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Abstract—Numerous activities in our daily life require us to verify who we are by showing our ID documents containing face images,
such as passports and driver licenses, to human operators. However, this process is slow, labor intensive and unreliable. As such, an
automated system for matching ID document photos to live face images (selfies) in real time and with high accuracy is required. In this
paper, we propose DocFace+ to meet this objective. We first show that gradient-based optimization methods converge slowly (due to
the underfitting of classifier weights) when many classes have very few samples, a characteristic of existing ID-selfie datasets. To
overcome this shortcoming, we propose a method, called dynamic weight imprinting (DWI), to update the classifier weights, which
allows faster convergence and more generalizable representations. Next, a pair of sibling networks with partially shared parameters are
trained to learn a unified face representation with domain-specific parameters. Cross-validation on an ID-selfie dataset shows that
while a publicly available general face matcher (InsightFace) only achieves a True Accept Rate (TAR) of 88.78± 1.30% at a False
Accept Rate (FAR) of 0.01% on the problem, DocFace+ improves the TAR to 95.95± 0.54%.

Index Terms—ID-selfie face matching, face recognition, face verification, access control, document photo, selfies
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1 INTRODUCTION

I DENTITY verification plays an important role in our daily lives.
For example, access control, physical security and international

border crossing require us to verify our access (security) level and
our identities. A practical and common approach to this problem
involves comparing an individual’s live face to the face image
found in his/her ID document. For example, immigration and
customs officials look at the passport photo to confirm a traveler’s
identity. Clerks at supermarkets in the United States look at the
customer’s face and driver license to check his/her age when
the customer is purchasing alcohol. Instances of ID document
photo matching can be found in numerous scenarios. However,
it is primarily conducted by humans manually, which is time
consuming, costly, and prone to operator errors. A study pertaining
to the passport officers in Sydney, Australia, shows that even the
trained officers perform poorly in matching unfamiliar faces to
passport photos, with a 14% false acceptance rate [1]. Therefore,
an accurate and automated system for efficient matching of ID
document photos to selfies* is required. In addition, automated
ID-selfie matching systems also enable remote authentication
applications that are otherwise not feasible, such as onboarding
new customers in a mobile app (by verifying their identities for
account creation), or account recovery in the case of forgotten
passwords. One application scenario of our ID-selfie matching
system (DocFace+) is illustrated in Figure 1.

A number of automated ID-selfie matching systems have been
deployed at international border crossings. Deployed in 2007,
SmartGate [2] in Australia (See Figure 2) is the earliest of its
kind. Due to an increasing number of travelers to Australia,
the Australian government introduced SmartGate at most of its
international airports as an electronic passport check for ePassport
holders. To use the SmartGate, travelers only need to let a machine

* Technically, the word “selfies” refers to self-captured photos from mobile
phones. But here, we define “selfies” as any self-captured live face photos,
including those from mobile phones and kiosks.
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Fig. 1: An application scenario of the DocFace+ system. The kiosk
scans the ID document photos or reads the photo from the embedded
chip and the camera takes another photo of the holder’s live face
(selfie). By comparing the two photos, the system decides whether the
holder is indeed the owner of the ID document.

read their ePassport chips containing their digital photos and then
capture their face images using a camera mounted at the Smart-
Gate. After verifying a traveler’s identity by face comparison, the
gate is automatically opened for the traveler to enter Australia.
Similar machines have also been installed in the UK (ePassport
gates) [3], USA (US Automated Passport Control) [4] and other
countries. In China, such verification systems have been deployed
at various locations, including train stations, for matching Chinese
ID cards with live faces [5]. In addition to international border
control, some businesses [6], [7] are utilizing face recognition
solutions to ID document verification for online services.

The problem of ID-selfie matching poses numerous challenges
that are different from general face recognition. For typical un-
constrained face recognition tasks, the main challenges are due
to pose, illumination and expression (PIE) variations. On the
other hand, in ID-selfie matching, we are comparing a scanned
or digital document photo to a digital camera photo of a live
face. Assuming that the user is cooperative, both of the images
are captured under constrained conditions and large PIE variations
would not be present. However, (1) the low quality of document
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(a) SmartGate (Australia) [2] (b) ePassport gates (UK) [3] (c) Automated Passport Control
(US) [4]

(d) ID card gates (China) [5]

Fig. 2: Examples of automatic ID document photo matching systems at international borders.

(a) General face matching

(b) ID-selfie matching

Fig. 3: Example images from (a) LFW dataset [8] and (b) ID-selfie
dataset. Each row shows two pairs from each dataset, respectively.
Compared with the general unconstrained face recognition shown in
(a), ID Document photo matching in (b) does not need to consider
large pose variations. Instead, it involves some other challenges such
as aging and information loss via image compression.

photos due to image compression1 and (2) the large time gap
between the document issue date and the verification date remain
as the primary difficulties (See Figure 3). In addition, since state-
of-the-art face recognition systems are based on deep networks,
another issue faced in our problem is the lack of a large training
dataset (pairs of ID photos and selfies).

In spite of numerous applications and associated challenges,
there is a paucity of research on ID-selfie matching. Most of the
published studies are now dated [9], [10], [11], [12]. It is important
to note that face recognition technology has made tremendous
strides in the past five years, mainly due to the availability
of large face datasets and the progress in deep neural network
architectures. Hence, the earlier published results on ID-selfie
matching are now obsolete. To the best of our knowledge, our
prior work [13] is the first to investigate the application of deep
CNN to this problem, concurrent with Zhu et al. [14].

In this paper, we first briefly review existing studies on the ID-
selfie matching problem and other studies related to our work.
We then extend our prior work of DocFace [13] to a more
robust and accurate method, DocFace+, for building ID-selfie
matching systems. We use a large private dataset of Chinese

1. Most chips in e-Passports have a memory ranging from 8KB to 30KB;
the face images need to be compressed to be stored in the chip. See https:
//www.readid.com/blog/face-images-in-ePassports

Identity Cards with corresponding selfies2 to develop the system
and to evaluate the performance of (i) two Commercial-Off-The-
Shelf (COTS) face matchers, (ii) open-source deep network face
matchers, and (iii) the proposed method. We also compare the
proposed system on the open benchmark established by Zhu et
al [14]. The contributions of the paper are summarized below:

• A new optimization method for classification-based embed-
ding learning on shallow datasets3.

