
vary the cropping of the facial region by altering the IPD (i.e.
50, 60, 70 and 80 pixels). Figure 15 shows the normalized
face image of a subject when cropping using different IPD. As
shown by the ROC curves in Fig. 16, using an IPD of 60 pixels
when cropping a face leads to the best performance. This is
due to the fact that cropping a face to have an IPD of 60 pixels
removes most of the background area while retaining as large
of the facial region as possible. Removing the background
eliminates the background clutter from a normalized face
image while a large facial region retains more distinctive
features for classification of live and spoof face images.

E. Influence of Database Size
Most of the available public domain face spoof databases

contain no more than 50 subjects. Therefore we study how the
number of subjects in the training set affects spoof detection
performance using the MSU MSF database. Figure 18 shows
that using a larger training set significantly improves the
cross-database performance on the Replay-Attack, CASIA
and RAFS databases. Additionally, using 13K face images to
train a face spoof detection model returns better performance
than using 10K training face images when conducting intra-
database testing on the MSU MSF database (see Fig. 17).
The above results show that increasing the number of training
face images to cover more diversities, from individual subjects
to image acquisition devices, helps to learn more robust
classifiers. Thus, larger databases such as the MSU MSF
database will be very helpful in advancing solutions to the
face spoof detection problem.

F. Cross-database Testing
It is now generally accepted that intra-database testing

(training and test images, while distinct, are captured in the

Fig. 16. Performance of face spoof detection on the MSU MSF database
using face images with different IPD values (50, 60, 70, and 80 pixels).

Fig. 17. Performance of the proposed face spoof detection approach on the
MSU MSF database using 10K and 13K training face images.

same environment and possibly of the same subjects) does
not represent real world scenarios, as it lacks generalization
ability [10]. We first evaluate the proposed approach under
cross-database testing scenarios. We report the HTER of the
proposed approach when conducting cross-database testing on
the Replay-attack, CASIA, and the RAFS databases. The MSF
MSU database is used to train the face spoof detection models.
To avoid bias, we removed the overlapping subjects (50 from
Replay-Attack, 50 from CASIA, 40 from RAFS) that appear
in both the MSU MSF database and the testing databases. As
shown in Table I, the proposed approach achieves 4.5%, 2.5%,
and 9.5% HTERs on the Idiap, CASIA and RAFS database,
respectively (see ROC curves from Fig. 18).

Examples of correct classifications and misclassifications by
the proposed approach on cross-database testing are shown
in Fig. 19. No examples of false reject are reported by the
proposed approach because in all three experiments, the false
reject rate is 0.

G. Intra-database Testing

We also evaluate the proposed approach under the intra-
database testing scenarios on the Replay-Attack, CASIA, and
RAFS databases. Example images of subjects from these
databases are shown Fig. 3. Table I shows that the pro-
posed approach achieves 0.26%, 0.0%, and 0.1% HTERs on
the Replay-Attack, CASIA and RAFS database, respectively.
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Fig. 18. Performance of cross-database testing on the Replay-Attack, CASIA and RAFS databases using the MSU MSF database for training. The three
ROC curves show how the varying training set size of the MSU MSF database (7887, 3944, 1017 face images) affects face spoof detection performance.

Fig. 19. Examples of correct (a, b) and incorrect (c) classifications by the proposed approach in cross-database testing on the Replay-Attack (top row),
CASIA (middle row), and MSU MSF (bottom row) databases.

Fig. 20. The GUI of our android application. The figure shows the recaptured
image of a face replay attack on a MacBook Pro screen; as shown on the
Nexus 5 screen, the application successfully detected the input as a spoof
access. The face image in the bottom-right corner displays the detected face.

When using subjects from the Idiap database, our approach
gives slightly smaller HTER (0.26%) than the state of the art
method (1.3% reported in [2]), but no cross-database testing
result was reported in [2]. Using subjects from the CASIA
database, our approach achieves much smaller EER (0.0%)
than the state of the art (11.8% EER reported in [11]). Again,
no cross-database testing result was reported in [2], [11]. As

shown in Table I, intra-database testing scenarios are trivial
compared to cross-database testing scenarios, which are more
representative of real world scenarios.

H. Performance Evaluation on Mobile Phones
We evaluate the performance of our Android application by

asking 20 subjects to use it in real world situations. The spoof
detector application was loaded onto a Google Nexus 5 and
a HTC Desire Eye (see GUI in Fig. 20). These subjects were
chosen to make sure that the test set included a diverse set of
subjects in terms of race, age, sex and facial hair style. The
face spoof detecting models were trained on a desktop using
the MSU MFS database.

