
1

Face Clustering: Representation and Pairwise
Constraints

Yichun Shi, Student Member, IEEE, Charles Otto, Member, IEEE, and Anil K. Jain, Fellow, IEEE

Abstract—Clustering face images according to their identity
has two important applications: (i) grouping a collection of face
images when no external labels are associated with images, and
(ii) indexing for efficient large scale face retrieval. The clustering
problem is composed of two key parts: face representation and
choice of similarity for grouping faces. We first propose a repre-
sentation based on ResNet, which has been shown to perform very
well in image classification problems. Given this representation,
we design a clustering algorithm, Conditional Pairwise Clustering
(ConPaC), which directly estimates the adjacency matrix only
based on the similarity between face images. This allows a
dynamic selection of number of clusters and retains pairwise
similarity between faces. ConPaC formulates the clustering
problem as a Conditional Random Field (CRF) model and uses
Loopy Belief Propagation to find an approximate solution for
maximizing the posterior probability of the adjacency matrix.
Experimental results on two benchmark face datasets (LFW and
IJB-B) show that ConPaC outperforms well known clustering
algorithms such as k-means, spectral clustering and approximate
rank-order. Additionally, our algorithm can naturally incorporate
pairwise constraints to obtain a semi-supervised version that
leads to improved clustering performance. We also propose an
k-NN variant of ConPaC, which has a linear time complexity
given a k-NN graph, suitable for large datasets.

Index Terms—face clustering, face representation, Conditional
Random Fields, pairwise constraints, semi-supervised clustering.

I. INTRODUCTION

CAMERAS are everywhere, embedded in billions of smart
phones and hundreds of millions of surveillance systems.

Surveillance cameras, in particular, are a popular security
mechanism employed by government agencies and businesses
alike. This has resulted in the capture of suspect facial images
in high profile cases such as the 2013 Boston Marathon
Bombing [1]. But, getting to the point of locating suspects’
facial images typically requires manual processing of large
volumes of images and videos of an event. The need for
automatic processing of still images and videos to assist in
forensic investigations has motivated prior work on clustering
large collections of faces by identity [2].

In surveillance applications, the quality of available face
images is typically quite low compared to face images in some
of the public domain datasets such as the Labeled Faces in
the Wild (LFW) [3]. The IARPA Janus project is pushing
the boundaries of unconstrained face recognition and has
released a dataset, NIST IJB-B [4]1, where many of the faces

Y. Shi and A. K. Jain are with the Department of Computer Science and
Engineering, Michigan State University, East Lansing, MI, 48824. E-mail:
shiyichu@msu.edu, jain@cse.msu.edu

C. Otto is with Noblis, Reston, VA. E-mail: ottochar@gmail.com
1There is also an earlier version with smaller number of images, called

IJB-A released in 2015 [5]

CNN Clustering

Image collection Deep representation Clusters

Fig. 1: Face clustering workflow. A deep neural network is trained
to generate the representations for aligned face images. Given the
representation and a similarity measure, goal of clustering is to group
these unlabeled face images according to their identity. In the semi-
supervised scenario, the pairwise constraints are also provided along
with the unlabeled data. The red line here indicates a cannot-link pair
and green lines indicate must-link pairs.

cannot be detected by off-the-shelf face detectors [6]. The face
recognition problem posed by the Janus benchmark data may
therefore be closer to that encountered in forensic applications.
We attempt to handle this more difficult category of faces
by: (i) improving the face representation (through the use of
large training sets, and state-of-the-art deep network architec-
tures), (ii) developing an effective face clustering algorithm
to automatically group faces in images and videos, and (iii)
by incorporating user feedback during the clustering process
via a semi-supervised extension of the proposed clustering
algorithm.

To develop a representation for face clustering, we leverage
two public domain datasets: CASIA-Webface [7] and VGG-
Face [8]. In terms of network architecture, we adopt deep
residual networks, which have resulted in better performance
than VGG-architecture on the ImageNet benchmark [9], and
improved results over the architecture proposed in [7] on the
BLUFR protocol.

Given a representation, we propose a face clustering
method, called Conditional Pairwise Clustering (ConPaC) to
group the face collection according to their hidden class
(subject identity) using the pairwise similarity between face
images. No additional information, including the true num-
ber of identities (clusters) is assumed. Instead of learning
new similarity measures or representations and feeding them
to a standard partitional or hierarchical clustering method,
Conditional Pairwise Clustering directly treats the adjacency
between all pairs of faces as the variables to predict and look
for a solution that maximizes the joint posterior probability of
these variables given their corresponding pairwise similarity.
To model this conditional distribution, we propose a triplet
consistency constraint which reveals such a dependency be-

ar
X

iv
:s

ub
m

it/
19

21
33

0
 [

cs
.C

V
]

 1
5

Ju
n

20
17

2

tween the output variables that a valid adjacency matrix must
be transitive to represent a partitional clustering. That means
any two adjacent points should share exactly the same adjacent
neighbors. The proposed model can dynamically determine the
number of clusters, and also retain the similarity information.
In particular, we model the problem as a Conditional Random
Field (CRF) and employ Loopy Belief Propagation to arrive at
a valid adjacency matrix. This model is easily extended to the
semi-supervised case by accepting a set of pairwise constraints
(either must-link, or cannot-link assignments) on the similarity
matrix.

We perceive the following contributions in this work: (i)
experimental evaluation of Deep Residual Networks for face
representation and recognition, (ii) a clustering algorithm
(ConPaC) based on direct estimation of an adjacency matrix
derived from pairwise similarity between faces using the
learned representation in (i), (iii) face clustering evaluation
on two unconstrained face datasets: LFW and IJB-B, (iv)
an extension of the proposed method to semi-supervised
face clustering, and (v) an approximate k-NN variant of the
algorithm for efficient clustering of millions of face images.

II. BACKGROUND

A. Face Representation

Face images have been traditionally represented by appear-
ance models or local descriptors [10] [11] [12] [13]. But
after the success of Deep Neural Networks (DNN) in object
recognition [14], a number of DNN based methods have
been proposed for face representation and recognition. The
DeepFace [15] method trained a CNN on a dataset of four
million facial images belonging to more than 4,000 identities.
The training is based on minimizing classification error with
the output of the last hidden layer before classification layer
taken as the face representation. DeepFace significantly sur-
passed the traditional methods in face recognition, especially
for unconstrained face images. Sun et al. extended the work
of DeepFace in their DeepId series [16] [17] [18] [19].
They proposed to use multiple CNNs with joint Bayesian
framework [20] and added supervision to early convolutional
layers. Schroff et al. [21], in their FaceNet work, abandoned
the classification layer and instead introduced the triplet loss
to directly learn an embedding space where feature vectors of
different identities could be separated with Euclidean distance.

B. Face Clustering

Cluster analysis is an important topic widely studied in
pattern recognition, statistics and machine learning [22]. It
is useful for exploratory analysis by a preliminary grouping
of a collection of unlabeled data. Due to potentially large
and unknown number of identities in many large scale face
collections, it is useful to tag the face images by clustering.
Otto et al. [2] provided a brief review of face clustering.
Most of the previous studies [23] [24] [25] [26] [27] focused
on learning a good similarity matrix using the facial repre-
sentations and then fed the matrix to a standard clustering
algorithms such as spectral clustering to find clusters. How-
ever, the representations they used restrict the reliability of the

Fig. 2: An example factor graph of a general CRF model. Here,
the filled nodes are input nodes and the white nodes are output
nodes. Each factor (square) represents a potential function on a clique,
encoding the contraints between nodes. There are constraints either
between input and output or between output nodes. The figure is
taken from [42].

similarity matrix. We use deep representations to attain more
robust face representation and hence pairwise similarity and
design a new clustering algorithm which could better retain the
similarity information. The approximate rank-order clustering
proposed by Otto et al. [28] [2] did use deep representation
and is both efficient and effective for face clustering, but it
is not capable of incorporating pairwise constraints for semi-
supervised clustering. Further, we evaluate several networks
and training protocols to obtain a better face representation
than in [28] [2]. In [29], Nech et al. used face clustering to
help label face images and built MF2 face dataset.