• A new recognition system containing a pair of partially
shared networks for learning unified representations from ID-
selfie pairs.

• An evaluation of COTS and public-domain face matchers
showing ID-selfie matching is a non-trivial problem with
different challenges from general face matching.

• An open-source face matcher4, namely DocFace+, for ID-
selfie matching, which significantly improves the perfor-
mance of state-of-the-art general face matchers. Our exper-
iment results show that while the publicly available CNN
matcher (InsightFace) only achieves a True Accept Rate
(TAR) of 88.78 ± 1.30% at False Accept Rate (FAR) of
0.01% on the problem, DocFace+ improves the TAR to
95.95± 0.54%.

2 RELATED WORK

2.1 ID Document Photo Matching

To the best of our knowledge, the first study on ID-selfie matching
is attributed to Starovoitov et al. [9], [12]. Assuming all face
images are frontal faces without large expression variations, the
authors first localize the eyes with Hough Transform. Based
on eye locations, the face region is cropped and gradient maps
are computed as feature maps. The algorithm is similar to a
general constrained face matcher, except it is developed for a
document photo dataset. Bourlai et al. [10], [11] considered ID-
selfie matching as a comparison between degraded face images,
i.e. scanned document photos, and high quality live face images.
To eliminate the degradation caused by scanning, Bourlai et al.
inserted an image restoration phase before comparing the photos
using a general face matcher. In particular, they train a classifier
to classify the degradation type for a given image, and then apply

2. This dataset consists of 53, 591 different ID-selfie pairs captured at
different locations and at different times. Due to privacy reasons, we cannot
release this data in the public domain. To our knowledge, there is no such
dataset available in public domain.

3. Face recognition datasets are often described in terms of breadth and
depth [15], where breadth refers to the number of classes (subjects) and depth
means the average number of samples per class.

4. The source code is available at https://github.com/seasonSH/DocFace
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degradation-specific filters to restore the degraded images. Com-
pared with their work on scanned documents, the document photos
in our datasets are read from the chips embedded in the Chinese ID
Cards. Additionally, our method is not designed for any specific
degradation type and could be applied to any type of ID document
photos. Concurrent with our prior work [13], Zhu et al. [14] also
worked on deep CNN-based ID-selfie matching systems. With
2.5M ID-selfie pairs, also from a private Chinese ID card dataset,
they formulated it as a bisample learning problem and proposed to
train the network in three stages: (1) pre-learning (classification)
on general face datasets, (2) transfer learning (verification), and
(3) fine-grained learning (classification). Our work, on the other
hand, proposes a special optimization method to address the slow
convergence problem of classification-based embedding learning
methods on ID-selfie datasets, which does not require multi-stage
training. Compared with our prior work [13], the differences in this
version are as follows: (1) a larger ID-selfie dataset (over 50,000
subjects), which is a combination of the two small private datasets
in [13] and another larger ID-selfie dataset, (2) a different loss
function, namely DIAM-Softmax, to learn the face representation,
(3) more comprehensive experiments to analyze the effect of each
module and (4) an evaluation of the proposed system as well as
other face matchers on a new ID-selfie benchmark, Public IvS,
released by Zhu et al. in [14].

2.2 Deep Face Recognition

With the success of deep neural networks in the ImageNet
competition [16], virtually all of the ongoing research in face
recognition now utilizes deep neural networks to learn face rep-
resentation [17], [18], [19], [20], [21], [22], [23]. Taigman et
al. [17] first proposed the application of deep neural networks to
learn face representation. They designed an 8-layer convolutional
neural network and trained it with a Softmax loss function, a
standard loss function for classification problems. They used the
outputs of the bottleneck layer as face representation and achieved
state-of-the-art performance at that time in 2014. Considering that
Softmax loss only encourages large inter-class variations but does
not constrain intra-class variations, Sun et al. [18] later proposed
to train networks with both a classification signal (Softmax loss)
and a metric learning signal (Contrastive loss). About the same
time, Schroff et al. [19] proposed a metric learning loss function,
named triplet loss, boosting the state-of-the-art performance on the
standard LFW protocol [8]. Liu et al. [21], [24], [25] first bridged
the gap between classification loss functions and metric learning
methods with the Angular-Softmax (A-Softmax) loss function, a
modified Softmax loss that classifies samples based on angular
distances. Wang et al. [23] recently proposed the Additive Margin
Softmax (AM-Softmax), which learns to increase the angular
discriminability with an additive margin and is shown to be more
robust than A-Softmax.

2.3 Heterogeneous Face Recognition

Heterogeneous face recognition (HFR) is an emerging topic that
has become popular in the past few years [26]. It usually refers to
face recognition between two different modalities, including visi-
ble spectrum images (VIS), near infrared images (NIR) [27], ther-
mal infrared images [28], composite sketches [29], etc. ID-selfie
matching can be considered to be a special case of HFR since the
images to be matched come from two different sources. Therefore,

the techniques used in HFR could be potentially helpful for the ID-
selfie problem. Most methods for HFR can be categorized into two
types: synthesis-based methods and discriminant feature-based
methods. Synthesis-based methods aim to transform the images
from one modality into another so that general intra-modality face
recognition systems can be applied [29], [30], [31], [32]. On the
contrary, discriminant feature-based methods either manually de-
sign a modality-invariant visual descriptor or learn a set of features
from the training data so that images from different modalities
can be mapped into a shared feature space [33], [34], [35]. Recent
studies on HFR have focused on utilizing deep neural networks
to learn such modality-invariant features. In [36], Liu et al. first
proposed to apply deep VIS face features to VIS-NIR matching
via transfer learning where their network is fine-tuned on VIS-NIR
dataset with a modified triplet loss. He et al. proposed [37] to use a
shared convolutional neural network to map VIS and NIR images
into three feature vectors: one set of shared features and two
modality-specific feature sets, which are then concatenated and
trained with three Softmax loss functions. Wu et al. [38] proposed
to learn a unified feature space with two correlated modality-
specific Softmax loss functions. The weights of the two Softmax
loss functions are regularized by a trace norm and a block-
diagonal prior to encourage correlation between representations
from different modalities and to avoid overfitting.