One set of experiments was designed to determine whether
our application could successfully detect live faces. These
tests were conducted in various illumination conditions such
as a dark hallway, sunny outside environment, and an indoor
apartment setting with a large window. The users were in-
structed to hold the phone at different arm lengths and to
move around in their environment to introduce variations. They
were then instructed to periodically press the ”verify” button
on the application and the result of face liveness detection
were automatically recorded. For each subject, five verification
tests were conducted. Among the 100 live face attempts (5
per subject), our Android application successfully accepted 96

11



faces (96.0% accuracy) on the Google Nexus 5 and 94 faces
(94.0% accuracy) on the HTC Desire Eye.

Additionally, we conducted experiments to determine
whether the application could effectively detect spoof face
accesses. We asked the participating subjects in the live face
detection experiment to capture selfie images of themselves
(using both the rear and front facing cameras), which we would
use afterwards to launch spoof face attacks. For spoof attacks,
the subject’s selfie images were displayed on an iPhone 6
and an Apple MacBook Pro laptop with retina display. Again,
we did five tests per spoof medium. Among the 200 spoof
face accesses, our Android application on the Google Nexus
5 correctly rejected 155 spoof faces (77.5% accuracy) and 157
spoof faces (78.5% accuracy) when the MacBook Pro laptop
and iPhone 6 were used as the spoof medium, respectively.
On the HTC Desire Eye, our application correctly rejected
136 spoof faces (68.0% accuracy) and 162 spoof faces (81.0%
accuracy) when the MacBook Pro laptop and iPhone 6 were
used as the spoof medium, respectively. The above spoof face
detection results were recorded by turning off our rejection
option. If we use the rejection option, numerous input to the
FR system was rejected due to the detection of a bezel and
the IPD constraint, and the accuracies of our application on
both Google Nexus 5 and HTC Desire Eye were significantly
higher.

The above results show that although our system was trained
on the MSU MFS database in which the spoof face images
were captured using a Nexus 5 camera, it generalizes well
to different image acquisition devices under real application
scenarios. The proposed method can be integrated into an
operational mobile environment to detect most of the 2D face
spoofing attacks while retaining a high true acceptance rate of
live faces. For the incorrect classifications in live face access
test, we notice that poor illumination condition is the main
reason, particularly the dim light and yellow light. For the
false acceptances of spoof face accesses, we notice that the
main reason is the lack of moiré patterns which are caused
by the occasional slow autofocus capability of the smartphone
cameras.

I. Moiré Pattern Detection On Mobile
Given an input face image, our method will classify the

input as a spoof access if moiré patterns are detected. As we
discussed in Sec. III.B and our earlier paper [1], the presence
of moiré patterns is the evident of displayed photo and video
replay attacks lunched using a digital screen. To verify that our
Android application is effective in detecting moiré patterns, we
tested it on non-face images such as solid color images, nature
images, and car wallpapers (see Fig. 21). For each image,
five verification tests were conducted. Among the 75 spoof
attempts our Android application correctly rejected 65 (86.7%
accuracy) when using a MacBook Pro laptop to display the
non-face images. Thus, our system is effective in detecting the
presence of moiré patterns when capturing non-face images
displayed on a digital screen. This experiment also shows
that the proposed method still performs well for detecting
displayed photo and video replay attacks, even if the face
detection module does not give accurate face detection results.

Fig. 21. Detection of the presence of moiré patterns from non-face images.
The top and bottom rows shows three non-face images and three recaptured
images from a MacBook screen, respectively.

J. Running Time on Mobile

The Android spoof detection application must provide fast
response to the users. The current implementation takes .02
seconds for classification and 1.65 seconds to extract features
from a single image frame (144 × 120) for a total time
of 1.67 seconds. However, using three frames to make a
decision leads to only a marginal increase in the total time
to 1.95 seconds because of our multithreaded implementation
on Android. All the times are profiled on a Google Nexus 5
smartphone with 2GB of ram and Quad-core 2.3 GHz Krait
400 CPU running native Android 5.0 ROM. As a comparison,
the proposed approach takes 0.47 seconds on a desktop (see
Section IV.B for desktop specification) for feature extraction
and classification of a single frame.

VI. SUMMARY AND CONCLUSIONS

Spoofing attacks are a menace to biometric systems in terms
of public perception and adoption. Face recognition systems
can be easily targeted due to the low cost in launching face
spoofing attacks such as printed photos or video replays. In
order to address the problem of face spoofing detection on
mobile phones, we propose an efficient face spoof detection
approach based on the analysis of image aliasing in 2D spoof
face images and the complementarity of individual clues.
We also collected a large database, called the MSU Mobile
Face Spoof (MSU MSF) database that contains replay and
printed photo attacks captured by different smartphone cam-
eras. Experimental evaluations using the MSU MSF database
show that a large database is essential to learn robust face
spoofing detection models, particularly under cross-database
testing scenarios. Additionally, we propose a simple but ef-
ficient rejection option for face images based on IPD. We
also study the influences of the image acquisition device,
image color channel, and facial cropping region to the face
spoof detection system. Our prototype system on two Android
smartphones (Google Nexus 5 and HTC Desire Eye) shows
that the proposed approach can perform face spoof detection
efficiently using smartphones.