C. Semi-supervised Clustering

Given the difficult nature of data clustering (choice of
feature representation, similarity measure, distance and un-
known number of clusters), one approach to improve clustering
performance is to incorporate side-information. One common
form of side-information is pairwise constraints, indicating
that a pair of data points either must be placed in the same
cluster (a “must-link” constraint), or they cannot be placed
in the same cluster (a “cannot-link” constraint), as shown in
Figure 1. Wagstaff et al. [30] first incorporated the pairwise
constraints into k-means algorithm by forcing the hard cluster
assignment to satisfy the constraints and showed that user-
specified constraints could help to improve clustering results.
Xing et al. [31] proposed to learn a Mahalanobis distance met-
ric from the given constraints before applying k-means. Basu
et al. [32] designed a probabilistic model for semi-supervised
clustering with Hidden Markov Random Fields (HMRFs) and
used EM algorithm to optimize the parameters. Research has
also been conducted on incorporating pairwise constraints into
hierarchical clustering [33] and spectral clustering [34] [35].
For a review of semi-supervised clustering, readers are referred
to [36].

D. Conditional Random Fields (CRFs)

Conditional Random Fields (CRFs) are a type of undirected
probabilistic graphical models first proposed by Lafferty et
al. for predicting labels of sequential data [37] and later
introduced to computer vision to model images [38] [39] [40].
The difference between CRFs and traditional Hidden Marcov
Models (HMMs) [41] lies in that CRF is a discriminant model
which directly models the conditional distribution p(Y |X)
rather than joint distribution p(Y,X) and predicts the labels

3

(a) (b) (c) (d)

Fig. 3: Example face images from (a) LFW, (b) IJB-B, (c) CASIA-webface, and (d) VGG datasets.

Y by maximizing the posterior probability. Generally, a CRF
can be formulated as:

p(Y |X) =
1

Z

∏
Cp∈C

∏
ψc∈Cp

ψc(Xc, Yc; θp), (1)

where Z is the normalization factor, C = {C1, C2, ..., CP } is
the set of all cliques in the graph, ψc is a potential function
defined on the variables (Xc, Yc) in clique Cp, and θp is
a set of parameters of the model [42]. We can represent
undirected graphical models by a factor graph, where a factor
node is there for each potential function and connects to
every node in its clique, as shown in Figure 2. Usually, there
are two types of potential functions in CRFs: (1) association
potential that equals the local conditional distribution over ob-
servations p(Yc|Xc) and (2) interaction potential that encodes
the dependency between different output variables. Although
both of them are originally defined as Gibbs distribution on
features in [37], unary association potentials are often sub-
stituted by supervised discriminant classifiers such as neural
networks [38] [43].

As for inference on the CRFs, any method for undirected
graphical models can be applied, and one of these methods
is Belief Propagation (BP) [44]. There are two types of BP
algorithms: sum-product and max-sum. They are exact infer-
ence methods, respectively, for finding marginal probability
and maximizing posterior probability on tree-like graphical
models. But because they only involve local message updates,
they can also be applied to graphs with loops, resulting in
Loopy Belief Propagation. Although Loopy Belief Propagation
is not guaranteed to converge, it has achieved success in a
variety of domains [45] [46] [47]. It has also been shown
that the result of Loopy Belief Propagation corresponds to the
stationary point of Bethe free energy and that it is related
to variational methods [48]. Readers are referred to [49] for
further information on CRFs and Loopy Belief Propagation.

III. FACE DATASETS

We leverage the CASIA-Webface [7], and VGG-Face [8]
datasets to train networks for finding the representation to be
used for clustering. We then evaluate performance of our clus-
tering algorithm on two benchmarks datasets, LFW [3], and

IARPA Janus Benchmark-B (IJB-B). Some example images
from these datasets are shown in Figure 3.

A. LFW

The Labeled Faces in Wild (LFW) [3] contains 13, 233 face
images of 5, 749 individuals; of those 5, 749 individuals, 4, 069
have only one face image each. The dataset was constructed
by searching for images of celebrities and public figures,
and retaining only those images for which an automatically
detectable face via the off-the-shelf face detectors [6] was
present. As a result, facial pose variations in LFW are limited.

B. IJB-B

The IJB-B dataset [4] is composed of 7 different experi-
ments, with increasing number of subjects. These experiments,
respectively, involve 32, 64, 128, 256, 512, 1, 024, 1, 870
subjects with total of 1, 473, 2, 566, 4, 793, 11, 186, 19, 583,
37, 653 and 68, 714 images, respectively. Two protocols related
to clustering are defined for IJB-B dataset: (i) clustering of
detected faces and (ii) face detection + clustering. Since the
focus of this work is face clustering, we will use the first
protocol and assume faces have already been detected. The
faces are aligned following the procedure in [50], using the
bounding boxes provided in IJB-B as the starting point for
landmark detection. Many images in the IJB-B datasets are in
extreme poses or of low quality, making the clustering task
more difficult for IJB-B than for LFW.

C. CASIA-Webface

The CASIA-webface dataset [7] is a semi-automatically
collected face dataset for pushing the development of face
recognition systems. It contains 494, 414 images of 10, 575
subjects (mostly celebrities) downloaded from internet. How-
ever, we are unable to localize faces in some of the images
with the face detector in Dlib library 2. So we use a subset of
CASIA-Webface with 404, 992 face images 10, 533 subjects
to train our network. This dataset has been popular for training
deep networks.

2http://dlib.net

4

Brad	
 Paisley	
 Kimberley	
 Williams-­‐Paisley	

(a)	
 (b)	

Fig. 4: Two types of unlabeled duplicate files in VGG-Face. (a)
placeholder images, served by some image hosts in place of bro-
ken links, and (b) exact duplicates of an image uploaded to two
different URLs, labeled as two different subjects “Brad Paisley” and
“Kimberley Williams-Paisley”.

D. VGG-Face

The VGG-Face dataset was released in 2016 as a set of 2.6
million URLs with corresponding face detection locations [8].
We could acquire only 2.2 million images of the original
2.6 million listed URLs due to broken links. Example VGG
images are shown in Figure 3(d).

Some URLs were listed multiple times in VGG-Face, with
different subject labels. On manual examination, we found
these repeatedly listed URLs were often mislabeled, so we
removed them from the dataset. This reduced the number of
available images to 1.9 million. However, even after eliminat-
ing repeatedly listed URLs, we found that there were still some
exact duplicate images as shown in Figure 4, deleting these left
us with a total of 1.7 million images. Manually examining the
images of random subjects also typically revealed a number
of mislabeled images, as in Figure 5. This suggests that man-
ually pruning the training set, or incorporating some form of
tolerance to label errors could improve our face representation.

Table I shows the number of images available for use as a
training set, under the restrictions mentioned above. We also
considered combining the VGG-Face dataset with the CASIA-
Webface dataset for network training. However, there is a
substantial overlap in subjects between these two datasets;
of the 2, 622 subjects in VGG, 1, 871 are also subjects in
the CASIA-Webface dataset, leading to a total of just 11, 326
unique subjects in the combined dataset.

IV. METHODS

A. Face Representation: Deep Residual Networks

He et al. [9] used a “deep residual network” architecture
to achieve state-of-the-art results on the ImageNet object
recognition dataset. The basic observation of He et al. is
that when adding layers to a conventional CNN, there comes
a point when further addition of layers neither improves
training accuracy nor the accuracy on the independent test
set. So rather than the typical over-fitting problem (where
an overly complex model fits the training set well, but fails
to generalize), the observed issue is an underfitting problem,
where the optimization procedure fails to fit the more complex
model to the training set in the first place.

Due to the incorporation of batch normalization layers [51],
the authors argue that the difficulty of optimization problem
is not due to numerical computation of gradients, but rather is
related to the difficultly in learning an identity mapping with
a conventional network architecture. Given a convolutional

Fig. 5: Three images, labeled as “Justin Kirk.” The leftmost image
is the actor in question, the middle image contains some incorrectly
labeled children, and the rightmost image is the fictional character
“James Kirk,” played by William Shatner.