2.4 Low-shot Learning

Another field related to our work is the low-shot learning problem.
In low-shot learning [39], [40], [41], a model is trained in such
a way that it is able to generalize to unseen classes, which may
have only a few samples. There are two training phases in low-
shot learning: the model, or learner, is first trained on a larger
classification dataset, and then in testing, a few labeled samples
of new classes are given and the model is required to learn a
new classifier given these classes. The adjective “low-shot” refers
to a small number of images per class. This problem has been
receiving growing interest from the machine learning community
because humans are very good at adapting to new types of objects
(classes) while conventional deep learning methods require abun-
dant samples for discriminating a specific class from others. This
is related to the ID-selfie problem since most of the identities only
have a few samples, resulting in a shallow dataset. Many methods
have been proposed for low-shot learning problem. Koch et al. [39]
proposed a simple yet effective approach by learning metrics
via siamese network [42] for one-shot recognition. Vinyals et
al. [40] proposed the Matching Net where they simulate the testing
scenario in the training phase by learning low-shot recognition in
mini-batches. This idea was then generalized as meta-learning,
where an extra meta-learner can learn how to optimize or produce
new classifiers [43], [44]. The Prototypical Network by Snell et
al. [41] is more relevant to our work. They proposed to learn a
network such that prototypes, i.e. average feature vector of an
unseen class, can be used for classification. Qi et al. [45], based
on the idea of the prototypes, or proxies [46], proposed to imprint
the weights of a new classifier with extracted features. We note
that their work differs from ours as they utilized the imprinted
weights simply as initialization while we use weight imprinting
as an optimization method throughout training by dynamically
imprinting the weights.
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(a) MS-Celeb-1M (b) Private ID-selfie (c) Public IvS

Fig. 4: Example images in each dataset. The left image in each pair in (b) and (c) is the ID photo and on its right is one of its corresponding
selfies.

3 DATASETS

In this section, we briefly introduce the datasets that are used in
this paper. Some example images of the datasets are shown in
Figure 4. As stated earlier, due to our NDA privacy issues, we
cannot release the Private ID-selfie dataset. But by comparing our
results with public face matchers, we believe it is sufficient to
show the difficulty of the problem and advantages of the proposed
method.

3.1 MS-Celeb-1M
The MS-Celeb-1M dataset [47] is a public domain face dataset
facilitating training of deep networks for face recognition. It
contains 8, 456, 240 face images of 99, 892 subjects (mostly
celebrities) downloaded from internet. In our transfer learning
framework, it is used to train a base network. Because the dataset
is known to have many mislabels, we use a cleaned version5 of
MS-Celeb-1M with 5, 041, 527 images of 98, 687 subjects. Some
example images from this dataset are shown in Figure 4(a).

3.2 Private ID-selfie
During the experiments, we use a private dataset to develop and
evaluate our ID-selfie matching system. It is a combination of a
larger ID-selfie dataset and two other smaller datasets used in our
prior work [13]. The dataset contains 116, 914 images of 53, 591
identities in all. Each identity has only one ID card photo. A subset
of 53, 054 identities have only one selfie while the other 537 have
multiple selfies. The ID card photos are read from chips in the
Chinese Resident Identity Cards6. In our experiments, similar to
LFW [8] protocol, we define two views: (1) a development view
for hyper-parameter tuning; (2) an evaluation view for analyzing
the performance. A 5-fold cross-validation is conducted in the
evaluation view. Some example pairs from this dataset are shown
in Figure 4(b).

3.3 Public IvS
Public IvS is a dataset released by Zhu et al. [14] for evaluation
of ID-selfie matching systems. The dataset is constructed by

5. https://github.com/AlfredXiangWu/face verification experiment.
6. The second-generation Chinese ID cards, which were first launched in

2004 and completely replaced the first generation in 2014, contain an IC chip.
The chip stores a compressed face photo of the owner. See more at https:
//en.wikipedia.org/wiki/Resident Identity Card

Source Domain Target Domain
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Fig. 5: Work flow of the proposed method. We first train a base model
on a large scale unconstrained face dataset. Then, the parameters
are transferred to a pair of sibling networks, which share high-level
modules. Random ID-selfie pairs are sampled from different classes
to train the networks. The proposed DIAM-Softmax is used to learn a
shared feature space for both domains of ID and selfie.

collecting ID photos and live face photos of Chinese personalities
from Internet. The dataset contains 1, 262 identities and 5, 503
images in total. Each identity has one ID photo and 1 to 10 selfies.
It is not strictly an ID-selfie dataset since its ID photos are not from
real ID cards but are simulated with highly constrained frontal
photos. The results on this dataset were shown to be consistent
with real-world ID-selfie datasets [14]. However, our experiments
show that this dataset is similar to a general face dataset, such as
LFW (See Section 5.8). Some example pairs of this dataset are
shown in Figure 4(c).

4 METHODOLOGY

4.1 Overview

In our work, we first train a network as base model on a large-scale
unconstrained face dataset, i.e. MS-Celeb 1M and then transfer its
features to our target domain of ID-selfie pairs. To ensure the per-
formance of transfer learning, we utilize the popular Face-ResNet
(DeepVisage) architecture [22] to build the convolutional neural
network. For training the base model, we adopt state-of-the-art
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Additive Margin Softmax (AM-Softmax) loss function [23] [48].
Then we propose a novel optimization method called dynamic
weight imprinting (DWI) to update the weight matrix in AM-
softmax when training on the ID-selfie dataset. A pair of sibling
networks is proposed for learning domain-specific features of IDs
and selfies, respectively, with shared high-level parameters. An
overview of the work flow is shown in Figure 5.