For future work, we plan to extend the MSU MSF database
to include 3D facial mask attacks, and additional replay and
printed photo attacks captured using various smartphones to
increase the database diversity of face spoof attacks. We will
also make use of the temporal and contextual information
included in multiple video frames to build more robust face
spoof models. Additionally, we will analyze whether the pro-
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posed method in combination with movement clues (e.g., eye-
blink) can improve spoof detection performance.
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single images using micro-texture analysis,” in Proc. IJCB, 2011, pp.
1–7.

[8] M. De Marsico, M. Nappi, D. Riccio, and J. Dugelay, “Moving face
spoofing detection via 3d projective invariants,” in Proc. ICB, 2012, pp.
73–78.

[9] J. Li, Y. Wang, T. Tan, and A. K. Jain, “Live face detection based on
the analysis of fourier spectra,” in Proc. SPIE: Biometric Technology
for Human Identification, 2004, pp. 296–303.

[10] T. F. Pereira, A. Anjos, J. De Martino, and S. Marcel, “Can face anti-
spoofing countermeasures work in a real world scenario?” in Proc. ICB,
2013, pp. 1–8.

[11] J. Yang, Z. Lei, S. Liao, and S. Li, “Face liveness detection with
component dependent descriptor,” in Proc. ICB, 2013, pp. 1–6.

[12] D. Menotti, G. Chiachia, A. Pinto, W. Robson Schwartz, H. Pedrini,
A. Xavier Falcao, and A. Rocha, “Deep representations for iris, face, and
fingerprint spoofing detection,” IEEE Trans. Inf. Forensics and Security,
vol. 10, no. 4, pp. 864–879, Apr. 2015.

[13] Z. Zhang, J. Yan, S. Liu, Z. Lei, D. Yi, and S. Z. Li, “A face antispoofing
database with diverse attacks,” in Proc. ICB, 2012, pp. 26–31.

[14] T. Wang, J. Yang, Z. Lei, S. Liao, and S. Z. Li, “Face liveness detection
using 3D structure recovered from a single camera,” in Proc. ICB, 2013,
pp. 1–6.

[15] A. Lagorio, M. Tistarelli, M. Cadoni, C. Fookes, and S. Sridharan,
“Liveness detection based on 3d face shape analysis,” in Proc. IWBF,
2013, pp. 1–4.

[16] W. Kim, S. Suh, and J.-J. Han, “Face liveness detection from a single
image via diffusion speed model,” IEEE Trans. Image Process., vol. 24,
no. 8, pp. 2456–2465, Aug. 2015.

[17] J. Galbally, S. Marcel, and J. Fierrez, “Image quality assessment for fake
biometric detection: Application to iris, fingerprint and face recognition,”
IEEE Trans. Image Process., vol. 23, no. 2, pp. 710–724, Feb. 2014.

[18] D. Wen, H. Han, and A. K. Jain, “Face spoof detection with image
distortion analysis,” IEEE Trans. Inf. Forensics Security, vol. 10, no. 4,
pp. 746–761, Apr. 2015.

[19] H. Yu, T.-T. Ng, and Q. Sun, “Recaptured photo detection using
specularity distribution,” in Proc. ICIP, 2008, pp. 3140–3143.

[20] A. Pinto, W. Robson Schwartz, H. Pedrini, and A. De Rezende Rocha,
“Using visual rhythms for detecting video-based facial spoof attacks,”
IEEE Trans. Inf. Forensics Security, vol. 10, no. 5, pp. 1025–1038, May
2015.

[21] A. Pinto, H. Pedrini, W. R. Schwartz, and A. Rocha, “Face spoofing
detection through visual codebooks of spectral temporal cubes,” IEEE
Trans. Image Process., vol. 24, no. 12, pp. 4726–4740, Dec. 2015.

[22] N. Erdogmus and S. Marcel, “Spoofing in 2d face recognition with 3d
masks and anti-spoofing with kinect,” in Proc. BTAS, 2013, pp. 1–6.

[23] Z. Zhang, D. Yi, Z. Lei, and S. Z. Li, “Face liveness detection by learning
multispectral reflectance distributions,” in Proc. FG, 2011, pp. 436–441.

[24] R. Tronci, D. Muntoni, G. Fadda, M. Pili, N. Sirena, G. Murgia,
M. Ristori, and F. Roli, “Fusion of multiple clues for photo-attack
detection in face recognition systems,” in Proc. IJCB, Oct. 2011, pp.
1–6.

[25] J. Komulainen, A. Hadid, M. Pietikäinen, A. Anjos, and S. Marcel,
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