TABLE I: Number of images and subjects available for training.
Dataset # of Images # of subjects
VGG-Full Dataset 2.62M 2, 622
VGG-No Duplicate URLs 2.3M 2, 622
VGG-No Duplicate URLs & Down-
loadable Images

1.9M 2, 622

VGG-No Duplicate Files & Download-
able Images

1.7M 2, 622

CASIA-Webface 494, 414 10, 575
CASIA-Webface, with Faces Detected 435, 487 10, 575
VGG-No Duplicate Files & CASIA-
Webface, with Faces Detected

2.1M 11, 326

layer, and activation layer, it is theoretically possible to learn a
set of weights that passes through the input unchanged, but in
practice this seems difficult to achieve during optimization.
This is directly relevant to the underfitting issue discussed
earlier in that it should always be possible to stack more layers
without hurting training set accuracy, as long as the layers can
converge to an identity mapping.

The proposed solution is the residual network block [52].
The basic idea is that rather than learning a direct mapping of
the input, the network learns an intermediate representation
which is added to the input (a residual), at each block.
This is accomplished through the use of a “skip” connection,
where the input to residual block x is passed through a
series of convolutional layers in one branch, but also passed
directly through without alteration in another branch, with both
branches being combined in a simple addition operation, and
pass the result through a ReLU layer. He et al. [52] proposed
a further modification where the block is slightly restructured
to remove the final ReLU layer out of the skip connection,
reducing the distortion of the output before entering the next
residual block.

We directly adapt the proposed architecture for face recog-
nition (leveraging the Torch7 framework3 and the implemen-
tation of residual networks released by Facebook AI Research
fb.resnet.torch4). We have investigated the 18, 50, and 101-
layer architectures outlined in [9]. In terms of data augmen-
tation, we scale our normalized face images following the
alignment procedure proposed in [50] to 256×256, as shown in
Figure 6, and randomly crop 224×224 regions during training.
We additionally flip images during training, and use the scale
and aspect-ratio augmentations from [53].

B. Clustering Method

1) Problem Formulation: Given a dataset X of size N ,
where each Xi, i = 1, 2, ...N is a data point, we want to

3http://torch.ch/
4https://github.com/facebook/fb.resnet.torch

5

Fig. 6: An example for normalizing the images. We normalize all our
images before feeding into the network according to the procedure
in [50], where the figure is taken from.

directly estimate an N ×N adjacency matrix Y , where Yij is
a binary variable indicating whether Xi and Xj are assigned to
the same cluster. Assuming that we are given the pairwise con-
ditional probability p(Yij |Xi, Xj) for all pairs, we now want to
find the overall adjacency matrix Y maximizing the posterior
probability p(Y |X). To model this conditional distribution, we
need to consider the dependency between different variables
Yij , for which we propose a triplet interaction constraint to
constrain the adjacency matrix Y to be valid. By valid, we
mean that the corresponding graph of that adjacency matrix is
transitive and represents a valid partition.

This leads to a structured prediction problem, so we use a
Conditional Random Field (CRF) model to formulate it and
maximize the posterior probability:

p(Y |X) =
1

Z

∏
i<j

ψu(Yij)
∏

i<j<k

ψt(Yij , Yik, Yjk), (2)

where Z is the normalizing factor, the unary association
potential ψu(Yij) = p(Yij |Xi, Xj) is the pairwise condi-
tional distribution over observations and ψt(Yij , Yik, Yjk) is
the triplet interaction potential to constrain Y to be valid.
Because the adjacency matrix is symmetric, we only need
to take Yij with i < j as variables, so there are in all
1
2N(N − 1) output nodes. Notice that the unary potential is
the likelihood of a pair of data points belonging to the same
class, which is exactly what the pairwise similarity stands for,
so we apply a transformation to the cosine similarity between
the deep representations of two faces to attain the genuine
unary potential ψu(Yij = 1). In practice, we find that this
works well, even without attempting to explicitly model the
probability distribution for unary potential.

For a partitional clustering, if a point i is connected to any
point j in a cluster, it should also connect to all the other
points in that cluster but not to any point outside the cluster.
However, not every adjacency matrix satisfies this requirement.
In order to check the validity of an adjacency matrix, we use
a measure based on triplet consistency. Consider a triplet of
any three points, as shown in Figure 7. Then there are four
possible cases regarding the states of three pairs in one triplet.
An adjacency matrix is valid if and only if none of the triplets
is in case (2). Hence we can model the dependency between
different Yij with triplet cliques. In our undirected graph, every
triplet (Yij , Yik, Yjk) is fully connected, and forms a clique.
The interaction potential for a triplet clique is defined as:

ψt(Yij , Yik, Yjk) = exp (−αV (Yij , Yik, Yjk)), (3)

(1) (2) (3) (4)

Fig. 7: Four cases of pairwise adjacency in a triplet. A green line
means the two points are connected, i.e. assigned to the same cluster.
And a red dash line means the two points are not connected. A valid
partition is obtained if and only if none of the triplets are in case (2).

where the energy function V is an indicator function which is
1 iff the triplet is inconsistent and 0, otherwise:

V (Yij , Yik, Yjk) =(1− Yij)YikYjk + Yij(1− Yik)Yjk
+ YijYik(1− Yjk)

(4)

Because the potentials are multiplied in the posterior prob-
ability, if α in Equation 3 is sufficiently large such that it
dominates the formula, the optimal solution has to be a valid
clustering, making this a hard constraint. However, it is worth
noting here that we don’t need to explicitly define α in our
algorithm, as shown in the next subsection.

Due to numerical issues, usually we take the negative
logarithm on both sides of Equation 2 and minimize its
corresponding energy function:

E(Y,X) =
∑
i<j

D(Yij) +
∑
i<j<k

αV (Yij , Yik, Yjk), (5)

where D(Yij) = − logψu(Yij) is the unary potential energy.
The graph structure of the model is illustrated in Figure 8.

Each output node Yij is in N cliques: one pairwise clique with
input pair Xi and Xj , and N − 1 triplet cliques consisting of
Yij , Yik and Yjk.

2) Inference By Belief Propagation: With the factor graph
and potentials defined, we can derive a message formula based
on the max-product algorithm. Because we are minimizing
energy instead of maximizing probability, the max-product
algorithm becomes a min-sum algorithm. We define a mes-
sage aij(Yij) as a function of variable Yij , representing the
accumulated energy so far for each state of the variable Yij .
The main procedure of our algorithm is as follows:

1. Initialize all messages as:

a0ij(Yij) = D(Yij), (6)

which is actually the message sent from the unary potential
factor.

2. At iteration t = 1, 2, ...T , update the messages as:

atij(Yij) =
∑

k∈Nt−1(i,j)

min
Yik,Yjk

at−1ik (Yik) + at−1jk (Yjk)

+ αV (Yij , Yik, Yjk),

(7)

where we are summing up the messages from different factors.
3. The final state of the variable is determined by:

Yij = argmin
Yij

aTij(Yij), (8)

Here, N t−1(i, j) means the set of the points (not nodes)
that are adjacent to either i or j at (t − 1) iteration, where
by adjacent we mean it has a less positive energy than the