4.2 Original AM-Softmax

We use the original Additive Margin Softmax (AM-Softmax) loss
function [23] [48] for training the base model. Here, we give
a short review to gain more understanding of this loss function
before we introduce our modifications in the next section. Similar
to Angular Softmax [21] and L2-Softmax [49], AM-Softmax is a
classification-based loss function for embedding learning, which
aims to maximize inter-subject separation and to minimize intra-
subject variations. Let Xs = {(xi, yi)|i = 1, 2, 3, · · · , N}
be our training dataset and F : Rh×w×c → Rd be a feature
extraction network, where xi ∈ Rh×w×c is a face image, yi is the
label and h,w,c are the height, width and number of channels of
the input images, respectively. N is the number of training images
and d is the number of feature dimensions. For a training sample
xi in a mini-batch, the loss function is given by:

L = − log p(i)yi
(1)

where

p
(i)
j =

exp(a
(i)
j )∑

k exp(a
(i)
k )

a
(i)
j =

{
swj

T fi−m, if j = yi
swj

T fi, otherwise

wj =
wj

∗

‖wj
∗ ‖2

fi =
F(xi)
‖F(xi)‖2

.

Here wj
∗ ∈ Rd is the weight vector for jth class, m is a hyper-

parameter for controlling the margin and s is a scale parameter.
Notice that this formula is a little different from the original AM-
Softmax [23] in the sense that the margin m is not multiplied by
s, which allows us to automatically learn the parameter s [50].
During training, the loss in Equation (1) is averaged across all im-
ages in the mini-batch. The key difference between AM-Softmax
and original Softmax is that both the features fi and the weight
vectors wi are normalized and lie in a spherical embedding space.
Thus, instead of classifying samples based on inner products, AM-
Softmax, during training, aims to learn features that are separable
using cosine similarity, the same metric used in the testing phase.
This closes the gap between training and testing as well as
the gap between classification learning and metric learning. The
normalized weight vector wj is considered to be an “agent” or
“proxy” of the jth class, representing the distribution of this class
in the embedding space [50], [51]. In original AM-Softmax as well
as other related works [50], [49], [51], [23], classifier weights are
also optimized with stochastic gradient descent (SGD). For the
weights wyi

of the ground-truth class, the gradient

∂ L
∂wyi

= s(1− p(i)yi
) fi (2)
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Fig. 6: Training loss of AM-Softmax compared with DIAM-Softmax.
DIAM-Softmax shares the same formula as AM-Softmax, but its
weights are updated with the proposed DWI instead of SGD.

(a) AM-Softmax (b) DIAM-Softmax

Fig. 7: Visualization of 8 randomly selected classes in the training
dataset. The dimensionality of the original embedding space is 512
and is reduced to 2 with t-SNE [52]. The circles are training samples
and the diamonds are normalized classifier weights. In original AM-
Softmax, many weight vectors shift from their corresponding distri-
butions when the dataset is shallow and update signals are sparse,
leading to a low convergence speed. In DIAM-Softmax, the classifier
weights are better aligned with the respective class samples.

serves as an attraction signal to pull wyi closer to fi. For other
classes j 6= yi, the gradient

∂ L
∂wj

= −sp(i)j fi (3)

provides a repulsion signal to push wj away from fi. Com-
pared with metric learning methods [42] [19], which update the
network based only on the statistics of stochastic mini-batches
and need to mine non-trivial pairs/triplets for faster convergence,
the normalized classifier weights allows AM-Softmax to capture
global distributions of different classes in the embedding space to
accelerate training.

4.3 Dynamic Weight Imprinting
In spite of the success of AM-Softmax and other classification-
based embedding learning loss functions on general face recog-
nition [49], [50], [21], we found them to be less competitive for
transfer learning on the ID-selfie dataset [13]. In fact, it is often the
case that they converge very slowly and get stuck at a poor local
minimum. As shown in Figure 6, the original AM-Softmax does
not start to converge after several epochs7. To gain more insight

7. In this example, each epoch is approximately 300 steps.
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TABLE 1: The mean (and s.d.) of performance of AM-Softmax
and DIAM-Softmax on the Private ID-selfie dataset based on 5-
fold cross-validation. Compared with the proposed method, original
AM-Softmax takes twice as long to converge and overfits with more
training.

Method True Accept Rate (%)

FAR=0.001% FAR=0.01% FAR=0.1%

AM-Softmax 91.65± 1.19 95.13± 0.72 97.08± 0.45
AM-Softmax (2x
steps)

92.53± 1.09 95.57± 0.57 97.23± 0.42

AM-Softmax (4x
steps)

91.93± 1.08 95.24± 0.60 97.08± 0.40

DIAM-Softmax 93.16± 0.85 95.95± 0.54 97.51± 0.40

into the problem, we visualize the embeddings via dimensionality
reduction. We extract the features of samples as well as the
normalized weight vectors of 8 classes8 in the training dataset and
reduce their dimensionality from 512 to 2 using t-SNE [52]. The
visualization is shown in Figure 7(a). Noticeably, many weights
are shifted from the distribution of the corresponding class even
after convergence. Since these weights vectors are the “proxies”
to represent the respective class distributions, such a shift could
be misleading for updating the features. However, as discussed
in Section 4.2, these classifier weights in original AM-Softmax
as well as other classification-based methods [51], [50], [49]
are updated along with the main feature network using gradients.
This process are hence coupled with the settings of the global
optimizer. Consequently, this shift become large and harmful on
shallow datasets, where there are a large number of classes with
only a few samples for most classes. In particular, because SGD
updates the network with mini-batches, in a two-shot case, each
weight vector will receive attraction signals only twice per epoch.
After being multiplied by the learning rate, these sparse attraction
signals make little difference to the classifier weights. Thus instead
of overfitting, this sparseness of signals from SGD causes the
underfitting of the classifier weights in the last fully connected
layer, which shift from the feature distribution and lead to the
slow convergence.

Based on the above observations, we propose a different opti-
mization method for the weights in classification-based embedding
learning loss functions. The main idea is to update the weights
based on sample features to avoid underfitting of the classifier
weights and accelerate the convergence. This idea of weight
imprinting has been studied in the literature [45] [14], but they
only imprint the weights at the beginning of fine-tuning. Inspired
by the center loss [53], we propose a dynamic weight imprinting
(DWI) strategy for updating the weights:

wj =
wj

∗

‖wj
∗ ‖2

, (4)

where
wj

∗ = (1− α)wj +αwbatch
j (5)

Here wbatch
j is a target weight vector that is computed based

on current mini-batch. Notice that we only update the weights
of classes whose samples are present in the current mini-batch
and we store wj rather than wj

∗ as variables. We consider three
candidates for wbatch

j in our ID-selfie problem: (1) the feature of

8. Seven classes are randomly selected and one class is chosen to have
large number of samples. Similar to most classes, the randomly selected seven
classes have only two images (one ID and one selfie).

ID image, (2) the feature of selfie image and (3) the mean feature
of ID and selfie images. The hyper-parameter α is the update
rate. We are using this α here to consider a broader case where
the weights are softly updated. In fact, as shown in Section 5.2,
α = 1 actually leads to the best performance, in which case the
update formula can be simply written as:

wj =
wbatch

j

‖wbatch
j ‖2

(6)

Intuitively, DWI helps to accelerate the updating of weight
vectors by utilizing sampled features and is invariant to the
parameter settings of optimizers. Compared with gradient-based
optimization, it only updates the weights based on genuine sam-
ples and does not consider repulsion from other classes. This
may raise doubts on whether it could optimize the loss function
in Equation (1). However, as shown in Figure 6 and Figure 7,
empirically we found DWI is not only able to optimize the loss
function, but it also helps the loss converge much faster by
reducing the shift of weights. Furthermore, our cross-validation
results on the Private ID-selfie dataset show that DWI is superior
to SGD in terms of accuracy even when we train SGD for twice
as long, until complete convergence. See Table 1.

Notice that DWI is not specially designed for AM-Softmax,
but can be applied to other classification-based embedding learn-
ing loss functions as well, such as L2-Softmax [49]. Although it is
mainly an optimization method and it does not change the formula
of the loss function, from another perspective, DWI also results in
a new loss function, since different choices of classifier weights
essentially poses different learning objectives. Therefore, we name
the method used in this paper, which combines DWI and AM-
Softmax, as a new loss function, called Dynamically Imprinted
AM-Softmax (DIAM-Softmax).

It is important to note here that DWI does not introduce any
significant computational burden and the training speed is almost
the same as before. In addition, since DWI only updates the
weights of classes that are present in the mini-batch, it is naturally
compatible with extremely wide datasets where the weight matrix
of all classes is too large to be loaded and only a subset of weights
can be sampled for training, as in [14]. However, because of the
data limitations, we do not further explore this idea here.

4.4 Domain Specific Modeling
The ID-selfie matching problem can be regarded as an instance
of heterogeneous face recognition (HFR) [35], since the face
images come from two different sources. Thus, it is reasonable
to expect that HFR methods could help with our problem. A
common approach in HFR is to utilize two separate domain-
specific models to map images from different sources into a unified
feature space. Therefore, we use a pair of sibling networks for
ID images and selfie images, respectively, which share the same
architecture but could have different parameters. Both of their
features are transferred from the base model, i.e. they have the
same initialization. Although this increases the model size, the
inference speed will remain unchanged as each image is only
fed into one of the sibling networks. The use of sibling networks
allows domain-specific modeling, but more parameters could also
lead to a higher risk of overfitting. Therefore, different from our
prior work [13], we propose to constrain the high-level parameters
of the sibling networks to be shared to avoid overfitting. In
particular, we use a pair of Face-ResNet models with only the
bottleneck layer shared.
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4.5 Data Sampling
When we apply classification-based loss functions to general face
recognition, the mini-batches for training are usually constructed
by sampling images uniformly at random. However, because our
data is acquired from two different domains, such an image-level
uniform sampling may not be the optimal choice. There is usually
only one ID image per class while there could be many more
selfies, so sampling images uniformly could lead to a bias towards
selfies and hence an insufficient modeling of the ID domain.
Therefore, we propose to use a different sampling strategy to
address the domain imbalance problem. In each iteration, B/2
classes are chosen uniformly at random, where B is the batch size,
and a random ID-selfie pair is sampled from each class to construct
the mini-batch. Empirical results in Section 5.3 show that such a
balanced sampling leads to a better performance compared with
image-level uniform sampling.

5 EXPERIMENTS

5.1 Experimental Settings
We conduct all the experiments using Tensorflow library9. When
training the base model with original AM-Softmax on MS-Celeb-
1M, we use a batch size of 256 and keep training for 280K
steps. We start with a learning rate of 0.1, which is decreased
to 0.01, 0.001 after 160K and 240K steps, respectively. When
fine-tuning on the Private ID-selfie dataset, we use a batch size
of 248 and train the sibling networks for 4, 000 steps. We start
with a lower learning rate of 0.01 and decrease the learning rate
to 0.001 after 3, 200 steps. For both training stages, the feature
networks are optimized by a Stochastic Gradient Descent (SGD)
optimizer with a momentum of 0.9 and a weight decay of 0.0005.
All the images are aligned via similarity transformation based on
landmarks detected by MTCNN [54] and are resized to 96× 112.
We set margin parameters m as 5.0 in both stages. All the training
and testing experiments are run on a single Nvidia Geforce GTX
1080Ti GPU with 11GB memory. The inference speed of our
model on this GPU is 3ms per image.

By utilizing the MS-Celeb-1M dataset and the AM-Softmax
loss function in Equation (1), our base model achieves 99.67%
accuracy on the standard verification protocol of LFW and a
Verification Rate (VR) of 99.60% at False Accept Rate (FAR)
of 0.1% on the BLUFR [55] protocol.

Similar to the protocol of LFW [8], we define two views of
the Private ID-Selfie dataset for the following experiments. In the
development view, we tune the hyper-parameters including learn-
ing schedule, optimizer, m and α using 80% random identities
for training and 20% for validation. In the evaluation view, the
dataset is equally split into 5 partitions for cross-validation. In
each fold, one split is used for testing while the remaining are
used for training. In particular, 42, 873 and 10, 718 identities are
used for training and testing, respectively, in each fold. All the
following analysis experiments are conducted on the evaluation
view. In addition, we use the whole Public IvS dataset for cross-
dataset evaluation. Cosine similarity is used as comparison score
for all experiments.