6

𝑌𝑗𝑘

𝑌𝑖𝑘

𝑌𝑖𝑙

𝑌𝑗𝑙𝑌𝑖𝑗𝜓𝑡 𝜓𝑡

𝜓𝑢

…………

𝑋𝑖 𝑋𝑗

(a) Factor graph

𝑌𝑗𝑘

𝑌𝑖𝑘

𝑌𝑖𝑙

𝑌𝑗𝑙𝑌𝑖𝑗𝜓𝑡 𝜓𝑡

𝜓𝑢

…………

𝑋𝑖 𝑋𝑗

(b) Initialization

𝑌𝑗𝑘

𝑌𝑖𝑘

𝑌𝑖𝑙

𝑌𝑗𝑙𝑌𝑖𝑗𝜓𝑡 𝜓𝑡

𝜓𝑢

…………

𝑋𝑖 𝑋𝑗

(c) Iteration

Fig. 8: A graphical illustration of the proposed Conditional Random Field using the neighborhood of output node Yij as an example. The
figure shows how the nodes are connected, how the factors are related to potentials and how the messages are passed in the graph. Each
green node is an input node corresponding to one data point, each blue node is an output node corresponding to an element in the adjacency
matrix, and each rectangle is a factor node representing a potential function, which encodes the constraint between variables. The dash lines
represents the omitted links in this figure. There are two kinds of constraints: (i) unary potential which pushes the output to conform with
the pairwise similarity and (ii) interaction potential which forces output nodes to be consistent so that Y is valid. During the optimization,
messages are propagated among output nodes to directly approach a valid adjacency matrix Y which best retain the similarity information.

negative one in that iteration. If there are still inconsistent
triplets after the third step, a transitive merge is applied to
ensure the clustering result Y is valid. There are several issues
worth discussing on this procedure:

First, this is not a standard Loopy Belief Propagation algo-
rithm for CRF in two ways: (1) the unary messages are sent
only once and (2) the messages are isotropic, i.e. a message
sent from a node Yij is the sum of all messages it receives.
We found that these modifications make the algorithm easier
to implement, use less memory, result in faster convergence
and avoid oscillation with little impact on the quality of the
results.

Second, the messages could be normalized by subtracting
the same value on both sides. Theoretically, it makes no
difference to the result, but could avoid numerical underflow
and provide stability.

Third, the received messages in Equation 7 only include
those neighbors k that are adjacent to at least one of i and j
in the last iteration, because the messages from other neighbors
would have the same value in both dimensions. Thus it makes
no difference if we ignore those k /∈ N t−1(i, j). For the same
reason, we only need to update Yij whose N t−1(i, j) is not
empty.

Fourth, as we assume that α is a very large number, actually
all of the cases where V (Yij , Yik, Yjk) = 1 could be ignored
when we are taking the minimum in equation (7). For example,
for Yij = 1, we don’t need to consider the cases where Yik =
0, Yjk = 1 or Yik = 1 and Yjk = 0. In all the other cases,
because V (Yij , Yik, Yjk) = 0, α disappears from the formula.

Given the above optimization, along with our use of adja-
cency lists and an update list, the complexity of the algorithm
is O(TNM2), where N is the number of data points, T is
the number of iterations, and M is the maximum degree5 of
any data point in any iteration. Furthermore, we only choose to
update the nodes that are in at least one inconsistent triplet, so
the update list is typically much shorter after several iterations.

5Number of adjacent points.

On the LFW dataset, only 0.59% of the total pairs6 are
updated, and no more than 1, 000 pairs are in the update list
after the fourth iteration.

(a) data (b) initialization

(c) iteration 1 (d) iteration 2

(e) iteration 3 (f) clustering result

Fig. 9: The proposed clustering procedure on a toy example generated
by a mixture of two Gaussian distributions. Gaussian kernel is used
as the transformation function to give the unary potential.

An illustration of the complete clustering algorithm on a
toy example with synthetic 2-dimensional data is shown in
Figure 9. Figure 9(a) shows the initial data points without

6There are in all 87, 549, 528 pairs in the LFW dataset.

7

0 2 4 6 8 10
of iterations

10 0

10 1

10 2

10 3

10 4

10 5

10 6

10 7

10 8

of

 in
co

ns
is

t t
rip

le
ts

Fig. 10: Number of inconsistent triplets decreases rapidly until
convergence.

labels. Figure 9(b) shows the estimated positive pairs based on
unary potential (ψu(Yij = 1) >= ψu(Yij = 0)). Figures 9(b)-
(d) show the pairs that are adjacent during the first three
iterations. The triplet energy becomes zero after the third
iteration and so the algorithm converges. Figure 9(f) shows the
clustering result. Notice that we did not specify the number
of clusters, instead the algorithm dynamically finds them
according to the initial similarity and a threshold provided
by the user as hyperparameter. Our algorithm is also able to
find outliers, shown in this example as a singleton cluster.

Figure 10 shows how the number of inconsistent triplets
decreases with iterations during clustering of the 13, 233 im-
ages in the LFW dataset. The model converges rather quickly
to a stage where only a small number of inconsistent triplets
remain. Because the number of remaining inconsistent triplets
is usually very small, we don’t explicitly force convergence to
0 but apply a transitive merge on the current adjacency matrix
to get the final valid clustering. On LFW, only 6 pairs change
their states after we apply transitive merge.

3) Semi-supervised clustering: In semi-supervised or con-
strained clustering, we utilize the given side information,
usually in the form of “must-link” pairs and “cannot-link”
pairs. These pairs can either be specified by users or automat-
ically generated with another algorithm to improve clustering
performance. One way to make use of these pairs is to
propagate the constraints. Because our framework is optimized
by propagating messages, it becomes quite straight forward to
incorporate these constraints: we change the unary potential of
the constrained pairs based on the side information provided.
If we are very confident with the given constraints (as is the
case in our experiments which use ground-truth labels for side
information), we can set them as the positive unary potential as
1 for must-link and 0 for cannot-link constraints, resulting in
very large unary energy for one state and zero for the other.
Equation (7) states that very high energy would be avoided
when passing messages so the model can still be optimized
under these constraints.

4) Efficient Variant of the clustering algorithm using k-NN
Graph: The complexity of the proposed clustering algorithm
depends on the degree of data points during the optimization.
However, since this number is not fixed, in the worst case
its complexity could still be close to O(TN3), where T and
N are the number of iterations and data points, respectively.

10 -4 10 -3 10 -2 10 -1 10 0

False Accept Rate (%)

0

10

20

30

40

50

60

70

80

90

100

V
er

ifi
ca

tio
n

R
at

e,
 (

m
ea

n
-

s.
d.

, %
)

ResNet-50 VGG-CASIA, 10-crop
ResNet-50 VGG-CASIA
ResNet-18 CASIA
Scratch CASIA
Pre-ResNet-50 VGG+CASIA, 10-crop
Pre-Resnet-50 VGG+CASIA
Pre-ResNet-101 VGG+CASIA
Pre-ResNet-101 VGG+CASIA, 10-crop

Fig. 11: ROC Curves for the LFW dataset under the BLUFR protocol.
Different plots correspond to different networks trained on different
datasets. While these results are for a verification problem, they help
us in our choice of face representation for clustering

Therefore, we propose a variant of the algorithm which has a
fixed linear complexity. The idea is similar to the one in [2],
which takes advantage of approximate k-NN methods. Instead
of estimating the adjacency of every pair within the dataset, we
optimize the joint posterior probability of all Yij in the k-NN
graph which is a subset of the elements in the full adjacency
matrix Y . The same procedure outlined in section IV-B2 can
still be used for optimization with a few modifications: (1) The
neighbor list N(i) now is a fixed list given by the approximate
k-NN method, (2) we only update Yij where i ∈ N(j) or
j ∈ N(i), and (3) we only need to compute the unary potential
in the initialization step for pairs which will be used in the
next iteration, i.e. they are neighbors or they have at least
one shared neighbor. While time complexity of this variant,
given a pre-computed k-NN graph, is also O(TNM2) as
in section IV-B2, M is now a fixed number, which means
the algorithm has linear complexity in N per iteration. In
particular, we use the same approximate k-NN method, k-d
tree, with same configuration as in [2].

V. EXPERIMENTAL RESULTS

A. Face Representation Performance

Our ResNet model is trained on different training sets. The
corresponding verification results on the LFW dataset under
BLUFR protocol are shown in Table II. Results from [50] are
used as the baseline in (Table II, rows 1 and 2). As a proof
of concept, we first trained an 18-layer residual network on
the CASIA-Webface dataset (Table II, row 3), and attained
verification results a bit worse than the baseline [50]. This is
expected, since in the original ResNet paper, 18-layer networks
showed no substantial improvement over their VGG-style
counterparts. Next, we attempted to train a 50-layer residual
network, using the full VGG-Face dataset. This was ultimately
not very effective, as the optimization stalled and attained
worse performance on BLUFR than we attained with a smaller

8

TABLE II: BLUFR verification performance on LFW using different network architectures and training sets. Results reported as (mean -
standard deviation) across 10 folds.

VR@FAR=0.1%Training Set Network
(1) CASIA-Webface From Scratch [50] 84.41%
(2) CASIA-Webface From Scratch [50], fusion of 9 models 88.00%
(3) CASIA-Webface 18-layer ResNet 82.06%
(4) VGG-CASIA 50-layer ResNet 88.67%
(5) VGG-CASIA 50-layer ResNet, 10-crop 89.74%
(6) CASIA-Webface 50-Layer Pre-ResNet 88.36%
(7) CASIA-Webface 50-Layer Pre-ResNet, 10-crop 89.64%
(8) VGG-Face 50-Layer Resnet 81.40%
(9) VGG-Deduplicated 50-Layer Pre-ResNet 86.98%
(10) VGG-Deduplicated+CASIA-Webface 50-Layer Pre-ResNet 91.04%
(11) VGG-Deduplicated+CASIA-Webface 50-Layer Pre-ResNet, 10-crop 92.22%
(12) VGG-Deduplicated+CASIA-Webface 101-Layer Pre-ResNet 91.18%
(13) VGG-Deduplicated+CASIA-Webface 101-Layer Pre-ResNet, 10-crop 92.10%

network trained on the CASIA-Webface dataset (Table II, row
8). We then re-trained this 50-layer architecture on the CASIA-
Webface dataset, for 37 epochs, and attained notably better
performance than our prior results on the BLUFR benchmark
(Table II, row 4).

Due to the substantial amount of time spent retraining on
the CASIA-Webface dataset, it is natural to wonder if the
initial training on VGG had any significant effect. We therefore
trained a 50-layer network solely on CASIA-Webface (this
time using the fully pre-activated network variant discussed
in [52]), and attained slightly worse results (Table II, row 6).
However, the difference between the network’s performance
was less than 1 standard deviation, so it is difficult to credit
this as a significant difference, and it seems that training on the
VGG-Face dataset initially lead to no significant improvement.

Subsequently, we attempted to train a network on the dedu-
plicated VGG-Face dataset (removing all images involved in
duplicate URL sets, and all images with exact file duplicates).
This improved performance over training on the full VGG-
Face dataset (Table II, row 9), but the results still lag behind
the network trained on CASIA-Webface. Training on the
combination of the CASIA-Webface and deduplicated VGG-
Face datasets did improve our verification rate at 0.1% FAR
to 92.22% (Table II, row 11) from our previous best result of
89.74% (Table II, row 5). We additionally trained a 101-layer
network on the combined VGG-Face and CASIA-Webface
dataset; however, although this reduced our observed error on
the validation set (consisting of a random sample of images
of the training set subjects), it did not lead to improved
performance on BLUFR, as shown in Table II, row 13.

The best results we have attained on BLUFR is 92.22%
VR at 0.1% FAR for verification, and 62.05% DIR at 1%
FAR for open-set identification slightly. These lag some newly
reported results on the protocol. For example, Cheng at al. [54]
used a GoogLeNet-style inception architecture combined with
traditional Joint-Bayes and attained a 92.19% VR at 0.1%
FAR. They further improved this result to 93.05% using
their method for estimating the Joint-Bayes parameters. Lv
et al. [55] proposed a data augmentation method (perturbing
detected facial landmark locations, prior to image alignment),
again using an Inception architecture, and attained a 63.73%
DIR at 1% FAR in open-set identification, using the fusion
of 3 models (the best single-model performance is 57.90%).

These results indicate that our results could potentially be
further improved, through the incorporation of metric learning
methods, or fusing multiple models.

Figure 11 shows ROC curves for the networks and training
set mentioned above on the BLUFR protocol. The main
observations based on Figure 11 are as follows:
• The 50-layer ResNet leads to a significant improvement

compared to the baseline [50].
• using the standard ImageNet 10-crop strategy (Table II,

row 5,7,11,13), leads to a minor improvement in verifi-
cation performance.

• On the standard LFW protocol, we attain (1-EER)% error
of 97.23.

B. Face Clustering
With the representation from our best network architecture

(Table II, row 11), we evaluate our clustering algorithm on two
unconstrained face datasets (LFW and IJB-B). Before applying
the message passing procedure, we obtain unary potentials
described in IV-B and shown in Figure 12. Threshold τ is
the only parameter throughout our experiments. Different τ
provide different prior knowledge and controls the clustering
result. But it is worth emphasizing that the transformation
function itself (Figure 12) is not a necessary part of the
clustering algorithm and neither is the parameter τ , if we could
obtain the expected pairwise conditional probabilities in other
ways. All the clustering results reported here are based on
τ = 0.7.

We call our algorithm as Conditional Pairwise Clustering
(ConPaC) which is implemented in C++ and evaluated on Intel
Xeon CPU clocked at 2.90GHz using 24 cores. ConPac algo-
rithm is compared to the following benchmarks: (1) K-means,
(2) Spectral Clustering [56], (3) Rank-order clustering [26],
and (4) Approx. Rank-order clustering [2]. We use the MAT-
LAB R2016a implementation of K-means algorithm and a
third-party MATLAB implementation of Spectral Clustering7.
We use the same representation and cosine similarity for K-
means and Spectral Clustering and Rank-order algorithms, but
for Approx. Rank-order, we followed [2] because it generated
better clustering results.

7http://www.mathworks.com/matlabcentral/fileexchange/
34412-fast-and-efficient-spectral-clustering/content/files/SpectralClustering.
m

9

-1 -0.5 0 0.5 1
cosine similarity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ge
nu

in
e

un
ar

y
po

te
nt

ia
l

Fig. 12: Transformation function to map the cosine similarity to the
genuine unary probability ψu(Yij = 1). A threshold τ is used to
split the function into two pieces.

1) Evaluation Measures: Two measures are used to eval-
uate the clustering results, Pairwise F-measure and BCubed
F-measure. Both compute a F-score, which is the harmonic
mean of Precision and Recall. The difference between them
lies in the metrics used for precision and recall.

In Pairwise F-measure, Precision is defined as the fraction
of pairs that are correctly clustered together over the total
number of pairs that belong to the same class. Recall is
defined as the fraction of pairs that are correctly clustered
together over the total number of pairs that are in the same
cluster. In other words, we are using the labels for all the
1
2N(N − 1) pairs in the dataset with N points. Thus, we can
define the True Positive Pairs (TP), False Positive Pairs (FP)
and False Negative Pairs(FN). Then Precision and Recall can
be calculated as:

Pairwise Precision =
TP

TP + FP
(9)

Pairwise Recall =
TP

TP + FN
(10)

BCubed F-measure [57] defines Precision as point preci-
sion, namely how many points in the same cluster belong to
its class. Similarly, point recall represents how many points
from its class appear in its cluster. Formally, we use L(i) and
C(i) to, respectively, denote the class and cluster of a point i,
and define the Correctness between two points i and j as:

Correctness(i, j) =

{
1, if L(i) = L(j) and C(i) = C(j)

0, if otherwise
(11)

The Precision and Recall are defined as:

BCubed Precision = Avgi[Avgj∈C(i)[Correctness(i, j)]]
(12)

BCubed Recall = Avgi[Avgj∈L(i)[Correctness(i, j)]]
(13)

The F-measure, or F-score for both criteria is given by:

F =
2× Precision×Recall
Precision+Recall

(14)

Pairwise F-measure is a more commonly used measure, and
BCbued F-measure is the formal evaluation measure for the
IJB-B dataset. The difference between the two is that Pairwise

TABLE III: Comparison of the F-measures of the proposed algorithm
and other clustering algorithms on LFW dataset. The number of
identities (true number of clusters) in LFW is 5, 749. Run-time is
reported in the format of hh:mm:ss.