5.2 Dynamic Weight Imprinting
Here we compare the accuracy of cross-validation using different
update rates α and different choices of update vector wbatch

j . We

9. https://www.tensorflow.org
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Fig. 8: The mean performance of different values of hyper-parameter
α on five folds on the Private ID-selfie dataset.

TABLE 2: The mean (and s.d.) of performance for different choices
of wbatch

j based on 5-fold cross-validation on the Private ID-selfie
dataset.

wbatch
j True Accept Rate (%)

FAR=0.001% FAR=0.01% FAR=0.1%

ID features 87.35± 1.13 92.87± 0.97 96.17± 0.51
Selfie features 88.01± 1.51 92.96± 1.02 96.04± 0.68
Average 93.16± 0.85 95.95± 0.54 97.51± 0.40

note that the purpose of this section is to show how different strate-
gies of weight imprinting would affect the performance of DIAM-
Softmax and the results are consistent with our observations in the
development view.

Figure 8 shows how average generalization performance
changes along with α. Here, we build the mini-batches with
random ID-selfie pairs from different classes. Then, wbatch

j is
chosen as the average feature of the ID and selfie sample. From the
figure, it is clear that a larger α always leads to better performance
and the accuracy peaks when α = 1, where we directly replace
the weights with wbatch

j as in Equation (6). This is not surprising
because most classes only have two samples, and thus there is
actually no need to update the weights softly since α = 1 always
leads to the most accurate estimation of the class distribution. A
smaller α might be preferred in the case of a deeper dataset.

The results of three different choices of wbatch
j are shown

in Table 2. Using either ID features or selfie features alone
leads to a lower performance compared to the averaged feature.
This is different from the results of Zhu et al. [14], who found
that initializing the classifier weights as ID features leads to
the best performance. Such differences may come from different
strategies of updating classifier weights since we are updating
them dynamically instead of keeping them fixed from the start
of training. As most classes have only two images, one from each
domain, updating the weights using only one of them causes a
biased loss on these images and hence discourages the network
from learning better representations for one domain.

5.3 Data Sampling

Since our data can be categorized in two ways: identity and
source, it raises the question of how we should sample the
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TABLE 3: The mean (and s.d.) of performance of different sampling
methods for building mini-batches based on 5-fold cross-validation on
the Private ID-selfie dataset. In “Random ID-selfie pairs”, a random
pair of ID and selfie images are sampled for each class (selected
randomly). In “Random pairs”, the sampled pairs may come from the
same source.

Sampling True Accept Rate (%)

FAR=0.001% FAR=0.01% FAR=0.1%

Random images 92.77± 1.05 95.71± 0.67 97.41± 0.48
Random pairs 92.66± 0.93 95.63± 0.70 97.27± 0.43
Random ID-
selfie pairs

93.16± 0.85 95.95± 0.54 97.51± 0.40

images for mini-batches during training. Here, we compare three
different sampling methods: (1) image-wise random sampling, (2)
random pairs from different classes, and (3) random ID-selfie
pairs from different classes (proposed). Method (1) is commonly
used for training classification loss functions, while method (2) is
commonly used by metric learning methods because they require
genuine pairs within the mini-batch for training. For (1) and (2),
the classifier weights are updated with the average feature of the
samples in each class. The corresponding results are shown in
Table 2. As one can see, random image sampling works slightly
better than random pair sampling, which is consistent with the
results on general face recognition. This is because random pair
leads to different sampling chances for images in different classes,
and the model will be biased towards samples in small classes,
which are sampled more frequently. However, in spite of this prob-
lem, random ID-selfie pair sampling still work slightly better than
random image sampling, which shows that a balanced parameter
learning of the two domains is important in our problem. These
results imply that one should investigate how to further improve
the performance by simultaneously solving the class imbalance
problem (or long-tail problem) and domain imbalance problem.

5.4 Parameter Sharing

To evaluate the effect of shared parameters vs. domain-specific
parameters, we constrain a subset of the parameters in the sibling
networks to be shared between ID and selfie domains and compare
the performances. Here, we consider both the case of shared low-
level parameters and the case of shared high-level parameters.
In particular, we compare the cases where modules “Conv1”,
“Conv1-3” and “Conv1-5” in the network are shared for learning
low-level parameters. Then, we repeat the experiments by sharing
the modules “FC” and “Conv5 + FC” and “Conv4-5 + FC” for
high-level parameters. Here “Conv i-j” means the ith to jth

convolutional modules and “FC” means the fully connected layer
for feature extraction. The results are shown in Table 4.

From Table 4 we can see that the performance does not vary
a lot with the parameter sharing. This is partially because our
base model learns highly transferable features, whose parameters
already provides a good initialization for all these modules. In
particular, sharing low-level parameters does not have a clear
impact on the performance, but constraining a shared bottleneck
does lead to a slight improvement in both accuracy and standard
deviation at all false accept rates. The performance decreases when
we constrain more high-level parameters to be shared. Further-
more, sharing all parameters leads to worse performance when
compared with others. We can conclude, indeed, that there exists
a small difference between ID photo and selfie photo domains and

TABLE 4: The mean (and s.d.) of performance of constraining
different modules of the sibling networks to be shared. “All” indicates
a single model for both domains while “None” means that the
parameters for the two domains are completely independent.

Shared Modules True Accept Rate (%)

FAR=0.001% FAR=0.01% FAR=0.1%

None 93.07± 0.91 95.86± 0.56 97.45± 0.39
Conv 1 93.08± 0.95 95.86± 0.58 97.47± 0.40
Conv 1-3 93.13± 0.88 95.84± 0.57 97.46± 0.42
Conv 1-4 93.11± 0.85 95.85± 0.57 97.43± 0.41
FC 93.16± 0.85 95.95± 0.54 97.51± 0.40
Conv 5 + FC 93.14± 0.89 95.96± 0.55 97.48± 0.43
Conv 4-5 + FC 93.10± 0.85 95.97± 0.57 97.46± 0.42
All 92.91± 0.92 95.81± 0.63 97.40± 0.43

TABLE 5: The mean (and s.d.) of performance of static weight
imprinting and dynamic weight imprinting based on 5-fold cross-
validation on the Private ID-selfie dataset. “Static-fixed” updates all
the weights at the beginning of fine-tuning. “Static-periodic” updates
all the weights every two epochs. For the proposed “DWI”, all the
weights are randomly initialized.