Pairwise BCubed # of
Algorithm F-measure F-measure Clusters Run-time
K-means 0.098 0.680 5, 749 00 : 04 : 08
K-means 0.359 0.460 500 00 : 00 : 14
Spectral 0.033 0.559 5, 749 01 : 00 : 56
Spectral 0.257 0.249 75 14 : 37 : 14
Rank-Order 0.813 0.891 5, 699 00 : 00 : 33
Approx. Rank-Order 0.861 0.875 6, 801 00 : 00 : 12
ConPaC (proposed) 0.965 0.922 6, 352 00 : 00 : 39

F-measure puts relatively more emphasis on large clusters
because the number of pairs grows quadratically with cluster
size, while under BCubed F-measure clusters are weighted
linearly based on their size.

2) Evaluation on the LFW Dataset: LFW is quite an imbal-
anced dataset, with only 1,680 classes (individuals) containing
more than one faces. Since we cannot assume that our datasets
will be well balanced, we do the experiments on the whole
LFW dataset.

The number of clusters C is dynamically selected during the
update of the ConPaC, but it is required as an input parameter
for k-means and spectral clustering. So we first evaluate their
performance with the ground-truth or the true number of
clusters C, C = 5, 749. Then we repeat the clustering with
several different values and report the one that gives the best
performance. Table III shows that the performance of k-means
and spectral clustering is poor with the ground-truth C. This
is because these two algorithms do not perform well with
unbalanced data. Even after tuning C, the proposed algorithm
performs significantly better than competing algorithms. For
the running time, since the sizes of clusters in the LFW dataset
are mostly very small, the time complexity of ConPaC is low
and it take less than one minute to finish.

Some example clusters by ConPaC results for LFW are
shown in Figure 13, where 13(a) and 13(b) show two pure
clusters while 13(c) and 13(d) show two impure clusters.
Face images in these clusters have different illumination,
background, and pose. In 13(c) three images from one identity
and 5 from another are grouped together. In 13(d), a total of
6 images from two different identities are grouped into one
cluster.

3) Evaluation on the IJB-B Dataset: The results of the 7
experiments in the IJB-B clustering protocol are shown in
Table IV. As expected, as the number of identities increases,
the F-scores of both competing and the proposed algorithms
decrease. While the proposed algorithm shows a larger advan-
tage in terms of F-score on the first few experiments, the gain
diminishes as the number of clusters increase. As explained
in Section V-B6, this decrease in performance is mainly due
to the saliency of the representation.

Another thing worth noticing is that the number of clusters
found by the proposed algorithm is much larger than the true
number of clusters. This is because a large number of points
are regarded as outliers by our algorithm and so they form
singleton clusters. For this reason, we also report the number
of “non-singleton” clusters in parentheses, which contain at

10

(a) (b)

(c) (d)

Fig. 13: Example clusters by the proposed clustering algorithm on LFW datasets.

(a) (b)

(c) (d)

Fig. 14: Example clusters by the proposed clustering algorithm on IJB-B datasets, (a) and (b) are example clusters from the IJB-B-32
experiment and (c) and (d) are example clusters from IJB-B-1024 experiment.

least two points. The number of non-singleton clusters is closer
to the true number of clusters.

Some example clustering results on the IJB-B-32 and IJB-
B-1024 are shown in Figure 14. Figure 14(a) and Figure 14(b),
respectively, show a pure and an impure cluster on IJB-B-32.
Figure 14(c) and Figure 14(d), respectively, show a pure and
impure cluster on IJB-B-1024. The images in Figure 14(b)
which have a bounding box of the same color are from the
same subject. All images in Figure 14(d) are from different
subjects.

4) Semi-supervised Clustering: As we mentioned in Sec-
tion IV-B3, pairwise constraints could be naturally incorpo-
rated into the framework of ConPaC without any modification
of the algorithm. Therefore in this section, we assume that
we have already been given a set of pairwise constraints
and evaluate whether the side-information could improve the
clustering performance. We consider two types of constraints:
• Random Constraints: must-links and cannot-links are

picked randomly from ground-truth positive and negative
pairs.

• Key Constraints: The similarity between every pair of
faces is sorted. Must-links are picked by choosing the
positive pairs with the lowest similarity and cannot-links
are picked by choosing the negative pairs with highest
similarity.

In both cases, we use knowledge of the ground truth identity
labels to sample a equal number of must-link and cannot-link
constraints. We then test the performance of the algorithm with
increasing number of constraints. For random constraints, we
run 10 trials and report the average performance. The results
are reported in terms of pairwise F-score.

We tested our algorithms in terms of semi-supervised clus-
tering on LFW and IJB-B-1024 dataset. The results of semi-
supervised clustering are shown in Figure 15. On LFW, in
both cases, the constraints are always helpful to the perfor-
mance and the more the number of constraints, the larger
the improvement in F-score. This is because our algorithm
tries to find clustering results that are most consistent with the
unary potentials, and when more constraints are provided, the
unary potentials can be trusted more. What’s more, the number

11

TABLE IV: Comparison of the F-measures of the proposed algorithms and other clustering algorithm on IJB-B datasets. Numbers of
non-singleton clusters in the proposed algorithms are shown in parentheses.

(a) IJB-B-32
Pairwise BCubed # of

Algorithm F-measure F-measure Clusters Run-time
K-means 0.544 0.587 10 00 : 00 : 01
Spectral 0.492 0.570 10 00 : 00 : 01
Rank-Order 0.589 0.628 177 00 : 00 : 02
Approx. Rank-
Order

0.706 0.667 262 00 : 00 : 03

ConPaC 0.937 0.751 294 00 : 00 : 09
(proposed) (92)

(b) IJB-B-64
Pairwise BCubed # of

Algorithm F-measure F-measure Clusters Run-time
K-means 0.560 0.510 10 00 : 00 : 01
Spectral 0.303 0.514 25 00 : 00 : 01
Rank-Order 0.366 0.550 410 00 : 00 : 06
Approx. Rank-
Order

0.534 0.574 588 00 : 00 : 03

ConPaC 0.897 0.656 619 00 : 00 : 09
(proposed) (191)

(c) IJB-B-128
Pairwise BCubed # of

Algorithm F-measure F-measure Clusters Run-time
K-means 0.488 0.442 25 00 : 00 : 04
Spectral 0.380 0.518 50 00 : 00 : 06
Rank-Order 0.151 0.489 869 00 : 00 : 17
Approx. Rank-
Order

0.413 0.482 1, 440 00 : 00 : 05

ConPaC 0.814 0.563 1, 270 00 : 00 : 14
(proposed) (360)

(d) IJB-B-256
Pairwise BCubed # of

Algorithm F-measure F-measure Clusters Run-time
K-means 0.370 0.377 10 00 : 00 : 13
Spectral 0.243 0.457 75 00 : 00 : 36
Rank-Order 0.346 0.489 4, 084 00 : 00 : 16
Approx. Rank-
Order

0.401 0.423 3, 710 00 : 00 : 12

ConPaC 0.459 0.493 2, 930 00 : 01 : 24
(proposed) (770)

(e) IJB-B-512
Pairwise BCubed # of

Algorithm F-measure F-measure Clusters Run-time
K-means 0.329 0.388 100 00 : 00 : 31
Spectral 0.210 0.424 250 00 : 04 : 09
Rank-Order 0.045 0.545 4, 084 00 : 03 : 56
Approx. Rank-
Order

0.398 0.410 7, 010 00 : 00 : 19

ConPaC 0.424 0.481 5, 677 00 : 03 : 42
(proposed) (1, 398)

(f) IJB-B-1024
Pairwise BCubed # of

Algorithm F-measure F-measure Clusters Run-time
K-means 0.279 0.358 250 00 : 01 : 26
Spectral 0.195 0.392 500 00 : 27 : 21
Rank-Order 0.017 0.417 4, 084 00 : 20 : 36
Approx. Rank-
Order

0.341 0.352 15, 777 00 : 00 : 37

ConPaC 0.348 0.452 12, 155 00 : 20 : 06
(proposed) (2, 804)

(g) IJB-B-1870
Pairwise BCubed # of

Algorithm F-measure F-measure Clusters Run-time
K-means 0.313 0.398 1000 00 : 06 : 56
Spectral 0.208 0.335 500 01 : 34 : 40
Rank-Order 0.005 0.267 4, 084 01 : 12 : 25
Approx. Rank-
Order

0.315 0.317 31, 218 00 : 00 : 73

ConPaC 0.239 0.429 23, 119 02 : 53 : 58
(proposed) (5, 032)

of specified constraints in the experiment are actually very
small compared with the total number of possible pairwise
constraints, which is (13233 × 13232) ÷ 2 = 87, 483, 363.
But due to message propagation, these constraints impact
not only themselves, but also all related pairs. Thus, even a
small number of randomly picked constraints could boost the
performance significantly. On IJB-B-1024 dataset, the random
constraints still help a lot, but the key constraints are not
doing any favor. The reason for this could be that because
the key constraints are those most in conflict with the cosine
similarity matrix, and when the similarity matrix is not very
reliable (due to the saliency of the representation), it could be
incompatible with the original similarity matrix and lead to
poor performance.

5) k-NN variant for large datasets: In this section, we
test the run-time and performance of the k-NN variant of the
proposed clustering. We use the same k-d tree library [58] as
used in [2] to generate the approximate k-NN graph. We also
use the same configuration for the k-d tree where k = 200
and we build 4 trees with a search size of 2, 000. We first

compare the performance of the algorithm using approximate
k-NN graph and full graph (original algorithm) on LFW and
IJB-B-1024. Then we test the performance of the k-NN variant
on 1 million unlabeled face images along with LFW or IJB-B.
We apply pairwise F-measure to only the subset for which we
have labels (from LFW or IJB-B) but omit those for which
we do not have labels (1 million distractor images). Although
we don’t have the labels for the 1 million dataset, it is still
reasonable to apply pairwise F-measure from the view that we
are evaluating the label predictions on the adjacency matrix
of the subset of dataset. The clustering results is shown in
Table V. The proposed k-NN variant perform well on LFW
dataset even when there are 1 million distractors, but not well
on IJB-B-1024.

6) Influence of the initial similarity matrix: The motivation
and distinguishing feature of our algorithm is that it only
depends on the given pairwise similarity. In this subsection we
want to investigate how the clustering performance is affected
by the similarity and also how it is influenced by the choice
of parameter.

12

0 5000 10000
of constraints

0.96

0.97

0.98

0.99

1

F
-m

ea
su

re
LFW

random
key

0 5000 10000
of constraints

0.2

0.3

0.4

0.5

0.6

F
-m

ea
su

re

IJB-B-1024

random

key

Fig. 15: Performance of the proposed clustering algorithm on LFW
and IJB-B-1024 datasets after incorporating pairwise constraints.
Both random and key constraints improve clustering performance in
terms of F-score on the LFW dataset. However, for the IJB-B-1024
dataset, only random constraints are able to boost the performance.

TABLE V: Performance of k-NN variant and original algorithm on
small and large datasets.

Pairwise # of
Dataset Version F-measure clusters Run-time

LFW full graph 0.965 6, 352 00 : 00 : 39
LFW k-d tree 0.964 5, 927 00 : 03 : 06

IJB-B-1024 full graph 0.348 12, 155 00 : 20 : 06
IJB-B-1024 k-d tree 0.101 8, 352 00 : 05 : 54
1M + LFW k-d tree 0.809 452, 629 04 : 24 : 09

1M + IJB-B-1024 k-d tree 0.061 455, 492 04 : 32 : 18

We first need a method to evaluate the reliability of the input
pairwise similarity matrix. Notice that with the input similarity
matrix and corresponding threshold τ , we can already predict
the pairwise connections in the dataset and get a new adjacency
matrix Z. Each element Zij in the matrix Z can be regarded
as a prediction result of pairwise verification between two
face images based on thresholding the cosine similarity with
threshold τ . The difference between Z and Y is that Z is
not a valid matrix, so it does not necessarily corresponding to
a clustering result. For the toy example in Figure 9, 9(a) is
just the corresponding graph of Z and the graph of Y would
be 9(b), which is transitive. Though it is not a valid result
in terms of clustering, from a label prediction view, we can
still apply Equation 9 and Equation 10 to Z and compute
the pairwise F-score to measure the input similarity matrix’s
reliability. Because Z represents the verification results, this
reliability can also indicate how good our input similarity is
in terms of verification.

We then determine how the F-measures of Y and Z varies
with different values of threshold τ in the mapping function.
We can see that the clustering performance changes smoothly
with different parameter values. Further more, the F-measure
of result Y is highly correlated with that of Z. In other
words, when the similarity matrix is reliable, the clustering
does a better job, and vice versa. Because τ = 0.7 is the best
threshold for both LFW and IJB-B-1024, we use it for all the
other experiments, as indicated earlier.

To further see the relationship between the clustering per-
formance and the verification performance, we compare the F-
measures of Y and that of Z on all the 7 experiments in IJB-B
dataset. We find that the two F-measures are almost linearly
correlated across all these experiments, with a correlation
coefficient of 0.9998. Therefore, we can state that we have
achieved our motivation to make full use of the input pairwise

0.6 0.65 0.7 0.75 0.8
threshold

0

0.2

0.4

0.6

0.8

1

F
-m

ea
su

re

LFW

clustering f-measure
similarity reliability

(a)

0.6 0.65 0.7 0.75 0.8
threshold

0

0.2

0.4

0.6

0.8

1

F
-m

ea
su

re

IJB-B-1024

clustering f-measure
similarity reliability

(b)

Fig. 16: Performance of the proposed algorithm with different thresh-
old values on LFW and IJB-B-1024 datasets.

similarity, and that the decrease in clustering performance on
IJB-B compared to LFW is due to the decrease in reliability
of the input pairwise similarity, which in turn depends on the
saliency of the face representation (feature vector).

VI. CONCLUSIONS

In this paper, we first trained a ResNet deep network
architecture on CASIA-Webface and VGG-Face dataset. The
representation from the proposed network shows a good per-
formance on the BLUFR face verification benchmark. Using
this representation, we proposed a new clustering algorithm,
called Conditional Pairwise Clustering (ConPaC), which learns
an adjacency matrix directly from the given similarity matrix.
The clustering problem is modeled as a structured prediction
problem using a Conditional Random Field (CRF) and is
inferred by Loopy Belief Propagation. The proposed algorithm
outperforms several well known clustering algorithms on LFW
and IJB-B unconstrained datasets and it can also naturally
incorporate pairwise constraints to improve clustering results.
We also propose a k-NN variant of ConPaC which is capable
of clustering millions of face images. Our future work would
include finding better unary potential for more robust face
clustering and also incorporating pairwise constraints into the
k-NN variant.

REFERENCES

[1] J. C. Klontz and A. K. Jain, “A case study of automated face recognition:
The Boston Marathon bombings suspects,” IEEE Computer, vol. 46,
no. 11, 2013.

[2] C. Otto, D. Wang, and A. K. Jain, “Clustering millions of faces by
identity,” IEEE Trans. on PAMI, 2017.

[3] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled
faces in the wild: A database for studying face recognition in uncon-
strained environments,” University of Massachusetts, Amherst, Tech.
Rep. 07-49, October 2007.

[4] C. Whitelam, E. Taborsky, A. Blanton, B. Maze, J. Adams, T. Miller,
N. Kalka, A. K. Jain, J. A. Duncan, K. Allen, J. Cheney, and P. Grother,
“Iarpa janus benchmark-b face dataset,” in CVPR Workshop on Biomet-
rics, 2017.

[5] B. F. Klare, B. Klein, E. Taborsky, A. Blanton, J. Cheney, K. Allen,
P. Grother, A. Mah, M. Burge, and A. K. Jain, “Pushing the frontiers of
unconstrained face detection and recognition: IARPA Janus benchmark
A,” in CVPR, 2015.

[6] P. Viola and M. J. Jones, “Robust real-time face detection,” International
Journal of Computer Vision, vol. 57, no. 2, 2004.