Weight Update True Accept Rate (%)

FAR=0.001% FAR=0.01% FAR=0.1%

Static - fixed 90.97± 1.01 94.76± 0.64 96.91± 0.46
Static - periodic 92.95± 0.85 95.88± 0.50 97.43± 0.39
DWI 93.16± 0.85 95.95± 0.54 97.51± 0.40

learning domain-specific parameters is helpful for recognition of
photos across the two domains.

5.5 Comparison with Static Weight Imprinting

In [14], Zhu et al. used ID features as fixed classifier weights to run
fine-grained training and showed performance improvement from
the original representation. We regard such a method as static
weight imprinting. The advantage of static weight imprinting is
that one can extract the features simultaneously from all classes to
update the classifier weights. However, they not only result in extra
computational cost but also fail to capture the global distribution
during the training. We compare our dynamic weight imprinting
method with static imprinting methods. In particular, we consider
two cases of static imprinting: (1) updating weights only at the
beginning of fine-tuning and keeping them fixed during training
and (2) updating weights every two epochs. For static methods,
we extract the features of a random ID-selfie pair from every
class and use their average vector for updating the weights. The
results are shown in Table 5. It can be noted that periodic updating
outperforms fixed weights, since fixed weights fail to keep up with
the feature distribution. Better performance should be expected
if we update the static weights more frequently. However, it is
important to note that periodic updating also introduces additional
computational cost as we need to extract tens of thousands of
features every time we update the weights. In comparison, DWI
has almost zero extra computational cost, yet it leads to even better
performance than periodic updating, indicating that the weights
under the proposed DWI are able to keep up-to-date and capture
the global distribution accurately.

5.6 Comparison with Different Loss Functions

In this section, we evaluate the effect of different loss functions
for fine-tuning on the Private ID-selfie dataset. We do not delve
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TABLE 6: The mean (and s.d.) of performance of different loss
functions based on 5-fold fold cross-validation on the Private ID-selfie
dataset. “N/C” means not converged. The proposed method is shown
in italic style in the last row of the table.

Method True Accept Rate (%)

FAR=0.001% FAR=0.01% FAR=0.1%

Base Model 77.69± 2.02 85.95± 1.67 92.43± 0.98
Softmax 83.51± 1.76 90.14± 1.44 94.53± 0.81
A-Softmax [21] 71.05± 2.57 80.26± 0.24 88.36± 1.76
AM-
Softmax [23]

92.53± 1.09 95.57± 0.57 97.23± 0.42

Contrastive [42] 91.13± 1.65 95.05± 0.77 97.18± 0.47
Triplet [19] 91.68± 1.21 95.42± 0.70 97.26± 0.45
MPS [42] 91.79± 1.16 95.43± 0.65 97.27± 0.44
DIAM-Softmax 93.16± 0.85 95.95± 0.54 97.51± 0.40

into the choice of loss function for training the base model since
it is not relevant to the main topic of this paper. We compare
the proposed DIAM-Softmax with three classification-based em-
bedding learning loss functions: Softmax, A-Softmax [21] and
AM-Softmax [23] and three other metric learning loss functions:
contrastive loss [42], triplet loss [19] and the MPS loss proposed
in our prior work [13]. The classification-based loss functions are
able to capture global information and thus achieve state-of-the-art
performances on general face recognition problems [23] while the
metric learning loss functions are shown to be effective on very
large datasets [19]. To ensure a fair comparison, we implement all
the loss functions in Tensorflow and keep the experimental settings
the same except that AM-Softmax is trained for twice as long. The
results are shown in Table 6.

From Table 6, one can see that our base model already achieves
quite high performance (TAR of 92.43%± 0.98 at FAR of 0.1%)
on the target dataset without any fine-tuning, indicating that the
features learned on general face datasets are highly transferable,
but it is still significantly lower than its performance on general
face datasets such as LFW due to the discrepancy between the
characteristics of face images in these two tasks. Clear improve-
ment can be observed after fine-tuning with most of the loss
functions. To gain more insight, we plot the TAR-step curves (the

(a) False accept pairs

(b) False reject pairs

Fig. 10: Examples of falsely classified images by our model on the
Private ID-selfie dataset at FAR = 0.001%.

x-axis is the number of training steps and the y-axis is the mean
TAR@FAR=0.001% of five folds at that step) in Figure 9. We
only pick the representative loss functions for clarity of the plot.
From Figure 9, we can see that Softmax overfits heavily just after
two epochs10, while the metric learning loss (triplet loss) is more
stable and quick to converge. Although AM-Softmax performs
better than metric learning methods, it converges so slowly that
we have to train it for twice as many steps. Notice that this
result is not contradictory with our prior work [13], where we
found AM-Softmax perform poorly on fine-tuning, because we
only allowed an equally limited number of training steps in [13].
A-Softmax, because of the multiplicative margin, is unstable and
does not converge with its default parameters [21]. Although it
converges after we change its margin parameter to 3, it ends with
a lower performance than the base model. In comparison with
the slow convergence of AM-Softmax, with the proposed weight
updating method, the “DIAM-Softmax” not only converges faster,
it is also robust against overfitting and generalizes much better
than all competitors.

5.7 Comparison with existing methods
In this subsection, we evaluate the performance of other face
matchers on the Private ID-selfie dataset to compare with our
method. To the best of our knowledge, there are no public face
matchers in the domain of ID-selfie matching. Although Zhu et

10. Each epoch is about 300 steps
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TABLE 7: The mean (and s.d.) of performance of different matchers
on the private ID-selfie dataset. The “base model” is only trained on
MS-Celeb-1M. The model DocFace+ has been fine-tuned on training
splits. Our models are shown in italic style. The two COTS and two
public CNN face matchers are not retrained on our dataset.