[7] D. Yi, Z. Lei, S. Liao, and S. Z. Li, “Learning face representation from
scratch,” arXiv:1411.7923, 2014.

[8] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,”
in British Machine Vision Conference, 2015.

13

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[10] M. Turk and A. Pentland, “Face recognition using eigenfaces,” in CVPR,
1991.

[11] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance
models,” IEEE Trans. on PAMI, vol. 23, no. 6, 2001.

[12] T. Ahonen, A. Hadid, and M. Pietikainen, “Face description with local
binary patterns: Application to face recognition,” IEEE Trans. on PAMI,
vol. 28, no. 12, 2006.

[13] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” IEEE Trans. on PAMI, vol. 31,
no. 2, 2009.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012.

[15] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the
gap to human-level performance in face verification,” in CVPR, 2014.

[16] Y. Sun, X. Wang, and X. Tang, “Deep learning face representation from
predicting 10,000 classes,” in CVPR, 2014.

[17] Y. Sun, Y. Chen, X. Wang, and X. Tang, “Deep learning face represen-
tation by joint identification-verification,” in NIPS, 2014.

[18] Y. Sun, X. Wang, and X. Tang, “Deeply learned face representations are
sparse, selective, and robust,” in CVPR, 2015.

[19] Y. Sun, D. Liang, X. Wang, and X. Tang, “Deepid3: Face recognition
with very deep neural networks,” arXiv:1502.00873, 2015.

[20] D. Chen, X. Cao, L. Wang, F. Wen, and J. Sun, “Bayesian face revisited:
A joint formulation,” in ECCV, 2012.

[21] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embed-
ding for face recognition and clustering,” in CVPR, 2015.

[22] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern Recog-
nition Letters, vol. 31, no. 8, 2010.

[23] J. Ho, M.-H. Yang, J. Lim, K.-C. Lee, and D. Kriegman, “Clustering
appearances of objects under varying illumination conditions,” in CVPR,
2003.

[24] J. Cui, F. Wen, R. Xiao, Y. Tian, and X. Tang, “Easyalbum: an interactive
photo annotation system based on face clustering and re-ranking,” in
ACM SIGCHI Conference on Human factors in Computing Systems,
2007.

[25] Y. Tian, W. Liu, R. Xiao, F. Wen, and X. Tang, “A face annotation
framework with partial clustering and interactive labeling,” in CVPR,
2007.

[26] C. Zhu, F. Wen, and J. Sun, “A rank-order distance based clustering
algorithm for face tagging,” in CVPR, 2011.

[27] R. Vidal and P. Favaro, “Low rank subspace clustering (lrsc),” Pattern
Recognition Letters, vol. 43, 2014.

[28] C. Otto, B. Klare, and A. Jain, “An efficient approach for clustering face
images,” in ICB, 2015.

[29] A. Nech and I. Kemelmacher-Shlizerman, “Level playing field for
million scale face recognition,” arXiv:1705.00393, 2017.

[30] K. Wagstaff, C. Cardie, S. Rogers, S. Schrödl et al., “Constrained k-
means clustering with background knowledge,” in ICML, 2001.

[31] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell, “Distance metric
learning with application to clustering with side-information,” in NIPS,
2002.

[32] S. Basu, M. Bilenko, and R. J. Mooney, “A probabilistic framework for
semi-supervised clustering,” in KDD, 2004.

[33] I. Davidson and S. Ravi, “Agglomerative hierarchical clustering with
constraints: Theoretical and empirical results,” in European Conference
on Principles of Data Mining and Knowledge Discovery, 2005.

[34] Z. Lu and M. A. Carreira-Perpinan, “Constrained spectral clustering
through affinity propagation,” in CVPR, 2008.

[35] X. Wang and I. Davidson, “Flexible constrained spectral clustering,” in
KDD, 2010.

[36] S. Basu, I. Davidson, and K. Wagstaff, Constrained clustering: Advances
in Algorithms, Theory, and Applications. CRC Press, 2008.

[37] J. Lafferty, A. McCallum, F. Pereira et al., “Conditional random fields:
Probabilistic models for segmenting and labeling sequence data,” in
ICML, 2001.

[38] X. He, R. S. Zemel, and M. Á. Carreira-Perpiñán, “Multiscale condi-
tional random fields for image labeling,” in CVPR, 2004.

[39] D. Hoiem, A. A. Efros, and M. Hebert, “Putting objects in perspective,”
International Journal of Computer Vision, vol. 80, no. 1, 2008.

[40] V. Koltun, “Efficient inference in fully connected crfs with gaussian edge
potentials,” NIPS, 2011.

[41] L. R. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition,” Proceedings of the IEEE, vol. 77,
no. 2, 1989.

[42] C. Sutton and A. McCallum, “An introduction to conditional random
fields for relational learning,” Introduction to Statistical Relational
Learning, 2006.

[43] I. K. K. M. Liang-Chieh Chen, George Papandreou and A. L. Yuille,
“Semantic image segmentation with deep convolutional nets and fully
connected crfs,” ICLR, 2015.

[44] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, 1988.

[45] W. T. Freeman, E. C. Pasztor, and O. T. Carmichael, “Learning low-level
vision,” International Journal of Computer Vision, vol. 40, no. 1, 2000.

[46] B. J. Frey and D. J. MacKay, “A revolution: Belief propagation in graphs
with cycles,” NIPS, 1998.

[47] C. Yanover and Y. Weiss, Approximate Inference and Protein-folding.
Hebrew University of Jerusalem, 2002.

[48] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Constructing free-energy
approximations and generalized belief propagation algorithms,” IEEE
Transactions on Information Theory, vol. 51, no. 7, 2005.

[49] C. Sutton, A. McCallum et al., “An introduction to conditional random
fields,” Foundations and Trends in Machine Learning, vol. 4, no. 4,
2012.

[50] D. Wang, C. Otto, and A. K. Jain, “Face search at scale,” IEEE Trans.
on PAMI, 2016.

[51] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in ICML, 2015.

[52] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” in ECCV, 2016.

[53] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in CVPR, 2015.

[54] C. Cheng, J. Xing, Y. Feng, D. Li, and X.-D. Zhou, “Bootstrapping joint
bayesian model for robust face verification,” in ICB, 2016.

[55] J.-J. Lv, C. Cheng, G.-D. Tian, X.-D. Zhou, and X. Zhou, “Landmark
perturbation-based data augmentation for unconstrained face recogni-
tion,” Signal Processing: Image Communication, 2016.

[56] A. Y. Ng, M. I. Jordan, Y. Weiss et al., “On spectral clustering: Analysis
and an algorithm,” in NIPS, 2001.

[57] E. Amigó, J. Gonzalo, J. Artiles, and F. Verdejo, “A comparison of
extrinsic clustering evaluation metrics based on formal constraints,”
Information Retrieval, vol. 12, no. 4, 2009.

[58] M. Muja and D. G. Lowe, “Scalable nearest neighbor algorithms for
high dimensional data,” IEEE Trans. on PAMI, vol. 36, no. 11, 2014.

Yichun Shi received his B.S degree in the De-
partment of Computer Science and Engineering at
Shanghai Jiao Tong University in 2016. He is now
working towards the Ph.D. degree in the Department
of Computer Science and Engineering at Michigan
State University. His research interests include pat-
tern recognition and computer vision.

Charles Otto received his B.S. and Ph.D. degrees
in the Department of Computer Science and Engi-
neering at Michigan State University in 2008 and
2016, respectively. He was a research engineer at
IBM during 2006-2011. He is currently employed
at Noblis, Reston, VA. His research interests include
pattern recognition, and computer vision.

Anil K. Jain is a University distinguished professor
in the Department of Computer Science and Engi-
neering at Michigan State University. His research
interests include pattern recognition and biometric
authentication. He served as the editor-in-chief of the
IEEE Transactions on Pattern Analysis and Machine
Intelligence (1991-1994), a member of the United
States Defense Science Board, and and is a member
of the National Academy of Engineering.