Method True Accept Rate (%)

FAR=0.001% FAR=0.01% FAR=0.1%

COTS-1 58.62± 2.30 68.03± 2.32 78.48± 1.99
COTS-2 91.53± 1.96 94.41± 1.84 96.50± 1.78
CenterFace [53] 27.37± 1.27 41.38± 1.43 59.29± 1.42
SphereFace [21] 7.96± 0.68 21.15± 1.63 50.76± 1.55
InsightFace [56] 81.69± 1.73 88.78± 1.30 94.08± 0.78
Base model 77.69± 2.02 85.95± 1.67 92.43± 0.98
DocFace+ 93.16± 0.85 95.95± 0.54 97.51± 0.40

al. developed a system on 2.5M ID-selfie training pairs, both their
system and training data are not in the public domain and therefore
we cannot compare their system with the proposed method on our
dataset. Therefore, we compare our approach with state-of-the-art
general face matchers to evaluate the efficacy of our system on the
problem of ID-selfie matching. To make sure our experiments are
comprehensive enough, we compare our method not only with two
Commercial-Off-The-Shelf (COTS) face matchers, but also three
state-of-the-art open-source CNN face matchers, namely Center-
Face11 [53], SphereFace12 [21] and InsightFace13(ArcFace) [56].
During the five-fold cross-validation, because these general face
matchers cannot be retrained, only the test split is used. The
results are shown in Table 7. Performances of the two open-source
CNN matchers, CenterFace and SphereFace, are below par on this
dataset, much worse than their results on general face datasets [53]
[21]. Although our base model performs better, it still suffers
from a large drop in performance compared to its performance
on general face datasets. It can be concluded that general CNN
face matchers cannot be directly applied to the ID-selfie problem
because the characteristics of ID-selfie images are different than
those of general face datasets and a domain-specific modeling is
imperative. A commercial state-of-the-art face recognition system,
COTS-2, performs closer to our fine-tuned model. However, since
the face dataset used to train COTS-2 is proprietary, it is difficult
to conclude whether a general commercial face matcher can work
well on this problem. In fact, from Table 7, another commercial
face matcher, COTS-1, performs much worse on this dataset.

5.8 Evaluation on Public-IvS
In [14], Zhu et al. released a simulated ID-selfie dataset for open
evaluation. The details and example images of this dataset were
given in Section 3.3. Here, we test our system as well as the
previous public matchers on this dataset for comparison. Among
all the 5, 503 photos, we were able to successfully align 5, 500
images with MTCNN. Assuming that the subjects are cooperative
and no failure-to-enroll would happen in real applications, we only
test here on the aligned images. The DocFace+ model is trained
on the entire Private ID-selfie dataset. Hence, no cross-validation
is needed here. The results are shown in Table 8. Contrary to our
expectations, the general face matchers perform much better on
this dataset. Furthermore, our base model even outperforms the
fine-tuned one. These results can likely be attributed to the high
quality of the simulated ID images in this dataset. Consequently,

11. https://github.com/ydwen/caffe-face
12. https://github.com/wy1iu/sphereface
13. https://github.com/deepinsight/insightface

TABLE 8: Evaluation results on Public-IvS dataset. The model Doc-
Face+ has been fine-tuned on the entire Private ID-selfie dataset and
no training is involved on Public-IvS dataset. The performance of [14]
is reported in their paper. Our models are shown in italic style.

Method True Accept Rate (%)

FAR=0.001% FAR=0.01% FAR=0.1%

COTS-1 83.78 89.92 92.90
COTS-2 94.74 97.03 97.88
CenterFace [53] 35.97 53.30 69.18
SphereFace [21] 53.21 69.25 83.11
InsightFace [56] 96.48 98.30 99.06
Zhu et al. [14] 93.62 97.21 98.83
Base model 95.00 97.71 98.80
DocFace+ 91.88 96.48 98.40

this dataset is similar to other general face datasets, such as
LFW [8]. See Figure 3 for a comparison of the images in the
Private ID-selfie dataset which is available to us and those in
the Public-IvS dataset. The example failure cases of our system
(DocFace+) on this dataset, shown in Figure 11, also supports this
conjecture. As one can observe, many ID images in these failure
pairs are more like a normal frontal face photo than a real ID
image, which could favor general face matchers. Another possible
case is that both the private ID-selfie dataset and the Public IvS
dataset represent a different subset of the overall distribution of
ID-selfie images, thus leading to different results. Notice that
although Zhu et al. [14] found that the results on this dataset
are coherent with real ID-selfie datasets, they did not compare
them with general face matchers and hence they did not observe
the competitiveness of general matchers on this dataset. However,
we can still conclude that our DocFace+ system is robust and it
performs well for both the private ID-selfie dataset and Public IvS
dataset.

6 CONCLUSIONS

In this paper, we propose a new face recognition system, named
DocFace+, for matching ID document photos to selfies. The
transfer learning technique is used, where a base model for
unconstrained face recognition is fine-tuned on a private ID-
selfie dataset. A pair of sibling networks with shared high-level
modules are used to model domain-specific parameters. Based
on our observation of the weight-shift problem of classification-
based embedding learning loss functions on shallow datasets,
we propose an alternative optimization method, called dynamic
weight imprinting (DWI) and a variant of AM-Softmax, DIAM-
Softmax. Experiments show that the proposed method not only
helps the loss converge much faster but also leads to better gener-
alization performance. A comparison with static weight imprinting
methods confirms that DWI is capable of capturing the global
distribution of embeddings accurately. Different sampling methods
are studied for mini-batch construction and we find that a balanced
sampling between the two domains is most helpful for learning
generalizable features. We compare the proposed system with
existing general face recognition systems on our private dataset
and see a significant improvement with our system, indicating the
necessity of domain-specific modeling of ID-selfie data. Finally,
we compare the performance of different matchers on the Public-
IvS dataset and find that although this dataset is similar to a general
face dataset, our system still generalizes well.
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(a) False accept pairs

(b) False reject pairs

Fig. 11: Examples of falsely classified images by our model on the
Public ID-selfie dataset at FAR = 0.001%.
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